
Citation: Batchuluun, G.; Nam, S.H.;

Park, K.R. Deep Learning-Based

Plant-Image Classification Using a

Small Training Dataset. Mathematics

2022, 10, 3091. https://doi.org/

10.3390/math10173091

Academic Editors: Abeer Alsadoon,

Luis Coelho, Jakub Nalepa and

Stefano De Marchi

Received: 6 July 2022

Accepted: 23 August 2022

Published: 28 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Deep Learning-Based Plant-Image Classification Using a Small
Training Dataset
Ganbayar Batchuluun, Se Hyun Nam and Kang Ryoung Park *

Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu,
Seoul 04620, Korea
* Correspondence: parkgr@dongguk.edu

Abstract: Extensive research has been conducted on image augmentation, segmentation, detection,
and classification based on plant images. Specifically, previous studies on plant image classification
have used various plant datasets (fruits, vegetables, flowers, trees, etc., and their leaves). However,
existing plant-based image datasets are generally small. Furthermore, there are limitations in the
construction of large-scale datasets. Consequently, previous research on plant classification using
small training datasets encountered difficulties in achieving high accuracy. However, research on
plant image classification based on small training datasets is insufficient. Accordingly, this study per-
formed classification by reducing the number of training images of plant-image datasets by 70%, 50%,
30%, and 10%, respectively. Then, the number of images was increased back through augmentation
methods for training. This ultimately improved the plant-image classification performance. Based
on the respective preliminary experimental results, this study proposed a plant-image classification
convolutional neural network (PI-CNN) based on plant image augmentation using a plant-image
generative adversarial network (PI-GAN). Our proposed method showed the higher classification
accuracies compared to the state-of-the-art methods when the experiments were conducted using
four open datasets of PlantVillage, PlantDoc, Fruits-360, and Plants.

Keywords: plant image classification; image augmentation; deep learning; PI-GAN; PI-CNN

MSC: 68T07; 68U10

1. Introduction

Numerous plant image-based classification methods exist [1–14]. However, existing
plant-image datasets have few training image data [14]. This hinders the achievement of
high classification accuracy. In addition, it is challenging to construct large-scale training
datasets. Therefore, this study examined a method for obtaining a higher accuracy using
fewer number of training image data. In this study, four open datasets including PlantVil-
lage dataset [15], PlantDoc dataset [16], Fruits-360 dataset [17], and Plants dataset [18]
were used in various experiments. The total number of image data of training sets in each
plant dataset was reduced by 70%, 50%, 30%, and 10% for comparative experiments. The
experiments demonstrated how the classification accuracy is reduced to a certain extent
depending on the amount of data. In addition, the datasets in which the amount of data
were reduced by 70%, 50%, 30%, and 10% were applied with conventional augmenta-
tion methods [19,20], tutorial on image data augmentation in Keras [21], and available
libraries [22] to restore the amount of data to 100% for additional experiments. These
experiments demonstrated how the classification accuracy improves accordingly. Fur-
thermore, the accuracy could be improved further by augmenting the datasets through
a plant-image augmentation method based on a generative adversarial network (GAN).
Classification was performed using a variety of reduced datasets and the datasets that were
augmented using various methods. Two types of conventional plant-image classification
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methods and the convolutional neural network (CNN)-based plant classification method
proposed in this study were used. The experiments conducted in this study showed that
the proposed CNN-based method achieved an accuracy higher than that achieved by the
conventional methods.

2. Related Works

Conventional studies on plant image classification can be divided into large dataset-
based methods and small dataset-based methods. The large dataset-based methods include
the following. For an attention-based fruit classification method [1], a MobileNetV2-based
lightweight deep learning model was proposed and a MobileNetV2 pre-trained model
with ImageNet was used as a backbone. A trilinear convolutional neural network model
(T-CNN) was proposed for a crop and crop-disease classification method [14]. Therein,
the PlantVillage dataset [15], the PlantDoc dataset [16], and a pre-trained model with
ImageNet were used for conducting diverse experiments. The ExtResnet model was
proposed for a grape-variety recognition method [7]. Therein, a wine grape instance
segmentation dataset (WGISD) [23] was used to conduct experiments. The Fruits-360
image dataset was used to conduct experiments with a fruit recognition method [10].
Furthermore, various feature extraction methods (Hu moments, Haralick texture, and color
histogram) as well as machine learning methods (decision tree, k-nearest neighbors, linear
discriminant analysis, logistic regression, naïve bayes, random forest, and support vector
machine) were used to conduct experiments and compare the results. A multi-class CNN
model was proposed for a fruit classification method [6]. The FIDS30 dataset [24] and
Fruits-360 dataset were used to conduct experiments in that study. Two deep learning
models (a light model and a pretrained model) were proposed for a fruit classification
method [8]. A supermarket product dataset and an in-house dataset were used to conduct
experiments in that study. EfficientNet-B0 and Fruit-360 were used to conduct experiments
with a fruit recognition method [5]. Histogram of Oriented Gradient (HOG) was used
to conduct a classification experiment with a fruit classification method [13]. A deep
convolutional neural network (DCNN) was used to conduct a classification experiment
with an autonomous fruit recognition method [4]. Bag of features (BoF), conventional CNN,
and AlexNet were used to conduct a classification experiment with a fruit recognition
method [9]. Furthermore, the accuracy of these methods was compared using the Fruit-
360 dataset [17]. Inception v3 [25] and VGG16 [26] were used to conduct a classification
experiment with a fruit image classification method [3]. Furthermore, the accuracy of
these methods was compared using the Fruit-360 dataset. FruitNet was proposed for a
fruit-image classification method [2]. Fourteen deep learning methods were compared in
that study. However, the accuracy was compared using the Fruit-360 dataset. ShuffleNet
V2 and Fruit-360 dataset were used for a fruit-image classification method [12]. CNN and
Fruit-360 dataset were used with a fruit-variety classification method [11]. Furthermore,
ROIs were generated from the original apple image using YOLO V3 [27].

In general, plant-based image datasets are small in size. Furthermore, it is difficult to
construct large datasets. However, none of the above-mentioned methods considered small
training datasets. Hence, this study proposed a new image augmentation and classification
method for plant image classification based on small training datasets. Table 1 presents
the advantages and disadvantages of the proposed method and conventional plant-image
classification methods.

Table 1. Comparison between the proposed and previous methods for plant image classification.

Methods Advantages Disadvantages

Large training set-based [1–14] High accuracy Does not consider small training sets

Small training set-based Proposed method
Considers various sizes of training
sets. Considers various sizes of
training sets

Lower accuracy than that achieved
when a large training set is used
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This study is novel compared with previous studies in terms of the following three aspects:

- Thereby, this study proposed a plant-image classification convolutional neural net-
work (PI-CNN). It outperforms conventional plant-classification methods. The pro-
posed PI-CNN was configured as a residual block-based shallow model to reduce
the number of training parameters. It demonstrated high accuracy on datasets of
various sizes.

- This study proposed a new plant-image augmentation method, namely, a plant-image
generative adversarial network (PI-GAN). It uses two types of input images from
which the features are aggregated to generate new training images.

- The models designed in this study are disclosed [28] for fair performance evaluation
by other researchers.

The remaining parts of this paper are organized as follows. The proposed method
is explained in detail in Section 3. The experimental results and analyses are presented
in Section 4. Finally, the discussion and conclusions are presented in Sections 5 and 6,
respectively.

3. Materials and Methods
3.1. Overall Procedure of Proposed Method

The proposed methods are explained in detail in this section. Figure 1 shows the
flowcharts of the methods. As shown in Figure 1a, image augmentation by PI-GAN
involves the use of two types of input images (different plant images) to augment plant
images. Moreover, as shown in Figure 1b, the concepts of the visual geometry group
network (VGG-Net) [26] and residual network (ResNet) [29] were combined for plant
image classification by the PI-CNN proposed in this study. The size of input images and
number of output classes vary across the four datasets used in this study. For example,
the size of an input image in Figure 1a is 100 × 100 × 3 pixels, whereas the output of
PI-GAN is 100 × 100 × 3 pixels. Furthermore, the size of an input image in Figure 1b is
256 × 256 × 3 pixels, whereas the output class of PI-CNN is 14. As shown in Figure 1a, the
augmented plant image is used for training PI-CNN in Figure 1b.

3.2. Detailed Structure of Proposed PI-GAN and PI-CNN

The detailed structure of the PI-GAN proposed in this study is presented in Tables 2–7
and Figure 2. The generator and discriminator networks of the PI-GAN method are
shown in Tables 2 and 6. Furthermore, Table 8 and Figure 3 explain the proposed PI-
CNN structure in detail. The structure shown in Tables 2–8 includes the input layer
(input_layer), convolutional layer (conv2d), max pooling layer (max_pool), encoder block
(encoder), decoder block (decoder), concatenate layer (concat), residual block (res_block),
rectified linear unit (lrelu), parametric rectified linear unit (prelu), up sampling layer (Up2),
additional operation layer (add), discriminator block (disc_block), and fully connected
layer (FC). Furthermore, tanh and sigmoid represent activation functions. The stride and
padding in Tables 2–5 are (1 × 1) and (1 × 1), respectively. Meanwhile, the padding in
Tables 6 and 7 is (1 × 1). The input of a generator network is a 100 × 100 × 3 plant image,
as shown in Figure 2, whereas the output is a 100 × 100 × 3 augmented plant image. The
input of a discriminator network is a 100 × 100 × 3 plant image as in Figure 2, whereas
the output is 1 × 1. In addition, a 100 × 100 × 3 image is used as an input of the proposed
PI-CNN, whereas the output comprises 14 × 1 probabilities. The number of classes of
output in Tables 6 and 8 is 2 and 14, respectively. However, as explained in Section 3.3,
the size of an input image in Tables 2, 6 and 8 varies across the four types of datasets used
in this study. Furthermore, the number of classes of output in Tables 6 and 8 vary. The
“Times” columns in Tables 2 and 6 indicate the number of times each layer is used.
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Figure 1. Overview of the methods designed in this study. (a) Proposed PI-GAN for plant image
augmentation; (b) proposed PI-CNN for plant image classification.

Table 2. Description of the generator network used in our PI-GAN.

Layer Number Layer Type Times Number of
Filters

Number of
Parameters

Layer Connection
(Connected to)

0 input_layer_1 ×1 0 0 input_1
1 input_layer_2 ×1 0 0 input_2
2 encoder_1 ×4 128 605,696 input_layer_1
3 encoder_2 ×4 128 605,696 input_layer_2
4 res_block_1 ×2 128 590,592 encoder_1
5 res_block_2 ×2 128 590,592 encoder_2

6 concat ×1 0 0 res_block_1 &
res_block_2

7 res_block_3 ×3 256 885,888 concat
8 decoder ×4 128 1,328,640 res_block_3
9 conv2d (tanh) ×1 3 3459 decoder

Total number of trainable parameters: 4,610,563.

Table 3. Description of an encoder block of the generator network.

Layer Number Layer Type Layer Connection
(Connected to)

1 conv2d_1 input
2 prelu_1 conv2d_1
3 conv2d_2 prelu_1
4 prelu_2 conv2d_2
5 max_pool prelu_2
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Table 4. Description of a decoder block of the generator network.

Layer Number Layer Type Layer Connection
(Connected to)

1 conv2d_1 input
2 prelu_1 conv2d_1
3 conv2d_2 prelu_1
4 prelu_2 conv2d_2
5 Up2 prelu_2

Table 5. Description of a residual block of the generator network.

Layer Number Layer Type Layer Connection
(Connected to)

1 conv2d_1 input
2 prelu conv2d_1
3 conv2d_2 prelu
4 add conv2d_2 & input

Table 6. Description of the discriminator network of PI-GAN.

Layer Number Layer Type Times Number of
Filters

Number of
Strides

Number of
Parameters

Layer Connection
(Connected to)

0 input layer ×1 0 0 0 input
1 conv2d ×1 128 1 3584 input layer
2 lrelu_1 ×1 0 0 0 conv2d

3 disc_block ×5 128, 128
256, 256, 256

1, 1
2, 2, 2 1,770,496 lrelu_1

4 lrelu_2 ×1 0 0 0 disc_block
5 FC (sigmoid) ×1 class# 0 173,057 lrelu_2

Total number of trainable parameters: 1,947,137.

Table 7. Description of a convolution block of the discriminator network.

Layer Number Layer Type Layer Connection
(Connected to)

1 conv2d input
2 lrelu conv2d

Table 8. Description of the proposed PI-CNN.

Layer Number Layer Type Number of
Filters

Number of
Parameters

Layer Connection
(Connected to)

1 input layer_1 0 0 input
2 conv2d_1 64 1792 input layer_1
3 conv2d_2 64 36,928 conv2d_1
4 max_pool_1 0 0 conv2d_2
5 res_block_1 64 73,920 max_pool_1
6 res_block_2 64 73,920 res_block_1
7 res_block_3 64 73,920 res_block_2
8 res_block_4 64 73,920 res_block_3
9 conv2d_3 128 73,856 res_block_4
10 conv2d_4 128 147,584 conv2d_3
11 max_pool_2 0 0 conv2d_4
12 res_block_5 128 295,296 max_pool_2
13 res_block_6 128 295,296 res_block_5
14 res_block_7 128 295,296 res_block_6
15 res_block_8 128 295,296 res_block_7
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Table 8. Cont.

Layer Number Layer Type Number of
Filters

Number of
Parameters

Layer Connection
(Connected to)

16 conv2d_5 128 147,584 res_block_8
17 conv2d_6 128 147,584 conv2d_5
18 max_pool_3 0 0 conv2d_6
19 res_block_9 128 295,296 max_pool_3
20 res_block_10 128 295,296 res_block_9
21 res_block_11 128 295,296 res_block_10
22 res_block_12 128 295,296 res_block_11
23 conv2d_7 128 147,584 res_block_12
24 conv2d_8 128 147,584 conv2d_7
25 max_pool_4 0 0 conv2d_8
26 res_block_13 128 295,296 max_pool_4
27 res_block_14 128 295,296 res_block_13
28 res_block_15 128 295,296 res_block_14
29 res_block_16 128 295,296 res_block_15
30 FC (softmax) class# 258,062 res_block_16

Total number of trainable parameters: 4,947,790.

Figure 2. Example of the detailed structure of PI-GAN.

Figure 3. Example of the detailed structure of the proposed PI-CNN.
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3.3. Dataset and Experimental Setup

In this study, the experiments were conducted using the PlantVillage dataset [15],
PlantDoc dataset [16], Fruits-360 dataset [17], and Plants dataset [18]. The datasets comprise
images of plants, fruits, and plant diseases acquired in different environments. The Fruits-
360 dataset is composed of manually cropped images. The size and depth of the images
are 100 × 100 × 3 pixels and 24 bits, respectively. The total number of images in the train
and test sets are 41,322 and 13,877, respectively. Here, the test set is divided again to test
and validation sets, and the number images of the test and validation sets are 12,877 and
1000, respectively. The PlantVillage dataset is also composed of manually cropped images.
The size and depth of the images are 256 × 256 × 3 pixels and 24 bits, respectively. The
total number of images is 54,305. Here, the dataset is divided to train, test, and validation
sets, and each has 40,000, 13,305, and 1000 images, respectively. The PlantVillage dataset
includes grayscale images and segmented images. The PlantDoc dataset is composed
of manually cropped and original images. The size of images varies significantly: the
smallest and largest sizes are 150 × 150 × 3 and 5616 × 3744 × 3, respectively. The depth
of images is 24 bits. The total number of images in the train and test sets are 2336 and 236,
respectively. Here, the test set is divided again to test and validation sets, and the number
images of the test and validation sets are 200 and 36, respectively. The Plants dataset is
composed of manually cropped and original images. The depth and size of the images
are similar to those for the PlantDoc dataset. This dataset consists of a training set, a test
set, and validation sets, and each contains 13,149, 5218, and 1521 images, respectively. The
above-mentioned information is summarized in Table 9.

Table 9. Summary of the datasets.

Datasets Training Sets Test Sets Validation Sets Dimension Depth Extension Class#

Fruits-360 41,322 12,877 1000 100 × 100 24 jpg 81
PlantVillage 40,000 13,305 1000 256 × 256 24 jpg 38

PlantDoc 2336 200 36 150 × 150–5616 × 3744 24 jpg 27
Plants 13,149 5218 1521 104 × 104–3168 × 4752 24 jpg 99

Figures 4–7 show example images of the Fruits-360 dataset, PlantDoc dataset, PlantVil-
lage dataset, and Plants dataset.

Figure 4. Example images of Fruits-360 dataset used in our experiment. Left to right: images of apple,
banana, peach, and grape.

Figure 5. Example images of PlantDoc dataset used in our experiment. Left to right: images of apple
leaf, apple leaf with rust disease, healthy bell pepper leaf, and bell pepper leaf with spot disease.
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Figure 6. Example images of PlantVillage dataset used in our experiment. Left to right: images of
healthy apple leaf, apple leaf with black rot disease, healthy cherry leaf, and cherry leaf with powdery
mildew disease.

Figure 7. Example images of Plants dataset used in our experiment. Left to right: images of aeonium,
almond, asparagus, and sunflower.

The process of training and testing both image augmentation and classification al-
gorithms was performed using a desktop computer equipped with an Intel Core i7-6700
CPU@3.40 GHz, an Nvidia GeForce GTX TITAN X graphics processing unit (GPU) card [30],
and a random-access memory (RAM) of 32 GB. The proposed model and algorithm were
implemented using OpenCV library (version 4.3.0) (Intel Corporation, CA, USA) [31],
Python (version 3.5.4) (Rossum, G.V., DE, USA) [32], and the Keras application program-
ming interface (API) (version 2.1.6-tf) (Chollet, F., CA, USA) with a TensorFlow backend
engine (version 1.9.0) (Google, CA, USA) [33].

3.4. Data Augmentation

In this subsection, the augmented images obtained through the proposed plant-image
augmentation method are explained in detail. As shown in Figure 2, when two images are
input into PI-GAN and the features of input_2 are mixed with input_1 by using channel-
wise concatenation as Layer 6 in Table 2 and L6 in Figure 2, a new image is generated
through a decoder. The classification results were compared by conducting experiments
wherein the number of images in the training set was increased from 70% to 100%, from
50% to 100%, from 30% to 100%, and from 10% to 100%. The experiments were conducted
to compare the conventional augmentation methods and the PI-GAN-based augmentation
methods. For example, a reduction in the total number of images in the training sets of the
four datasets explained in Table 10 and Section 3.3 (Fruits-360 dataset: 41,322, PlantVillage
dataset: 40,000, PlantDoc dataset: 2336, and Plants dataset: 13,149) by 70% results in 28,926,
28,000, 1635, and 9204 images, respectively. Furthermore, a reduction by 50% results in
20,661, 20,000, 1168, and 6574 images, respectively; a reduction by 30% results in 12,396,
12,000, 700, and 3944 images, respectively; and a reduction by 10% results in 4132, 4000,
233, and 1314 images, respectively.

The reduced training sets were augmented back to 100% (41,322, 40,000, 2336, and
13,149) through conventional augmentation methods (shifting in eight directions, in-plane
rotation, flipping, blurring, scaling, brightness, and contrast). The training datasets were
also augmented to 100% through the PI-GAN-based method. The PlantVillage and Plant-
Doc datasets were divided further into disease and crop sub-datasets in the experiment.
Furthermore, training was performed by combining the training sets of the Plants and
PlantDoc datasets (the numbers with ‘*’ in Table 11) in the training phase. Thus, the num-
bers of train subsets and test subsets are four (Fruits-360, PlantVillage crop, PlantVillage
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disease, and PlantDoc crop + PlantDoc disease + Plants) and six (Fruits-360, PlantVillage
crop, PlantVillage disease, PlantDoc crop, PlantDoc disease, and Plants), respectively, as in
Table 11.

Table 10. Detailed explanations of train and test sets used in our experiments.

Datasets Training Sets
Test Sets Validation Sets

100% 70% 50% 30% 10%

Fruits-360 41,322 28,926 20,661 12,396 4132 12,877 1000
PlantVillage 40,000 28,000 20,000 12,000 4000 13,305 1000
PlantDoc 2336 1635 1168 700 233 200 36

Plants 13,149 9204 6574 3944 1314 5218 1521

Table 11. Detailed explanations of train and test subsets used in our experiments. Training was
performed by combining the training sets of the Plants and PlantDoc datasets (the numbers with ‘*’).

Datasets Train Sets Test Sets Validation Sets

Crop Disease Crop Disease Crop Disease

Fruits-360 41,322 12,877 1000
PlantVillage 11,222 28,778 3592 9713 270 730
PlantDoc 757 * 1579 * 76 124 14 22

Plants 13,149 * 5218 1521

Furthermore, training subsets of the original datasets, reduced datasets, datasets aug-
mented by the conventional method, and datasets augmented by PI-GAN were constructed.
The numbers of training subsets are 4 (100% of Fruits-360, PlantVillage crop, PlantVillage
disease, and Plant), 16 (70%, 50%, 30%, and 10% of the four training subsets), 16 (70%, 50%,
30%, and 10% of the subsets were increased to 100%, 100%, 100%, and 100% of them by the
conventional method), and 16 (70%, 50%, 30%, and 10% of the subsets were increased to
100%, 100%, 100%, and 100% of them by PI-GAN), respectively. Thus, the total number of
training subsets is 52, whereas the total number of test subsets is 6. Detailed explanations
are presented in Tables 10 and 11.

In this study, the results from the original four training subsets (six test subsets) and the
reduced 16 training subsets (6 test subsets) are compared in Section 4.2.1. In addition, the
results obtained by augmenting the reduced datasets through conventional augmentation
methods (16 training subsets and 6 test subsets) and through PI-GAN-based augmentation
methods (16 training subsets and 6 test subsets) are compared in Sections 4.2.2 and 4.2.3,
respectively.

4. Experimental Results

This section is divided into four subsections. These address the training setup, ablation
study, comparisons with the state-of-the-art methods, and processing time. The training
setup of the training phase such as hyperparameters and training loss are explained in
Section 4.1. The results obtained from the ablation study are presented in Section 4.2.
Furthermore, Section 4.2.1 compares the classification results by using 30 sub-datasets
of different sizes, Section 4.2.2 compares the classification results by using 24 datasets
augmented through conventional augmentation methods, and Section 4.2.3 compares the
classification results by using 24 datasets augmented through the GAN-based augmentation
methods. Section 4.3 compares the experimental results of 78 datasets obtained through
the existing plant-image classification methods and the proposed method. Finally, the
processing time is recommended in Section 4.4.

4.1. Training Setup

The training setups of the PI-GAN-based plant image augmentation method and
proposed PI-CNN-based plant image classification method were as follows. The batch size,
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training epoch, and learning rate were set to 8, 50, and 0.0001 for the PI-GAN and to 8,
40, and 0.0001 for the PI-CNN, respectively. Moreover, we used the binary cross-entropy
loss [34] for both generator and discriminator losses and used the categorical cross-entropy
loss [35] for the PI-CNN loss. Adaptive moment estimation (Adam) [36] was used as an
optimizer in both PI-CNN and discriminator networks. Figure 8a,b show the training
loss and validation loss curves of the proposed PI-GAN per epoch, respectively, whereas
Figure 8c,d show the training and validation loss and accuracy curves of the proposed
PI-CNN per epoch, respectively. As shown by the convergences of the training loss and
accuracy curves in Figure 8, the proposed PI-GAN and PI-CNN were trained sufficiently
with the training data. Furthermore, as shown by the convergences of the validation loss
and validation accuracy curves in Figure 8, the proposed PI-GAN and PI-CNN are not
overfitted to the training data. Tables 12 and 13 show the search spaces and selected values
of hyperparameters for PI-GAN and PI-CNN.

Figure 8. Cont.
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Figure 8. Training loss, validation loss, and validation accuracy curves of PI-GAN and PI-CNN with
Fruits-360 dataset. (a,b) training loss and validation loss curves, respectively, of PI-GAN; (c,d) show
the training and validation loss and accuracy curves of the proposed PI-CNN, respectively.

Table 12. Search space and selected values of hyperparameters for PI-GAN.

Parameters
Weight Decay
(Weight Regu-
larization L2)

Loss Kernel
Initializer

Bias
Initializer Optimizer Learning

Rate Beta_1 Beta_2 Epsilon Epochs Batch
Size

Search
Space

[0.001, 0.01,
0.1]

[“binary
cross-entropy,”

“VGG-19”]

“glorot
uniform” “zeros” [“SGD,”

“adam”]

[0.0001,
0.001,

0.01, 0.1]

[0.7, 0.8,
0.9]

[0.8, 0.9,
0.999]

[1 × 10−9,
1 × 10−8,
1 × 10−7]

[1–50] [1, 4, 8, 16]

Selected
Value 0.01 “binary

cross-entropy”
“glorot

uniform” “zeros” “adam” 0.0001 0.9 0.999 1 × 10−8 50 8

Table 13. Search space and selected values of hyperparameters for PI-CNN.

Parameters Learning Rate
Decay (for SGD)

Momentum
(for SGD) Loss Metrics Optimizer Learning

Rate Epochs Batch
Size

Search Space [0.000001,
0.00001, 0.0001] [0.9, 0.8, 0.7] “categorical

cross-entropy”
[“categorical_accuracy”,

“accuracy”] [“SGD,” “adam”] [0.0001, 0.001,
0.01, 0.1] [1–40] [1, 4, 8, 16]

Selected
Value 0.00001 0.9 “categorical

cross-entropy” ” accuracy” “adam” 0.0001 30 8

4.2. Ablation Study

The results of various ablation studies are presented in this subsection. The accuracy
of the plant classification was measured using four types of metrics in Equations (1)–(4).
Here, the true positive rate (TPR), positive predictive values (PPV), accuracy (ACC) [37],
and F1-score [38] are presented. In the equations given below, TP, FP, FN, and TN refer
to true positive, false positive, false negative, and true negative, respectively. Here, “#”
indicates “the number of”.

TPR =
#TP

#TP + #FN
(1)

PPV =
#TP

#TP + #FP
(2)

ACC =
#TP + #TN

#TP + #TN + #FP + #FN
(3)

F1 − score = 2· PPV · TPR
PPV + TPR

(4)

4.2.1. Plant Image Classification

In this subsection, we conducted experiments to obtain a good generator structure
for PI-GAN, and to obtain a classification structure for PI-CNN. Four different generator
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networks were compared by using Fruits-360 dataset and PI-CNN, as shown in Table 14.
Moreover, four different networks were compared for PI-CNN by using Fruits-360 dataset
and without using PI-GAN, as shown in Table 15. As shown in Table 14, a generator net-
work with four encoder-decoders showed higher accuracy compared to others. Moreover,
as shown in Table 15, a network with sixteen residual blocks showed higher accuracy
compared to others. Therefore, we used a generator network with four encoder-decoders
for PI-GAN and a network with sixteen residual blocks for PI-CNN.

Table 14. Comparison of accuracies by the proposed PI-GAN generator and variants of generators in
the Fruits-360 training set of 50%.

Methods TPR PPV ACC F1-Score

encoder-decoder ×1 76.00 80.29 86.74 78.08
encoder-decoder ×2 76.43 81.62 86.07 78.94
encoder-decoder ×3 76.56 80.40 87.49 78.43

encoder-decoder ×4 (proposed) 76.70 81.65 87.94 79.18
encoder-decoder ×5 75.85 81.12 86.62 78.40

Table 15. Comparison of accuracies by the proposed PI-CNN and variants of CNN in the Fruits-
360 dataset.

Methods TPR PPV ACC F1-Score

res_block-14 95.01 93.15 97.38 94.07
res _block-15 95.24 92.43 98.53 93.81

res _block-16 (proposed) 95.40 94.33 98.59 94.87
res _block-17 95.14 92.46 96.94 93.78

In addition, four training sub-datasets (PlantVillage disease, PlantVillage crop, Plant-
Doc disease + PlantDoc crop + Plants, and Fruits-360) were divided further according
to five sizes (100%, 70%, 50%, 30%, and 10%), as explained in Section 3.4, to train the
image classification models. The classification accuracy was measured using six testing
sub-datasets (PlantVillage disease, PlantVillage crop, PlantDoc disease, PlantDoc crop,
Plants, and Fruits-360). The results are compared in Tables 16–18. As shown in these tables,
the classification accuracy decreases as the size of the training dataset decreases.

Table 16. Comparison of accuracies achieved by the proposed PI-CNN in the original and reduced
datasets. The accuracies were achieved in the PlantVillage dataset (unit: %).

Dataset
Disease Crop

TPR PPV ACC F1-Score TPR PPV ACC F1-Score

Original 100% 89.62 95.13 97.26 92.38 98.48 94.76 99.57 96.62

Reduced

70% 86.20 89.11 92.34 87.66 89.10 86.27 90.41 87.69
50% 71.89 78.67 84.70 75.28 71.10 78.60 84.64 74.85
30% 52.80 47.48 65.54 50.14 53.20 45.87 63.13 49.54
10% 31.84 34.29 43.55 33.07 32.98 33.25 43.91 33.12

Table 17. Comparison of accuracies achieved by the proposed PI-CNN in the original and reduced
datasets. The accuracies were achieved in the PlantDoc dataset (unit: %).

Dataset
Disease Crop

TPR PPV ACC F1-Score TPR PPV ACC F1-Score

Original 100% 66.13 67.87 80.36 67.00 78.26 74.66 86.57 76.46

Reduced

70% 59.54 54.48 74.08 57.01 70.37 64.78 80.81 67.58
50% 40.20 39.21 61.05 39.71 51.95 48.15 72.55 50.05
30% 36.62 29.31 45.21 32.97 41.62 35.31 53.14 38.47
10% 21.30 22.51 29.12 21.91 21.98 22.41 32.18 22.20
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Table 18. Comparison of accuracies achieved by the proposed PI-CNN in the original and reduced
datasets. The accuracies were achieved in the Plants and Fruits-360 dataset (unit: %).

Dataset
Plants Dataset Fruits-360 Dataset

TPR PPV ACC F1-Score TPR PPV ACC F1-Score

Original 100% 90.10 86.11 96.52 88.11 95.40 94.33 98.59 94.87

Reduced

70% 80.46 76.40 92.81 78.43 91.70 89.00 91.80 90.35
50% 62.71 60.22 84.10 61.47 72.47 78.63 83.63 75.55
30% 49.74 41.50 60.34 45.62 52.68 45.86 65.44 49.27
10% 30.66 31.33 40.85 31.00 39.37 36.19 48.31 37.78

4.2.2. Plant Image Classification with Conventional Image Augmentation Methods

In this subsection, image classification was repeated using the training datasets aug-
mented through conventional augmentation methods (image shifting to four directions,
in-plane rotation, flipping, Gaussian blurring, scaling, and the adjustments of brightness
and contrast) to improve the classification accuracy. Figure 9 shows an example of aug-
mented image data. The results of the experiments are compared in Tables 19–21.

Figure 9. Examples of images augmented by conventional augmentation methods. Images aug-
mented by (a) flipping and in-plane rotation; (b) image shifting in four directions; (c) the adjustments
of brightness and contrast; (d) Gaussian blurring; (e) scaling.
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Table 19. Comparison of accuracies achieved by the proposed PI-CNN in the original and augmented
datasets. The accuracies were achieved in the PlantVillage dataset (unit: %).

Dataset Disease Crop

Before
Augmentation

After
Augmentation TPR PPV ACC F1-Score TPR PPV ACC F1-Score

100% 100% 89.62 95.13 97.26 92.38 98.48 94.76 99.57 96.62
70% 100% 86.89 90.17 93.87 88.53 89.76 88.96 92.60 89.36
50% 100% 71.66 79.88 86.97 75.77 73.58 80.84 84.82 77.21
30% 100% 54.86 49.34 66.13 52.10 53.11 46.95 63.34 50.03
10% 100% 32.71 36.21 44.28 34.46 32.80 34.97 45.29 33.89

Table 20. Comparison of accuracies achieved by the proposed PI-CNN in the original and augmented
datasets. The accuracies were achieved in the PlantDoc dataset (unit: %).

Dataset Disease Crop

Before
Augmentation

After
Augmentation TPR PPV ACC F1-Score TPR PPV ACC F1-Score

100% 100% 66.13 67.87 80.36 67.00 78.26 74.66 86.57 76.46
70% 100% 60.12 56.23 76.82 58.18 71.86 65.80 82.40 68.83
50% 100% 42.83 39.55 62.69 41.19 53.36 50.92 72.31 52.14
30% 100% 38.87 33.71 48.8 36.29 44.53 38.2 58.57 42.87
10% 100% 23.40 22.88 30.30 23.14 24.45 23.80 34.69 24.13

Table 21. Comparison of accuracies achieved by the proposed PI-CNN in the original and augmented
datasets. The accuracies were achieved in the Plants and Fruits-360 dataset (unit: %).

Dataset Plants Dataset Fruits-360 Dataset

Before
Augmentation

After
Augmentation TPR PPV ACC F1-Score TPR PPV ACC F1-Score

100% 100% 90.10 86.11 96.52 88.11 95.40 94.33 98.59 94.87
70% 100% 82.19 76.30 92.86 79.25 92.30 90.72 93.61 91.51
50% 100% 63.32 61.94 85.93 62.63 73.40 78.80 83.66 76.10
30% 100% 51.52 41.30 62.47 46.41 54.39 47.25 67.50 50.82
10% 100% 30.78 33.60 41.16 32.19 39.57 37.26 48.33 38.42

Additionally, we conducted experiments using random cropping [45] for augmen-
tation and showed the results in Tables 22–24. A comparison between Tables 19–24 and
Tables 16–18 reveals that the augmentation improved the classification accuracy.

Table 22. Comparison of accuracies achieved by the proposed PI-CNN in the original and augmented
datasets. The accuracies were achieved in the PlantVillage dataset (unit: %).

Dataset Disease Crop

Before
Augmentation

After
Augmentation TPR PPV ACC F1-Score TPR PPV ACC F1-Score

100% 100% 89.62 95.13 97.26 92.38 98.48 94.76 99.57 96.62
70% 100% 86.39 88.45 93.39 87.41 88.45 88.84 91.72 88.65
50% 100% 70.99 79.18 85.67 74.86 72.90 80.09 84.58 76.32
30% 100% 53.07 48.49 64.36 50.68 52.65 46.08 61.52 49.15
10% 100% 31.53 36.06 43.30 33.64 30.85 34.91 44.97 32.75
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Table 23. Comparison of accuracies achieved by the proposed PI-CNN in the original and augmented
datasets. The accuracies were achieved in the PlantDoc dataset (unit: %).

Dataset Disease Crop

Before
Augmentation

After
Augmentation TPR PPV ACC F1-Score TPR PPV ACC F1-Score

100% 100% 66.13 67.87 80.36 67.00 78.26 74.66 86.57 76.46
70% 100% 59.60 55.72 76.40 57.59 70.63 64.46 80.96 67.40
50% 100% 41.68 38.87 60.74 40.22 53.23 50.59 71.11 51.88
30% 100% 37.30 33.55 47.83 35.33 43.47 38.00 57.32 40.55
10% 100% 22.04 22.18 30.13 22.11 23.12 22.27 33.92 22.69

Table 24. Comparison of accuracies achieved by the proposed PI-CNN in the original and augmented
datasets. The accuracies were achieved in the Plants and Fruits-360 dataset (unit: %).

Dataset Plants dataset Fruits-360 dataset

Before
Augmentation

After
Augmentation TPR PPV ACC F1-Score TPR PPV ACC F1-Score

100% 100% 90.10 86.11 96.52 88.11 95.40 94.33 98.59 94.87
70% 100% 80.56 76.22 91.83 78.33 91.47 90.62 92.37 91.04
50% 100% 61.37 61.07 84.32 61.22 73.14 78.61 82.78 75.78
30% 100% 50.41 41.27 61.09 45.38 52.43 45.44 65.83 48.68
10% 100% 29.18 33.11 40.93 31.02 37.95 35.84 48.22 36.87

4.2.3. Plant Image Classification with PI-GAN-Based Augmentation Methods

In this subsection, image classification was performed using the training datasets
augmented back by the PI-GAN-based augmentation method to improve the classification
accuracy shown in Tables 16–18. Figure 10 shows an example of augmented image data.
The results of the experiments are compared in Tables 25–27. A comparison of these tables
with Tables 16–18 reveals that the augmentation improved the classification accuracy.

Figure 10. Examples of images augmented by PI-GAN. Left to right: (a) mango, date, and aug-
mented image; (b) pear, mango, and augmented image; (c) huckleberry, date, and augmented image;
(d) maracuja, tamarillo, and augmented image.

Figures 11–14 present a comparison of F1-scores between the reduced datasets and
augmented datasets conveniently. The results in the figures are presented in the following
order (top to bottom): original dataset (O), reduced dataset (R), dataset augmented by
conventional method (T), and dataset augmented by PI-GAN (G).
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Table 25. Comparison of accuracies achieved by the proposed PI-CNN in the original and PI-GAN-
augmented datasets. The accuracies were achieved in the PlantVillage dataset (unit: %).

Dataset Division Disease Crop

Before
Augmentation

After
Augmentation TPR PPV ACC F1-Score TPR PPV ACC F1-Score

100% 100% 89.62 95.13 97.26 92.38 98.48 94.76 99.57 96.62
70% 100% 88.66 93.36 96.40 91.01 93.61 90.92 93.65 92.27
50% 100% 74.50 81.23 87.67 77.87 74.30 82.49 88.10 78.40
30% 100% 56.00 51.36 68.33 53.68 56.15 48.46 66.62 52.31
10% 100% 34.34 38.60 47.59 36.47 36.81 36.20 46.45 36.51

Table 26. Comparison of accuracies achieved by the proposed PI-CNN in the original and PI-GAN-
augmented datasets. The accuracies were achieved in the PlantDoc dataset (unit: %).

Dataset Division Disease Crop

Before
Augmentation

After
Augmentation TPR PPV ACC F1-Score TPR PPV ACC F1-Score

100% 100% 66.13 67.87 80.36 67.00 78.26 74.66 86.57 76.46
70% 100% 63.68 57.10 78.50 60.39 73.16 68.17 83.62 70.67
50% 100% 43.69 43.68 65.41 43.69 55.47 52.92 76.59 54.20
30% 100% 41.15 36.24 50.4 38.51 47.73 42.3 62.28 45.57
10% 100% 26.48 25.87 32.14 26.18 28.80 26.91 36.33 27.86

Table 27. Comparison of accuracies achieved by the proposed PI-CNN in the original and PI-GAN-
augmented datasets. The accuracies were achieved in the Plants and Fruits-360 datasets (unit: %).

Dataset Division Plants Fruits-360

Before
Augmentation

After
Augmentation TPR PPV ACC F1-Score TPR PPV ACC F1-Score

100% 100% 90.10 86.11 96.52 88.11 95.40 94.33 98.59 94.87
70% 100% 84.52 80.66 96.18 82.59 94.53 92.31 94.48 93.42
50% 100% 66.64 64.53 88.52 65.59 76.70 81.65 87.94 79.18
30% 100% 53.28 45.34 63.93 49.31 55.12 49.62 69.89 52.37
10% 100% 34.52 35.96 44.31 35.24 43.40 39.70 51.90 41.55

Figure 11. Comparison of F1-scores based on all the datasets (original dataset (O), reduced dataset
(R), dataset augmented by conventional method (T), and dataset augmented by PI-GAN (G)). The
datasets have been reduced to 70%.
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Figure 12. Comparison of F1-scores based on all the datasets (original dataset (O), reduced dataset
(R), dataset augmented by conventional method (T), and dataset augmented by PI-GAN (G)). The
datasets have been reduced to 50%.

Figure 13. Comparison of F1-scores based on all the datasets (original dataset (O), reduced dataset
(R), dataset augmented by conventional method (T), and dataset augmented by PI-GAN (G)). The
datasets have been reduced to 30%.

Figure 14. Comparison of F1-scores based on all the datasets (original dataset (O), reduced dataset
(R), dataset augmented by conventional method (T), and dataset augmented by PI-GAN (G)). The
datasets have been reduced to 10%.
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As shown in Figures 11–14, lower F1-scores were obtained when the reduced datasets
were used, whereas higher F1-scores were obtained when the datasets augmented by
conventional methods were used. Furthermore, higher F1-scores were obtained when the
datasets augmented by PI-GAN-based methods were used. In Tables 28–30, the existing
augmentation method [46] based on conditional GAN is used to perform the classification
for additional experiments. As shown in Tables 25–30, classification accuracies by using the
proposed PI-GAN are higher compared to those using the existing method [46].

Table 28. Comparison of accuracies achieved by the proposed PI-CNN in the original and PI-GAN-
augmented datasets. The accuracies were achieved in the PlantVillage dataset (unit: %).

Dataset Division Disease Crop

Before
Augmentation

After
Augmentation TPR PPV ACC F1-Score TPR PPV ACC F1-Score

100% 100% 89.62 95.13 97.26 92.38 98.48 94.76 99.57 96.62
70% 100% 87.34 92.10 95.29 89.66 92.43 90.85 92.64 91.63
50% 100% 73.26 80.76 86.81 76.83 73.98 82.28 87.92 77.91
30% 100% 55.32 50.13 68.27 52.60 55.74 47.68 65.46 51.40
10% 100% 33.88 38.60 46.43 36.09 36.39 35.92 45.56 36.15

Table 29. Comparison of accuracies achieved by the proposed PI-CNN in the original and PI-GAN-
augmented datasets. The accuracies were achieved in the PlantDoc dataset (unit: %).

Dataset Division Disease Crop

Before
Augmentation

After
Augmentation TPR PPV ACC F1-Score TPR PPV ACC F1-Score

100% 100% 66.13 67.87 80.36 67.00 78.26 74.66 86.57 76.46
70% 100% 63.01 56.75 77.21 59.72 71.73 67.41 82.24 69.51
50% 100% 42.81 43.29 64.13 43.04 54.17 52.91 75.22 53.53
30% 100% 39.65 35.34 49.41 37.37 47.15 41.82 60.82 44.33
10% 100% 26.27 24.39 31.81 25.29 27.98 25.98 35.81 26.95

Table 30. Comparison of accuracies achieved by the proposed PI-CNN in the original and PI-GAN-
augmented datasets. The accuracies were achieved in the Plants and Fruits-360 datasets (unit: %).

Dataset Division Plants Fruits-360

Before
Augmentation

After
Augmentation TPR PPV ACC F1-Score TPR PPV ACC F1-Score

100% 100% 90.10 86.11 96.52 88.11 95.40 94.33 98.59 94.87
70% 100% 83.79 79.59 94.90 81.63 93.90 92.29 94.12 93.09
50% 100% 65.91 63.23 87.72 64.55 75.42 81.29 87.26 78.25
30% 100% 52.79 45.00 63.73 48.58 54.53 49.08 69.36 51.66
10% 100% 33.55 35.12 43.36 34.32 43.15 38.70 50.53 40.80

As shown in Tables 16–18, we achieved higher accuracy when using a bigger dataset.
Moreover, we achieved higher accuracy when using image augmentation, as shown in
Tables 19–30. Thus, increasing the size of the dataset will not be detrimental to PI-CNN.

4.3. Comparisons with State-of-the-Art Methods

In this subsection, existing plant-image classification methods are compared with the
proposed PI-CNN, as shown in Tables 31–33. As shown in Tables 31–33, the proposed
PI-CNN achieved a high classification accuracy compared with the state-of-the-art methods.
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Table 31. Comparison of accuracies achieved by the proposed PI-CNN and the existing methods in
the original and reduced datasets. The accuracies were achieved in the PlantVillage dataset (unit: %).

Methods Dataset
Disease Crop

TPR PPV ACC F1-Score TPR PPV ACC F1-Score

Wang [14]

100% 88.31 94.02 96.34 91.17 97.15 93.54 98.35 95.35
70% 85.65 88.84 91.48 87.25 88.84 85.74 89.98 87.29
50% 70.85 77.64 84.04 74.25 70.58 77.51 83.24 74.05
30% 51.56 46.33 64.92 48.95 52.84 44.17 63.84 48.51
10% 30.54 33.89 43.12 32.22 32.01 32.98 43.54 32.50

Shahi [1]

100% 89.32 94.53 96.94 91.93 97.93 94.32 98.12 96.13
70% 85.84 88.17 91.74 87.01 88.17 83.44 89.24 85.81
50% 69.45 76.17 82.61 72.81 70.82 76.32 82.42 73.57
30% 51.52 46.44 63.14 48.98 51.43 43.66 62.45 47.55
10% 29.14 33.48 42.78 31.31 31.52 32.74 42.49 32.13

Srivastava [5]

100% 88.90 94.86 97.10 91.79 97.73 94.51 98.40 96.10
70% 84.90 88.25 91.12 86.55 89.00 85.35 88.92 87.14
50% 70.86 77.80 83.69 74.17 69.66 77.58 84.14 73.40
30% 52.30 46.91 65.13 49.46 52.35 45.69 63.13 48.80
10% 31.08 33.02 43.37 32.02 31.52 32.24 42.66 31.88

Jordan [46]

100% 88.20 94.12 96.91 91.06 97.10 93.85 98.62 95.45
70% 86.06 89.01 91.37 87.51 89.01 85.48 90.05 87.21
50% 71.39 78.65 84.35 74.85 70.01 78.36 84.58 73.95
30% 52.07 47.11 65.20 49.46 52.12 45.25 62.67 48.44
10% 31.38 33.70 42.53 32.50 32.96 32.79 42.93 32.87

Ours

100% 89.62 95.13 97.26 92.38 98.48 94.76 99.57 96.62
70% 86.20 89.11 92.34 87.66 89.10 86.27 90.41 87.69
50% 71.89 78.67 84.70 75.28 71.10 78.60 84.64 74.85
30% 52.80 47.48 65.54 50.14 53.20 45.87 63.13 49.54
10% 31.84 34.29 43.55 33.07 32.98 33.25 43.91 33.12

Table 32. Comparison of accuracies achieved by the proposed PI-CNN and the existing methods in
the original and reduced datasets. The accuracies were achieved in the PlantDoc dataset (unit: %).

Methods Dataset
Disease Crop

TPR PPV ACC F1-Score TPR PPV ACC F1-Score

Wang [14]

100% 65.12 66.49 79.82 65.81 77.37 73.54 84.95 75.46
70% 58.26 54.39 73.07 56.33 68.50 64.74 79.89 66.62
50% 38.30 38.20 60.67 38.25 51.25 47.82 71.31 49.54
30% 35.85 28.38 44.18 32.12 40.17 34.88 52.69 37.53
10% 19.42 21.31 27.68 20.37 20.26 21.29 30.21 20.78

Shahi [1]

100% 64.58 66.66 78.83 65.62 77.79 73.42 86.02 75.61
70% 58.90 53.72 72.76 56.31 68.85 63.69 80.42 66.27
50% 38.79 38.64 59.73 38.72 50.41 47.96 71.07 49.19
30% 35.79 28.59 44.50 32.19 39.76 34.05 51.50 36.91
10% 21.03 22.06 28.33 21.55 21.58 21.01 31.35 21.30

Srivastava [5]

100% 65.66 67.43 79.03 66.53 77.25 74.00 85.97 75.59
70% 58.55 53.13 73.70 55.71 69.11 64.49 79.72 66.72
50% 39.90 38.93 60.88 39.41 50.83 47.19 72.07 48.95
30% 36.11 29.00 44.13 32.17 40.40 34.81 52.33 37.40
10% 19.99 21.04 27.69 20.50 20.76 21.71 31.72 21.22

Jordan [46]

100% 65.12 67.64 79.78 66.36 76.78 74.64 86.28 75.69
70% 58.16 53.72 72.98 55.85 70.33 64.06 80.59 67.05
50% 39.56 37.77 60.27 38.64 50.92 46.96 72.37 48.86
30% 35.60 28.92 43.78 31.91 40.23 33.95 51.92 36.83
10% 19.92 21.46 27.93 20.66 20.59 21.26 31.63 20.92

Ours

100% 66.13 67.87 80.36 67.00 78.26 74.66 86.57 76.46
70% 59.54 54.48 74.08 57.01 70.37 64.78 80.81 67.58
50% 40.20 39.21 61.05 39.71 51.95 48.15 72.55 50.05
30% 36.62 29.31 45.21 32.97 41.62 35.31 53.14 38.47
10% 21.30 22.51 29.12 21.91 21.98 22.41 32.18 22.20
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Table 33. Comparison of accuracies achieved by the proposed PI-CNN and the existing methods in
the original and reduced datasets. The accuracies were achieved in the Plants and Fruits-360 datasets
(unit: %).

Methods Dataset
Plants Fruits-360

TPR PPV ACC F1-Score TPR PPV ACC F1-Score

Wang [14]

100% 89.72 85.29 95.63 87.51 94.47 94.04 97.88 94.26
70% 80.25 76.35 92.23 78.30 91.24 88.77 90.87 90.01
50% 62.55 59.85 84.10 61.20 72.24 78.49 82.93 75.37
30% 48.89 40.71 59.51 44.80 52.06 45.20 65.16 48.63
10% 29.68 30.60 40.61 30.14 38.84 35.24 47.54 37.04

Shahi [1]

100% 89.35 84.47 94.75 86.91 93.53 93.74 97.17 93.64
70% 80.04 76.30 91.66 78.17 90.77 88.54 89.94 89.66
50% 62.39 59.48 84.09 60.94 72.01 78.35 82.23 75.18
30% 48.03 39.93 58.67 43.98 51.45 44.55 64.88 48.00
10% 28.70 29.86 40.37 29.28 38.32 34.30 46.77 36.31

Srivastava [5]

100% 89.74 85.96 95.60 87.81 94.26 93.10 98.25 93.68
70% 79.98 75.47 92.57 77.66 90.91 88.15 90.60 89.51
50% 61.43 59.79 82.97 60.60 72.40 77.95 82.62 75.07
30% 49.53 40.93 58.93 44.82 51.60 45.84 64.34 48.55
10% 30.00 31.06 40.28 30.52 38.95 35.71 48.00 37.26

Jordan [46]

100% 89.34 85.20 95.71 87.22 94.22 93.88 97.43 94.05
70% 79.53 75.59 92.58 77.51 91.61 88.34 90.54 89.95
50% 61.84 58.88 82.77 60.33 72.30 78.34 83.10 75.20
30% 49.30 40.41 60.03 44.41 52.08 45.12 65.00 48.35
10% 30.24 30.34 40.50 30.29 39.37 35.31 48.11 37.23

Ours

100% 90.10 86.11 96.52 88.11 95.40 94.33 98.59 94.87
70% 80.46 76.40 92.81 78.43 91.70 89.00 91.80 90.35
50% 62.71 60.22 84.10 61.47 72.47 78.63 83.63 75.55
30% 49.74 41.50 60.34 45.62 52.68 45.86 65.44 49.27
10% 30.66 31.33 40.85 31.00 39.37 36.19 48.31 37.78

4.4. Processing Time

The processing time of the PI-GAN method and classification method (PI-CNN) in the
testing phase is shown in Table 34. The processing time was measured in the environments
explained in Section 3.3. As shown in Table 34, the frame rate of the PI-GAN method
is approximately 21.78 frames per second (fps) (=1000/45.92). Moreover, the frame rate
of the proposed PI-CNN is approximately 19.29 fps (=1000/51.85). The total frame rate
including both image augmentation and classification method is approximately 10.23 fps
(1000/97.77).

Table 34. Processing time of the methods per image (unit: ms).

Methods Processing Time

Image augmentation by PI-GAN 45.92
Classification by PI-CNN 51.85

Total 97.77

5. Discussion

In general, the plant-image classification performance is affected by the structure
of the classification model, as well as the image quality and number of images in the
datasets. Existing plant-image open datasets are typically small in size compared with
open datasets of other fields. Furthermore, only a small number of open datasets exist.
Therefore, previous models trained using a small number of plant images demonstrate a
lower classification accuracy. This study verified that image classification performed using
a small number of training images yielded a lower classification accuracy as the number of
images decreased. Accordingly, experiments were conducted in this study by increasing the
number of images by using the augmentation method involving PI-GAN. The experimental
results obtained with four open databases demonstrated that the classification accuracy
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was improved compared with those of the state-of-the-art methods for all the reduced
datasets. However, there are error cases when augmenting images using PI-GAN, as shown
in Figure 15. For example, augmented image is presented in Figure 15a, where the date,
carambula, and augmented date image are presented. In the case of the augmented date
image, the pattern of the date in the image was lost and looks more like a rock. Moreover,
as shown in Figure 15b, pineapple, cactus fruit, and augmented pineapple are presented.
Here, the augmented pineapple image became blurry. These errors arise because the two
input images are only combined by using a channel-wise concatenation operation rather
than by analyzing a pattern style of an input image and applying the pattern style of one
image to another input image.

Figure 15. Error cases by the proposed PI-GAN. From the left to right: (a) date, carambula, and
augmented date; (b) pineapple, cactus fruit, and augmented pineapple.

Moreover, example images misclassified by the proposed PI-CNN are presented in
Figure 16. For example, apple, peach, and augmented apple images are presented from the
left to right in Figure 16a, and peach, apple, and augmented peach images are presented in
the same way in Figure 16b. In case of Figure 16a, an apple image (input_1) is augmented
based on a peach image (input_2). Thus, the augmented apple (output) image looks a little
bit like a peach image. On the contrary, a peach image (input_1) is augmented based on an
apple image (input_2) in Figure 16b. So, the augmented peach image looks similar to the
apple image. That is, the classification errors occur due to the loss of class information in
the augmented images used for the training of PI-CNN in both Figure 16a,b.

We obtained the PI-GAN and PI-CNN structures based on experimental results
through ablation studies (Section 4.2). For the model structure adjustment and optimiza-
tion for the specific domain of plant images, we conducted experiments by using various
parameters (Tables 12 and 13) and structures (Tables 14 and 15).

Compared to previous GAN-based image augmentation methods [47–49], the pro-
posed PI-GAN is novel as follows:

- Inputs are random numbers (noise data) in [47–49], whereas inputs of the PI-GAN are
plant images.

- The methods [47–49] use a single input, whereas the proposed PI-GAN uses two
images as inputs.

- The generators of the methods [47–49] were designed based on up-sampling networks,
whereas the generator of the proposed PI-GAN was designed based on an encoder-
decoder network.

- In the methods [47–49], a generator network is trained to generate an image from
noise data, whereas the generator network in the proposed PI-GAN extracts fea-
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tures from two different plant images and generates a plant image by combining the
extracted features.

Figure 16. Error cases by the proposed PI-CNN. From the left to right: (a) apple, peach, and
augmented apple; (b) peach, apple, and augmented peach.

Using a small dataset causes the overfitting problem. In the training phase, we can
monitor overfitting based on the curves of the loss of validation dataset. For example, we
can identify overfitting when validation loss stops decreasing after a certain number of
training epochs while the training loss keeps decreasing. The overfitting occurs in cases
where the training metric keeps searching for the best fit only for the training dataset. The
solution to overcome the overfitting is to increase the number of training data.

In this paper, we conducted various experiments by using training datasets with
different sizes. Training and validation loss curves of the experiments are presented in the
following figures to determine whether the models were overfitted.

As shown in Figure 17d, the training loss is decreased more than those in Figure 17a–c.
This is because the number of training images is too small in Figure 17d, and the model
is fitted easily. However, the validation loss in Figure 17d is not decreased after epoch 10,
which confirms overfitting caused by a small training set. Similarly, overfitting occurs in
Figure 17c owing to the same reason. The testing accuracies with the augmented data of
Figure 17g,h become higher than those with the original data of Figure 17c,d as shown in
Tables 25–27. In addition, the validation losses with the augmented data of Figure 17g,h
are a little lower than those with the original data of Figure 17c,d.

There have been various experiments conducted based on different numbers of pa-
rameters and layers [26,29]. As shown in [29], the error rates by the CNN model usually
increase when the number of layers and parameters decrease. The experimental results
with VGG Net in [26] confirm that the error rates by the CNN model usually increase when
the number of layers decrease. Therefore, we confirm that other conventional CNN models
usually achieve worse results by reducing the parameters.
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Figure 17. Cont.

Figure 17. Training and validation loss curves. Curves obtained by using training sets with size of
(a) 70%, (b) 50%, (c) 30%, (d) 10%. Curves obtained by using training sets augmented from training
sets with size of (e) 70%, (f) 50%, (g) 30%, (h) 10%.
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6. Conclusions

This study proposed plant-image augmentation and classification methods and per-
formed various experiments. New plant images were obtained by combining two types of
input plant images in the plant image augmentation by PI-GAN. The proposed classifica-
tion by PI-CNN involved the classification of images using augmented and original images.
Moreover, the accuracy in a case where a small number of training datasets were used was
compared with that in a case where a large number of training datasets were used. The size
of the original dataset was set to 100%, and the dataset size was reduced by 70%, 50%, 30%,
and 10% to compare the difference in accuracy. Subsequently, the accuracy was compared
again by augmenting the training datasets that had been reduced by 70%, 50%, 30%, and
10%, back to 100%, using conventional and PI-GAN-based augmentation methods. As
shown in Tables 25–27, classification accuracies obtained by using the proposed PI-GAN
augmentation method are higher compared to those obtained by using conventional data
augmentation methods as in Tables 19–24. This confirms that the proposed PI-GAN outper-
forms the conventional augmentation methods. To augment a plant image, the proposed
PI-GAN extracts feature from two different plant images and combines them to generate a
new plant image, whereas conventional augmentation methods change a plant image by
in-plane rotation, shifting, flipping, and adjustments of brightness and contrasts to generate
different images. In addition, as shown in Tables 25–27, classification accuracies obtained
by using PI-CNN with PI-GAN are higher compared to those obtained by using PI-CNN
with conventional augmentation methods. Moreover, classification accuracies obtained
by using PI-CNN with PI-GAN are higher compared to those obtained by using PI-CNN
with the existing conditional GAN-based method [46], as shown in Tables 28–30. This
confirms that the proposed PI-GAN works better with the proposed PI-CNN. The results
of the experiments performed using four open datasets (namely, PlantDoc, PlantVillage,
Plants, and Fruits-360) verified that the proposed PI-GAN and PI-CNN achieved a high
classification accuracy compared with the state-of-the-art methods in all the cases.

In future studies, a variety of explainable artificial intelligence (XAI) methods [39–44]
will be considered to examine the methods further to improve the accuracy of PI-CNN
methods for image classification. In addition, we will conduct further research into methods
for maintaining the class information in the augmented images in order to minimize the
classification errors.
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