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Abstract: In this article, three different techniques, the Fractional Perturbation Iteration Method
(FPIA), Fractional Successive Differentiation Method (FSDM), and Fractional Novel Analytical
Method (FNAM), have been introduced. These three iterative methods are applied on different
types of Electrical RLC-Circuit Equations of fractional-order. The fractional series approximation of
the derived solutions can be established by using the obtained coefficients. These three algorithms
handle the problems in a direct manner without any need for restrictive assumptions. The comparison
displays an agreement between the obtained results. The beauty of this paper lies in the error analysis
between the exact solution and approximate solutions obtained by these three methods which prove
that the Approximate Solution obtained by FNAM converge very rapidly to the exact solution.

Keywords: Fractional Novel Analytical Method; Fractional Perturbation Iteration Method; Fractional
Successive Differentiation Method; caputo fractional operator; fractional-order electrical RLC-circuit
equations
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1. Introduction

This last decade has seen significant advances in research on fractional calculus. Many
new studies on the use of fractional calculus to the real-world issues have appeared in the
literature [1–7]. When compared to the traditional derivative, fractional derivatives offer
several advantages. The first benefit is that fractional derivatives account for memory. A
memory effect is a basic characteristic of differential equation of non-integer type. This
explains why fractional derivatives are used to describe physical systems better than the
classical derivative [8–11]. Another advantage was that the fractional derivatives created a
large number of diffusion processes. For further information on super-diffusion, hyper-
diffusion, ballistic diffusion, and other diffusion processes, see [12].

Many new mathematical models emerge as a result of fractional derivatives. Re-
searchers have lately begun to use fractional-order derivatives in electrical circuits. Many
forms of fractional electrical circuits have lately been presented in the literature;
see [8,13–15] for more information. In [16–20], we learned about fractional RL circuit
modeling. In [16–20], we have a fractional RC circuit model. The fractional LC circuit was
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first introduced in [18]. The numerical and analytical solutions are at the heart of many
fractional electrical circuits studies [19,20].

Authors in [18] use the AB derivative to investigate the numerical solutions for frac-
tional RL and RC circuits. The solutions of the electrical RC, LC, and RL circuits of
non-integer order given by Mittag–Leffler fractional derivative are proposed by Aguilar
et al. in [12]. Rawdan et al. investigate fractional-order RL and LC circuits in [19]. This
paper suggests that fractional-order electrical circuits can be compared to normal electrical
circuits. Aguilar et al. and Sene et al. gives the description of electrical RC and LC circuits
in terms of fractional derivatives in [21–23]. Aguilar et al. discuss research on fractional
electrical circuits characterized by a non-integer derivative with regular Kernel in their
paper [22].

Here, we cover the basic equations of electric circuits involving capacitors, resistors
and inductors. We analyze the following FDEs for three different types of circuits [18]:

D2α
i I(i) + 1

LC
I(i) = E(i)

L
, (1)

Dα
iV(i) + 1

CR
V(i) = E(i)

R
, (2)

Dα
i I(i) + R

L
I(i) = E(i)

L
. (3)

In the circuit, I(i) is the Current and V(i) is a charge at time i, E(i) is the supplied
source (volt), C is the Capacitance (farad), L is the Inductance (henry), and R is the Resis-
tance (ohms). In the above equations, Equation (1) represents the inductor–capacitor (LC)
circuit, Equation (2) represents the resistor–capacitor (RC) circuit and Equation (3) repre-
sents the inductor–resistor (LR) circuit of fractional order. Some preliminary numerical
results for RLC–circuits extensions to electric circuits and other applications of differential
equations are presented in [24–42].

This manuscript is organized as follows. In Section 2, we start with the description
of Fractional Perturbation Iteration Algorithm (FPIA). In Section 3, Fractional Successive
Differentiation Method (FSDM) is presented with theoretical background. Fractional Novel
Analytical Method (FNAM) is discussed in Section 4. Section 5 looks into the application of
the FPIA, FSDM, and FNAM to some electrical RLC circuits equations of fractional-order
and a comparison is made with the existing classical solutions which were reported in
other published literature. Finally, a brief conclusion is presented in the last section.

The operator which we used for the fractional derivative is of Caputo-type [43], which
is defined as:

DC α
0 i [ f (i)] =


1

Γ[m− α]

∫ i
0

f (m)(τ)

(i− τ)α−m+1 dτ, m− 1 < α < m

dm

dtm f (i), α = m.

A fundamental feature of the Caputo fractional derivative [43] is that,

Jα
i

[
DC α

0 i f (i)
]
= f (i)−

+∞

∑
k=0

f (k)
(
0+
)ik

k!
.

2. Fractional Perturbation Iteration Algorithm (FPIA)

Consider the following initial value problem,

Dα
i0

S(i0) + M[S(i0)] + N[S(i0)] = u(i0), 0 < α ≤ 1, i0 ∈ R, (4)



Mathematics 2022, 10, 3071 3 of 16

with initial condition S(k)(0) = Sk, k = 0, 1, 2, . . . , m − 1 and m − 1 < α ≤ m. Here M
is a linear operator, N is a non-linear operator and u(i0) is known analytical function,
respectively. Introducing ε with non-linear term, yield,

Dα
i0

S(i0) + M[S(i0)] + εN[S(i0)]− u(i0) = 0.

In the present paper, the simplest Perturbation Iteration Algorithm PIA(1, 1) is used
by taking one correction term in the perturbation expansion and correction terms of only
fractional order derivatives in the Taylor series expansion, that is, n = 1, m = 1. The
correction term, as discussed in [44], is given with the help of following equation:

Sn+1 = Sn + ε(Sc)n,

S
′
n+1 = S

′
n + ε

(
S
′
c

)
n
. (5)

Substituting Equation (5) in to Equation (4) and writing in the Taylors Series expansion
for only 1st order derivative yields,

G
(

S(α)
n , S(m)

n , S(m−1)
n , . . . , S

′
n, Sn, 0

)
+ GS(α)

(
S(α)

n , S(m)
n , S(m−1)

n , . . . , S
′
n, Sn, 0

)
ε
(

S(α)
c

)
n

+GS(m)

(
S(α)

n , S(m)
n , S(m−1)

n , . . . , S
′
n, Sn, 0

)
ε
(

S(m)
c

)
n
+ GS(m−1)

(
S(α)

n , S(m)
n , S(m−1)

n , . . . , S
′
n, Sn, 0

)
ε
(

S(m−1)
c

)
n
+ . . .

+ GS′
(

S(α)
n , S(m)

n , S(m−1)
n , . . . , S

′
n, Sn, 0

)
ε
(

S
′
c

)
n
+ GS

(
S(α)

n , S(m)
n , S(m−1)

n , . . . , S
′
n, Sn, 0

)
ε(Sc)n+

Gε

(
S(α)

n , S(m)
n , S(m−1)

n , . . . , S
′
n, Sn, 0

)
ε = 0, (6)

or(
S(α)

c

)
n

∂G
∂S(α)

+
(

S(m)
c

)
n

∂G
∂S(m)

+
(

S(m−1)
c

)
n

∂G
∂S(m−1)

+ . . . +
(

S
′
c

)
n

∂G
∂S′

+ (Sc)n
∂G
∂S

+
∂G
∂ε

+
G
ε
= 0, (7)

here (.)
′

represents the derivative with respect to independent variable and

Gε =
∂G
∂ε

, GS =
∂G
∂S

, GS′ =
∂G
∂S′

, . . . (8)

where all derivatives are evaluated at ε = 0. Starting with the initial condition S0 first
corrected term [Sc]0 has been calculated by the help of Equation (7). Then, we substitute
[Sc]0 into Equation (5) to find S1 iteration process is repeated using Equation (7) and
Equation (5) until we obtain a satisfactory result.

3. Fractional Successive Differentiation Method (FSDM)

We consider the generalize nth order FODEs as

Dnα
i S(i) = N

(
S(i), Dα

iS(i), D2α
i S(i), . . . , D(n−1)α

i S(i)
)
+ h(i), (9)

with initial conditions are given as,

S(0) =β0,

Dα
0 S(0) =β1,

D2α
0 S(0) =β2, (10)

...

D(n−1)α
0 S(0) =βn−1.
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In general, the initial condition is written as Djα
0 S(0) = β j, 0 ≤ j ≤ n− 1. Apply many

times fractional differentiations on both sides of Equation (9), say m times, we obtain,

(Dnα
i S)(mα)(i) = N(mα)

(
S(i), Dα

iS(i), D2α
i S(i), . . . , D(n−1)α

i S(i)
)
+ h(mα)(i), m ≥ 1. (11)

By substituting i = 0 at each differentiating step of Equation (11) we calculate the

values of the functions
(

S(nα)
)α

(0),
(

S(nα)
)2α

(0),
(

S(nα)
)3α

(0), . . .. Having estimated these
values by using the initial conditions and the fractional series approximation of the solution
S(i) follows instantly.

S(i) =
+∞

∑
n=0

Dnα
0 S(0)

Γ[nα + 1]
inα, α > 0, i ≥ 0. (12)

For detail on successive differentiation method, please see [45]. We will employ the
FSDM to the three different types of electrical RLC circuit equations of fractional order.

4. Fractional Novel Analytical Method (FNAM)

We will discuss the elementary concepts of constructing a FNAM [46,47] for the FDE
in this section. Consider the following general FDE:

D2β
i S(i) = F

(
i, S, Dβ

iS, . . .
)

, (13)

with initial condition
S(0) = ϕ0, and DiS(0) = ϕ1. (14)

Taking Fractional Integral (FI) both sides of Equation (13) from 0 to i, we get,

Dβ
iS(i)− Dβ

iS(0) = Iβ
iF [S],

Dβ
iS(i)− ϕ1 = Iβ

iF [S].

Then,
Dβ
iS(i) = ϕ1 + Iβ

iF [S], (15)

where F [S] = F
(
i, S, Dβ

iS, . . .
)

. Then, again taking the FI from 0 to i, on both sides of
Equation (15). We obtain,

S(i)− S(0) = ϕ1
iβ

Γ(β + 1)
+ I2β

i F [S],

S(i)− ϕ0 = ϕ1
iβ

Γ(β + 1)
+ I2β

i F [S].

Thus,

S(i) = ϕ0 + ϕ1
iβ

Γ(β + 1)
+ I2β

i F [S]. (16)

For F [S] the Fractional Taylor Series (FTS) is extended about i = 0,

F [S] =
+∞

∑
k=0

Dkβ
i F [S0]

Γ(kβ + 1)
ikβ, β > 0

F [S] = F [S0] +
Dβ
iF [S0]

Γ(β + 1)
iβ +

D2β
i F [S0]

Γ(2β + 1)
i2β +

D3β
i F [S0]

Γ(3β + 1)
i3β + . . . +

Dkβ
i F [S0]

Γ(kβ + 1)
ikβ + . . . . (17)

Substituting Equation (17) by Equation (16), we obtain
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S(i) = ϕ0 + ϕ1
iβ

Γ(β + 1)
+ I2β

i

[
F [S0] +

Dβ
iF [S0]

Γ(β + 1)
iβ +

D2β
i F [S0]

Γ(2β + 1)
i2β +

D3β
i F [S0]

Γ(3β + 1)
i3β + . . . +

Dkβ
i F [S0]

Γ(kβ + 1)
ikβ + . . .

]
,

S(i) = ϕ0 + ϕ1
1

Γ(β + 1)
iβ +

F [S0]

Γ(2β + 1)
i2β +

Dβ
iF [S0]

Γ(3β + 1)
i3β +

D2β
i F [S0]

Γ(4β + 1)
i4β + . . . +

Dkβ
i F [S0]

Γ((k + 2)β + 1)
i(k+2)β + . . . ,

S(i) = a0 + a1
iβ

Γ(β + 1)
+ a2

i2β

Γ(2β + 1)
+ a3

i3β

Γ(3β + 1)
+ a4

i4β

Γ(4β + 1)
+ . . . + ak

ikβ

Γ(kβ + 1)
+ . . . , (18)

where,

a0 = ϕ0,

a1 = ϕ1,

a2 = F [S0],

a3 = Dβ
iF [S0],

a4 = D2β
i F [S0],

...

ak = D(k−2)β
i F [S0],

such that highest derivative of S is k. The endorsement of Equation (18) is to extend FTS for
S about i = 0. It means that,

a0 = S(0),

a1 = Dβ
iS(0),

a2 = D2β
i S(0),

a3 = D3β
i S(0),

a4 = D4β
i S(0),

...

ak = Dkβ
i S(0).

So, we can obtain our desired numerical solution easily.

5. Application for RLC Circuits

In this portion, we apply FPIA, FSDM, and FNAM techniques to Equations (1), (2),
and (3), while assuming the time-invariant source (E(i) = E0) in the underlying series
circuit models and obtain results by comparing their approximate solutions with the
corresponding classical solutions.

5.1. Inductor–Capacitor (LC) Circuit of Fractional Order

Only charged inductor and capacitor are present in the circuit and its FDE [17,18,48] is
given as:

D2α
i I(i) + 1

LC
I(i) = E0

L
, 0 < α ≤ 1,

with initial conditions I(0) = i0 and DI(0) = 0. In this work fractional order derivatives
are understood to be in the Caputo sense. The classical solution of LC Circuit equation

of fractional-order Equation (1) at α = 1 is I(i) = CE0−CE0 cos
(

i√
CL

)
+ i0 cos

(
i√
CL

)
.
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FPIA: Introducing ε with non-linear term yield,

D2α
i I(i) + ε

LC
I(i) = ε

E0

L
.

Applying Fractional Perturbation Iteration Algorithm FPIA(1, 1) yields,

[(
D2α
i I(i)

)
n

]
c
= −

D2α
i I(i)

ε
− 1

LC
I(i) + E0

L
.

By taking fractional integral on both sides, yields

[(I(i))n]c = J2α
i

[
−

D2α
i I(i)

ε
− 1

LC
I(i) + E0

L

]
. (19)

An initial guess satisfying the initial condition should be selected. Using the algorithm
of FPIA with Equation (19) and initial guess, the approximate solution at each step is:

I0(i) =i0,

I1(i) =
E0

LΓ(1 + 2α)
i2α + i0 −

i0
CLΓ(1 + 2α)

i2α,

I2(i) =
E0

LΓ(1 + 2α)
i2α − E0

CL2Γ(1 + 4α)
i4α + i0 −

i0
CLΓ(1 + 2α)

i2α +
i0

C2L2Γ(1 + 4α)
i4α,

I3(i) =
E0

LΓ(1 + 2α)
i2α − E0

CL2Γ(1 + 4α)
i4α +

E0

C2L3Γ(1 + 6α)
i6α + i0 −

i0
CLΓ(1 + 2α)

i2α +
i0

C2L2Γ(1 + 4α)
i4α−

i0
C3L3Γ(1 + 6α)

i6α,

I4(i) =
E0

LΓ(1 + 2α)
i2α − E0

CL2Γ(1 + 4α)
i4α +

E0

C2L3Γ(1 + 6α)
i6α − E0

C3L4Γ(1 + 8α)
i8α + i0 −

i0
CLΓ(1 + 2α)

i2α+

i0
C2L2Γ(1 + 4α)

i4α − i0
C3L3Γ(1 + 6α)

i6α +
i0

C4L4Γ(1 + 8α)
i8α,

...

and so on. We calculated 10th iterations of FPIA.
FSDM: By using FSDM, we get,

I(i) =β,

Dα
i I(i) =γ,

D2α
i I(i) =− 1

LC
I(i) + E0

L
, (20)

D3α
i I(i) =− 1

LC
Dα
i I(i) + Dα

i
E0

L
,

...

and so on. Substituting i = 0 in each derivative result of Equation (20) gives the values of
the fractional derivatives. We observe that β = i0, γ = 0 and α, 3α, 5α, . . . order derivatives
terms are zero, i.e., Dα

0 [I(0)] = D3α
0 [I(0)] = D5α

0 [I(0)] = . . . = 0. In view of this, we obtain
the Fractional series approximation,
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I(i) = E0

LΓ(1 + 2α)
i2α − E0

CL2Γ(1 + 4α)
i4α +

E0

C2L3Γ(1 + 6α)
i6α − E0

C3L4Γ(1 + 8α)
i8α + . . . + i0 −

i0
CLΓ(1 + 2α)

i2α+

i0
C2L2Γ(1 + 4α)

i4α − i0
C3L3Γ(1 + 6α)

i6α +
i0

C4L4Γ(1 + 8α)
i8α + . . .

FNAM: By following the steps carefully elaborated in the FNAM, we attain the follow-
ing series of solution,

I(i) =
+∞

∑
n=1

(−1)n+1E0i2nα

Cn−1LnΓ(1 + 2nα)
+

+∞

∑
n=0

(−1)ni0i2nα

CnLnΓ(1 + 2nα)
.

Figure 1 represents the Time v/s current graph and graphical comparison of classical
solution and numerical solutions obtained by FPIA, FSDM, and FNAM of the electrical
inductor–capacitor circuit equation. The graphs of classical solution and numerical so-
lutions represents a simple harmonic oscillation. Graph of classical solution and FNAM
solution overlap each other representing the harmonic oscillation in the values of current
as time progresses. Figure 2 represents the graphical comparisons of absolute errors of
obtained solutions by FPIA, FSDM, and FNAM of the electrical inductor–capacitor circuit
equation and the graph clearly shows that FNAM contains less error as compared to FPIA
and FSDM. Obtained solutions by FPIA, FSDM, and FNAM of the fractional-order electrical
inductor–capacitor circuit equation at different values of α are represented in Figure 3.

Figure 1. Graphical comparison of classical solution and approximate solutions of inductor–capacitor
circuit at α = 1, L = 2, C = 5, E0 = 10 and i0 = 0.

Figure 2. Graphical comparisons of Absolute Errors (AE) of obtained solutions by FPIA, FSDM,
and FNAM.
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(a) Solutions via FPIA

(b) Solutions via FSDM

(c) Solutions via FNAM
Figure 3. Numerical solutions obtained by (a) FPIA, (b) FSDM, and (c) FNAM of the electrical
inductor–capacitor circuit equation of fractional-order at different α values.

5.2. Resistor–Capacitor (RC) Circuit of Fractional Order

Only charged resistor and capacitor are present in the circuit and its FDE [18,48] is
given as:

Dα
iV(i) + 1

CR
V(i) = E0

R
, 0 < α ≤ 1,

with initial condition V(0) = v0. The classical solution of RC circuit equation is V(i) =

E0C + (v0 − E0C) exp
(
− 1

RCα
iα

)
.

FPIA: Introducing ε with non-linear term yield,

Dα
iV(i) + ε

1
CR

V(i) = ε
E0

R
.

Applying Fractional Perturbation Iteration Algorithm PIA(1, 1) yields,

[
(Dα

iV(i))n
]

c = −
Dα
iV(i)

ε
− 1

CR
V(i) + E0

R
.
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By taking fractional integral on both sides yields,

[(V(i))n]c = Jα
i

[
−

Dα
iV(i)

ε
− 1

CR
V(i) + E0

R

]
. (21)

An initial guess satisfying the initial condition should be selected. Using the algorithm
of FPIA with Equation (21) and initial guess, the approximate solution at each step is:

V0(i) =v0,

V1(i) =
E0

RΓ(1 + α)
iα + v0 −

v0

CRΓ(1 + α)
iα,

V2(i) =
E0

RΓ(1 + α)
iα − E0

CR2Γ(1 + 2α)
i2α + v0 −

v0

CRΓ(1 + α)
iα +

v0

C2R2Γ(1 + 2α)
i2α,

V3(i) =
E0

RΓ(1 + α)
iα − E0

CR2Γ(1 + 2α)
i2α +

E0

C2R3Γ(1 + 3α)
i3α + v0 −

v0

CRΓ(1 + α)
iα +

v0

C2R2Γ(1 + 2α)
i2α−

v0

C3R3Γ(1 + 3α)
i3α,

V4(i) =
E0

RΓ(1 + α)
iα − E0

CR2Γ(1 + 2α)
i2α +

E0

C2R3Γ(1 + 3α)
i3α − E0

C3R4Γ(1 + 4α)
i4α + v0 −

v0

CRΓ(1 + α)
iα+

v0

C2R2Γ(1 + 2α)
i2α − v0

C3R3Γ(1 + 3α)
i3α +

v0

C4R4Γ(1 + 4α)
i4α,

...

and so on.
FSDM: By using FSDM, we get,

V(i) =β,

Dα
iV(i) =− 1

CR
V(i) + E0

R
,

D2α
i V(i) =− 1

CR
Dα
iV(i) + Dα

i
E0

L
,

D3α
i V(i) =− 1

CR
D2α
i V(i) + D2α

i
E0

L
, (22)

D4α
i V(i) =− 1

CR
D3α
i V(i) + D3α

i
E0

L
,

...

and so on. Substituting i = 0 in each derivative result of Equation (22) gives the values of
the fractional derivatives. In view of this, we obtain the Fractional series approximation,

V(i) = E0iα

RΓ(1 + α)
+

E0i2α

R2CΓ(1 + 2α)
− E0i3α

R3C2Γ(1 + 3α)
+

E0i4α

R4C3Γ(1 + 4α)
− E0i5α

R5C4Γ(1 + 5α)
+ . . . + v0−

v0iα

RCΓ(1 + α)
+

v0i2α

R2C2Γ(1 + 2α)
− v0i3α

R3C3Γ(1 + 3α)
+

v0i4α

R4C4Γ(1 + 4α)
− v0i5α

R5C5Γ(1 + 5α)
+ . . . .

FNAM: By following the steps carefully elaborated in the FNAM, we attain the follow-
ing series of solution,

V(i) =
+∞

∑
n=1

(−1)n+1E0inα

Cn−1RnΓ(1 + nα)
+

+∞

∑
n=0

(−1)nv0inα

CnRnΓ(1 + nα)
.
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Figure 4 represents the Time v/s Voltage graph and graphical comparison of classical
solution and numerical solutions obtained by FPIA, FSDM, and FNAM of the electrical
resistor–capacitor circuit equation of fractional-order. Classical and FNAM solution graph
overlaps each other at α = 1 representing the charge in the circuit as time progresses.

Figure 4. Graphical comparisons of classical solution and approximate solutions of resistor–capacitor
circuit at α = 1, R = 4, C = 5, E0 = 10 and v0 = 0.

Graphical comparisons of absolute errors of obtained solutions by FPIA, FSDM, and
FNAM of the electrical resistor–capacitor circuit equation is represented in Figure 5 and
the graph clearly shows that FNAM contains less error as compared to FPIA and FSDM.
Figure 6 represents the graphs of obtained solutions by FPIA, FSDM, and FNAM of the
fractional-order electrical resistor–capacitor circuit equation at different values of α.

Figure 5. Graphical comparisons of Absolute Errors (AE) of obtained solutions by FPIA, FSDM,
and FNAM.

(a) Solutions via FPIA
Figure 6. Cont.
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(b) Solutions via FSDM

(c) Solutions via FNAM
Figure 6. Numerical solutions obtained by (a) FPIA, (b) FSDM, and (c) FNAM of the electrical
resistor–capacitor circuit equation of fractional-order at different α values.

5.3. Inductor–Resistor (RL) Circuit of Fractional Order

Just resistor, a non-variant voltage source and inductor are present in the circuit and
its FDE [17,18,48] is given as,

Dα
i I(i) + R

L
I(i) = E0

L
, 0 < α ≤ 1,

with initial condition I(0) = i0. The classical solution of RL Circuit is I(i) =
E0

R
+(

i0 −
E0

R

)
exp

(
− R

Lα
iα

)
.

FPIA: Introducing ε with non-linear term yield,

Dα
i I(i) + ε

R
L

I(i) = ε
E0

L
.

Applying the Fractional Perturbation Iteration Algorithm PIA(1, 1) yields,

[
(Dα

i I(i))n
]

c = −
Dα
i I(i)

ε
− R

L
I(i) + E0

L
.

By taking fractional integral on both sides, we get,

[(I(i))n]c = Jα
i

[
−

Dα
i I(i)

ε
− R

L
I(i) + E0

L

]
. (23)

An initial guess satisfying the initial condition should be selected. Using the algorithm
of FPIA with Equation (23) and initial guess, the approximate solutions at each step are:



Mathematics 2022, 10, 3071 12 of 16

I0(i) =i0,

I1(i) =
E0

LΓ(1 + α)
iα + i0 −

i0R
LΓ(1 + α)

iα,

I2(i) =
E0

LΓ(1 + α)
iα − E0R

L2Γ(1 + 2α)
i2α + i0 −

i0R
LΓ(1 + α)

iα +
i0R2

L2Γ(1 + 2α)
i2α,

I3(i) =
E0

LΓ(1 + α)
iα − E0R

L2Γ(1 + 2α)
i2α +

E0R2

L3Γ(1 + 3α)
i3α + i0 −

i0R
LΓ(1 + α)

iα +
i0R2

L2Γ(1 + 2α)
i2α−

i0R3

L3Γ(1 + 3α)
i3α,

I4(i) =
E0

LΓ(1 + α)
iα − E0R

L2Γ(1 + 2α)
i2α +

E0R2

L3Γ(1 + 3α)
i3α − E0R3

L4Γ(1 + 4α)
i4α + i0 −

i0R
LΓ(1 + α)

iα+

i0R2

L2Γ(1 + 2α)
i2α − i0R3

L3Γ(1 + 3α)
i3α +

i0R4

L4Γ(1 + 4α)
i4α,

...

and so on.
SFDM: By using SFDM, we get,

I(i) =β,

Dα
i I(i) =− R

L
I(i) + E0

L
,

D2α
i I(i) =− R

L
Dα
i I(i), (24)

D3α
i I(i) =− R

L
D2α
i I(i),

D4α
i I(i) =− R

L
D3α
i I(i),

...

and so on. Substituting i = 0 in each derivative result of Equation (24) gives the values of
the fractional derivatives. In view of this, we obtain the fractional series approximation,

I(i) =i0 +
(

E0

L
− R

L
i0

)
iα

Γ(1 + α)
+

(
−E0R

L2 +
i0R2

L2

)
i2α

Γ(1 + 2α)
+

(
E0R2

L3 −
i0R3

L3

)
i3α

Γ(1 + 3α)
+(

−E0R3

L4 +
i0R4

L4

)
i4α

Γ(1 + 4α)
+

(
E0R4

L5 −
i0R5

L5

)
i5α

Γ(1 + 5α)
+ . . . .

FNAM: By following the steps carefully elaborated in the FNAM, we attain the follow-
ing series of solution,

I(i) =
+∞

∑
n=1

(−1)n+1E0Rn−1inα

LnΓ(1 + nα)
+

+∞

∑
n=0

(−1)ni0Rninα

LnΓ(1 + nα)
.

Figure 7 represents the Time v/s Current graph and comparison of classical solution
and numerical solutions obtained by FPIA, FSDM, and FNAM of the electrical inductor–
resistor circuit equation of fractional-order, whereas the graph of classical solution and
FNAM solution behave similarly at α = 1 having a non-trivial overlap over each other.
Graphical comparisons of absolute errors of obtained solutions by FPIA, FSDM, and FNAM
of the electrical inductor–resistor circuit equation are represented in Figure 8 and the graph
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clearly shows that FNAM contains less error as compared to FPIA and FSDM. Figure 9
represents the graphs of obtained solutions by FPIA, FSDM, and FNAM of the fractional-
order electrical inductor–resistor circuit equation at different values of α = 1.

Figure 7. Graphical comparisons of classical solution and approximate solutions of the inductor–
resistor circuit at α = 1, R = 4, L = 2, E0 = 10, and i0 = 0.

Figure 8. Graphical comparisons of Absolute Errors (AE) of obtained solutions by FPIA, FSDM, and
FNAM.

(a) Solutions via FPIA
Figure 9. Cont.
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(b) Solutions via FSDM

(c) Solutions via FNAM
Figure 9. Numerical solutions obtained by (a) FPIA, (b) FSDM, and (c) FNAM of the fractional-order
electrical inductor–resistor circuit equation at different α values.

6. Concluding Remarks

We have applied the Fractional Perturbation Iteration Method (FPIA), Fractional Suc-
cessive Differentiation Method (FSDM), and Fractional Novel Analytical Method (FNAM)
to three different types of electrical RLC circuit equations of fractional-order and compared
them with their classical solutions. As observed after studying the numerical comparisons
of graphs, we can state that FNAM acts as a generalization to the classical solutions. We
calculated the 10th iteration of FPIA and FSDM and the 9th coefficients of FNAM, after
which we compared the obtained results of FPIA, FSDM, and FNAM. The graphs clearly
show that FNAM gives the best accuracy as compared to FPIA and FSDM and contains
minimum Absolute Error. FNAM takes less computational time. This method works effec-
tively to the Fractional Partial Differential Equations and system of Fractional Differential
Equations and other physical models to develop a better understanding of use of FNAM in
real-life problems.
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