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Abstract: This paper reports on nine elementary, middle, and high school in-service teachers who
participated in a series of workshops aimed at exploring the wonder, joy, and beauty of mathematics
through the creation and application of digitally fabricated tools (i.e., laser-cut and 3D printed).
Using the Technological Pedagogical and Content Knowledge (TPACK) framework to investigate
technological, pedagogical, contextual, and content knowledge, researchers applied qualitative
methods to uncover the affordances and constraints of teaching and learning math concepts with
digitally fabricated tools and examined how the workshops supported broadening participation in
mathematics by focusing on the connections between mathematical inquiry, nature, and the arts.
Affordances include opportunities for hands-on learning, visual support at the secondary level, and
real-world connections that go beyond the state standards. Barriers include purchasing a laser-cutter,
ventilation and noise issues, time constraints, misalignment with school and district priorities, and
a lack of administrative support. All participants indicated that they were interested in additional
workshops focused on designing their own digitally fabricated mathematics tools that better align
with their grade level(s) and standards.

Keywords: aesthetics; digital fabrication; in-service teachers; maker education; professional
development; TPACK

MSC: 97B50; 97U60

1. Introduction

How can teachers integrate the wonder, joy, and beauty of mathematics into their
students’ daily mathematical learning experiences? Starting in 2018, the National Council
of Teachers of Mathematics (NCTM) began publishing their Catalyzing Change, Initiating
Critical Conversations series, which aims to “initiate the critical conversations on policies,
practices, and issues that impact mathematics education” [1] (p. ix). This three-book series
offers four key recommendations that must be enacted to support positive change in K–12
mathematics education. These recommendations include: (a) broaden the purposes of
learning mathematics, (b) create equitable structures in mathematics, (c) implement equi-
table mathematics instruction, and (d) develop deep mathematical understanding [1–3]. Of
particular interest to this study is the first recommendation, which emphasizes that students
should “understand and critique the world [through mathematics], and experience the
wonder, joy, and beauty of mathematics” [4]. While this recommendation is a laudable
goal, NCTM also points out that “for children to experience the wonder and joy in learning
mathematics so must their teachers” [3] (p. 21).

Mathematics, nature, and beauty have historically been intertwined, with mathemati-
cal discourse frequently emphasizing the aesthetic pleasure that can be derived from the
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elegance, harmony, and order found in numbers, patterns, and shapes [5,6]. The beauty
of mathematics takes many forms, including the divine beauty of the golden ratio and Fi-
bonacci sequence found in the arrangement of seeds in a sunflower [1,7]; the natural beauty
of the Voronoi structures located in leaf cells, giraffe markings, and dragonfly wings [8]; and
the elegant beauty that exists in the simplest and most charming mathematical proofs [9].
Yet, despite the natural connection between aesthetics and mathematics, K–12 (K–12 is
a short form for the publicly supported school grades prior to college. These grades are
kindergarten (K) and the 1st through the 12th grade (1–12)) education fails to acknowledge
the relationship between mathematical inquiry, nature, and the arts [5] and lacks the mean-
ingful, real-world connections required to foster a lifelong appreciation of the wonder, joy,
and beauty of mathematics [10,11]. Therefore, researchers and teacher educators need to
support practitioners by expanding their conceptualization of mathematics [12].

One possible pathway towards this goal is through the emerging field of Science, Tech-
nology, Engineering, Arts, and Mathematics (STEAM) education. According to Mejias and
his colleagues [13], STEAM “represents ongoing attempts by educational researchers, prac-
titioners, and policymakers to make sense and potentially institutionalize the role of the arts
in relation to science, technology, engineering, and mathematics [STEM] learning” (p. 210).
Thriving at the intersection of new media, making, and digital technologies [13–15], STEAM
education has the potential to help teachers and students develop a deeper appreciation for
mathematics in a way that is active, integrated, and connected to the world around them.
Despite the growing interest in STEAM education, there are limited empirical data on how
to prepare teachers to effectively engage in STEAM-based instructional strategies [16,17].
While the outcome of STEAM teacher professional development (PD) has been shown
to increase students’ creativity and motivation [18,19], teachers wanting to implement
STEAM-based instruction continue to face numerous challenges related to lesson planning,
pacing/time, student comprehension of content, district policies, technology integration,
and standardized assessment [17].

While the transition from STEM to STEAM continues to be hotly debated [13,18], there
is evidence that digital fabrication technologies (e.g., 3D printers and laser-cutters) can
serve as a catalyst for the successful integration of STEAM education [20,21]. Building
on the influence of the technologies adopted by the Fabrication Laboratory (FabLab) at
MIT [22], tools such as 3D printers and laser-cutters are beginning to find their way into K–
12 schools [21,23,24] and teacher preparations programs around the globe [25,26]. Simply
providing teachers with access to technology, however, is not enough to guarantee adoption.
Rather, prior research suggests that teachers’ pedagogical beliefs and self-efficacy play an
important role in whether technology is integrated into the classroom [27–29]. While digital
fabrication technologies are thriving in engineering classrooms and makerspaces, there is
limited research on how they can be used to create hands-on tools, such as mathematical
manipulatives, to support teaching and learning. Therefore, the purpose of this study was to
examine how digitally fabricated mathematics tools can be used to help in-service teachers
explore the wonder, joy, and beauty of mathematics through the authentic connections that
exist between mathematics, nature, and the arts.

2. Literature Review

To better understand how teachers perceive digitally fabricated tools in the context of
mathematics, the following section reviews the literature associated with making, digital
fabrication, and the role of technology in K–12 mathematics education. This section also
includes an overview of the Technological Pedagogical and Content Knowledge (TPACK)
framework and reviews research about the impact of PD on mathematics teachers’ TPACK.

2.1. Making and Digital Fabrication in K–12 Education

Over the past decade, there has been increasing interest in how K–12 education can
benefit from the tools, practices, and mindsets of the maker movement. The maker move-
ment, as defined by Halverson and Sheridan, “refers broadly to the growing number of
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people who are engaged in the creative production of artifacts in their daily lives and who
find physical and digital forums to share their processes and products with others” [30]
(p. 496). While thriving in informal educational settings (e.g., afterschool programs, sum-
mer camps, and community makerspaces), making and the maker movement serve as
an outlet for do-it-yourself (DIY) hobbyists and tinkerers to connect with other creative
individuals through the sharing of knowledge and showcasing of their creations [31].
Grounded in the learning theory of constructionism [32], which states that learning is best
made visible through the creation of physical and digital artifacts that can be reflected upon
and shared with others [33], maker education is a student-centered approach that can be
used to empower individuals through the examination and design of everyday objects,
ideas, and systems [34].

The technologies and tools associated with the maker movement are commonly di-
vided into no-tech, low-tech, and high-tech categories. No-tech tools may include materials
that are often associated with arts and crafts (e.g., knitting needles, cardboard, crafts
sticks, and copper tape), while low-tech tools typically run on electricity and can be semi-
automated (e.g., woodworking tools, soldering irons, and sewing machines). High-tech
tools for making are computational in nature and include single-board microcontrollers
(e.g., Arduino, micro:bit, and Raspberry Pi) and digital fabrication tools (e.g., 3D printers,
computer numerical control (CNC) machines, and laser-cutters). While many of these
technologies are still emerging and remain nascent in K–12 education, they have begun to
find their way into school makerspaces, FabLabs, media centers, and shop classes [35].

The most common digital fabrication technology that has been adopted in K–12 edu-
cation is 3D printing. In recent years, consumer-grade 3D printers have become relatively
affordable, safe, and reliable, making it possible for schools to purchase one or more printers
for students and teachers to use for educational purposes. Examples of using 3D printing
in K–12 education include introducing middle school girls to digital fabrication through
computer-aided design (CAD) [36], creating replicas of fossils for hands-on paleontology
experiences [37], and helping students explore their career interests in biomedical engi-
neering [38]. More recently, consumer-grade laser cutters have also been introduced to
K–12 education. Unlike 3D printing, which uses an additive manufacturing process by
extruding melted plastic filament, laser cutters use a subtractive process by focusing a beam
of light to cut and etch materials such as plywood, cardboard, and acrylic plastic. While
laser cutting is much faster than 3D printing, it requires more safety precautions due to
the risks associated with Class 4 lasers and the fumes produced by the cutting process [39].
While laser cutters are often used in engineering classes to create gears and boxes [40,41],
they can also be used to produce hands-on manipulatives such as acrylic tiles to introduce
block-based coding [42], 3D model kits to explore molecular geometry [43], and foldable
origami forceps to learn about pincers and tweezers used in microscopic surgery [44].

Furthermore, internationally, there has been momentum for introducing digital fabrica-
tion, particularly FabLabs, at the primary and secondary levels to explore how mathematics
can be more broadly and harmoniously contextualized across the spectrum of nature and
the arts [45]. As such, more opportunities are emerging for teachers and students to learn
how to use these technologies as part of the educational process.

2.2. The Role of Technology in Teaching and Learning Mathematics

As noted in NCTM’s Principles to Actions: Ensuring Mathematical Success for All, “tools
and technology must be indispensable features of the classroom” [12] (p. 78). Appropriate
use of tools and technology supports students’ learning, reasoning, and communication
about mathematical ideas.

In the elementary classroom, mathematical tools often come in the form of hands-on
manipulatives [12]. Mathematical manipulatives are defined as “any tangible object, tool,
model, or mechanism that may be used to demonstrate a depth of understanding, while
problem-solving, about a specified mathematical topic or topics” [46] (p. 184). These physi-
cal objects serve as an instructional tool allowing students to explore concepts, demonstrate
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understanding, and develop numerical skills. Unlike static images or diagrams, manipu-
latives allow users to flip pieces, group objects, and build figures. Manipulatives used in
mathematics classrooms take many forms, including counters, snap cubes, base-ten blocks,
tangrams, geoboards, and algebra tiles [12,47].

As students mature, technology in the mathematics classroom typically transitions
from hands-on manipulatives towards the use of 10-key, scientific, and graphing calculators.
For example, TI-84 graphing calculators have been commonly used to support function
modeling in the classroom [48] and enable the generative exploration of mathematics
through participatory simulations [49,50]. In recent years, advances in digital technologies
have led to the development of online and application-based tools that serve as virtual
manipulatives on smartphones, laptops, and tablet computers. Virtual manipulatives are
“an interactive, web-based visual representation of a dynamic object that presents opportu-
nities for constructing mathematical knowledge” [51] (p. 373). These can include online
graphing calculators and web applications such as Desmos and GeoGebra. Using such
“mathematical action technologies” [52], students are able to interact with mathematical
ideas while making and testing their own conjectures.

The role of technology in mathematics teaching and learning has also been viewed
as paramount during the pandemic. According to a recent international survey on future
themes in mathematics from before and during the pandemic, “Students do not only need
to learn to use technology; the technology can also be used to learn mathematics (e.g.,
visualization, embodied design, statistical thinking). New technologies such as 3D printing,
photo math, and augmented and virtual reality offer new opportunities for learning” [53]
(p. 9). With the increased availability of 3D printers and laser cutters, there is the potential
for a revival of teachers and students creating their own mathematical manipulatives. For
this transition to take place, however, teachers need examples of how these technologies can
be integrated into their teaching practices while also addressing the intersecting domains
of their technological, pedagogical, contextual, and content knowledge.

2.3. The TPACK Framework

The Technological Pedagogical and Content Knowledge (TPACK) framework is a
widely adopted framework for conceptualizing and examining teachers’ needed knowledge
domains when they are teaching with technology (see Figure 1, [54,55]). This framework
originated from the Pedagogical Content Knowledge (PCK) framework, which illustrates
the interplay of content knowledge and pedagogical knowledge during teaching [56,57]. By
adding technology knowledge, TPACK scholars reconceptualized the PCK framework in
consideration of the modern contexts of teaching and learning [58]. The TPACK framework
is important because it helps researchers and educators conceptualize what knowledge
teachers need when they integrate technology into their classrooms [59]. It also facilitates
conversations among scholars and practitioners by providing them with a common lan-
guage. Furthermore, researchers have been using the TPACK framework to undergird their
studies for over 15 years, resulting in significant empirical findings for the field of teacher
education and PD [60,61].

As shown in Figure 1, the current TPACK framework has four foundational knowledge
bases: content knowledge (CK), pedagogical knowledge (PK), technological knowledge
(TK), and contextual knowledge (XK) and four overlapping knowledge domains: peda-
gogical content knowledge (PCK), technological content knowledge (TCK), technological
pedagogical knowledge (TPK), and technological pedagogical content knowledge (TPACK).
Below is a list of the definitions of these constructs [58,62,63]:

• CK: Knowledge about the subject matter;
• PK: Knowledge about the methods and processes of teaching;
• TK: Knowledge about various technologies that can be applied to education;
• PCK: Knowledge of the pedagogical approaches appropriate for teaching a given content;
• TCK: Knowledge of how technology can create new representations for specific content;
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• TPK: Knowledge of how various technologies can be used in teaching and understand-
ing that using technology may change the way teachers teach;

• TPACK: Knowledge required by teachers for integrating technology into their teaching
in any content area;

• XK: Knowledge required by teachers about the local and far-reaching affordances and
constraints of teaching with technology.

This study uses TPACK as a conceptual framework to guide thematic coding.
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2.4. The Impact of PD on Mathematics Teachers’ TPACK

Technology integration has become an indispensable part of math education [64].
More recently, NCTM provided the following statement to highlight the importance of
technology integration into math instructions:

“Strategic use of technology in the teaching and learning of mathematics is the use
of digital and physical tools by students and teachers in thoughtfully designed
ways and at carefully determined times so that the capabilities of the technology
enhance how students and educators learn, experience, communicate, and do
mathematics. Technology must be used in this way in all classrooms to support
all students’ learning of mathematical concepts and procedures, including those
that students eventually employ without the aid of technology. Strategic uses
support effective teaching practices and are consistent with research in teaching
and learning.” [65] (p. 1)

To effectively use technology in the classrooms, math teachers need to be prepared
and continue to develop their TPACK throughout their careers. Researchers have been
using the TPACK framework as a foundation to investigate math teachers’ knowledge
domains and found that the lack of TPACK was a key barrier to math teachers’ technology
integration for student learning [66–68]. Further research suggests that more PD should
focus on conceptual understanding, teaching strategies, time, and student engagement that
support teachers’ current pedagogical methods and then build on the list of new ideas for
pedagogy [69–71].

Scholars also reported that after participating in the technological PD, math teachers
still did not always use available technology during their classroom instruction [66,72,73].
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To further investigate this issue, Young analyzed the results from 13 meta-analyses and
identified five key considerations for improved math teaching with technology, which
are duration, assessment, instructional modality, grade level, and mathematics subject
matter [74]. He suggested that these factors aligned with the TPACK framework. He
recommended the researchers use the TPACK framework for PD research and cautioned
educators to assess the constructs that are most salient in the given context.

Young and his colleagues continued to work on this line of research. In another study,
they investigated whether PD impacted math teachers’ perceptions of their TPACK [75].
They found that PD in urban schools increased math teachers’ PK, TK, PCK, and TCK.
They believed that insufficient resources and PD in urban schools contributed to the lack of
teachers’ TK, which became a new form of the digital divide. Therefore, they suggested
that technology PD should be encouraged early and often. They also stated that teacher
educators needed to consider the influences of teachers’ learning environments before
designing and implementing technology PD accordingly. Rakes and his colleagues found
equivalent conclusions with 17 secondary math teacher candidates [76]. They suggest that
“the ‘T’ in TPACK is an important and unique type of knowledge that is not automatically
developed along with PCK . . . Putting the ‘T’ back into PCK will require explicit emphasis
in the PD experience with the technology purposefully integrated with the pedagogy” [76]
(p. 13). They called on teacher educators to design teacher education and PD with a direct
focus on using technology for math conceptual understanding.

Additionally, Bray and Tangney asserted that a mismatch existed between the researched-
based best practices for math technology integration and teachers’ actual implementation
in the math instructions [77]. Polly conducted a year-long PD program to help elementary
teachers integrate technology-rich tasks into their math instructions. Although the par-
ticipants had some degree of technology integration in their classrooms and developed
their TPACK, Polly found the misalignment between their enacted pedagogies and those
emphasized during the PD sessions [78]. He also discovered that co-planned lessons had
richer technology integration and higher TPACK enactment than those independently
planned by the teachers. Polly and Orrill reported similar outcomes in another study that
grades 4–8 math teachers increased their TK, but very few articulated clearly how to use
technology in math instructions after participating in the PD program [79].

It is apparent from the literature that in-service teachers need more technology PD
focusing on math instruction that is student-focused, teacher-owned, collaborative, content
and theory-laden, reflective, and comprehensive [78]. Therefore, using a case study design,
the current study examines the affordances and constraints of these tools and technologies
in the context of K–12 mathematics education. In particular, this paper will address three
research questions:

1. In what ways do digital fabrication tools support teachers’ perceptions of mathematics
teaching, learning, and curriculum?

2. What challenges do in-service teachers face when applying digital fabrication tools to
mathematics in terms of teaching, learning, and curriculum?

3. In what ways do the workshops influence teachers’ conceptualization and practices
of broadening participation in learning mathematics?

3. Methods

This case study uses a holistic design [80], with the case bounded to a series of three
mathematics workshops over six weeks. Using qualitative methods, the unit of analysis
includes a group of nine K–12 mathematics teachers, their social interactions, and artifacts
generated during and between workshops.

3.1. Research Context and Workshop Design

Maker Math: Using Laser-Cut Tools to Explore the Hidden Beauty of Mathematics is a three-
workshop series offered by three faculty members at a Southeastern R2 university with
high research activity. This workshop series was designed to introduce K–12 mathematics
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teachers to custom-made mathematics manipulatives (i.e., math tools) and provide oppor-
tunities for them to consider how to incorporate these tools into their teaching practice. It
also helps teachers explore mathematical concepts, such as Voronoi patterns and the golden
ratio, while sharing digitally fabricated tools that support the exploration of tessellating
patterns, string art, origami, and conic sections. The workshops were offered on three
Saturday mornings in a maker lab of the college of education during spring 2022.

All three faculty members participated in the design and implementation of the
workshops. Before offering the workshops, these three faculty members met regularly
to select the content and design the activities for the workshops. They first browsed the
MathHappens website to choose interesting content and activities that were aligned to
the K–12 math standards. Then, they communicated with the fifth author, who shipped
selected maker math tools, books, and resources to the first author. Afterward, the three
faculty outlined the activities and sequence of each workshop (see Appendix A), created
additional math tools, and printed needed materials. They discussed and decided on
the pedagogical strategies used in the workshops, such as direct instructions, hands-on
projects, discussion, and instructor-facilitated reflection. In general, each activity followed a
pedagogical pattern (introduction, instructor-led overview, hands-on projects, small group
discussion, whole group discussion, and then instructor-facilitated reflection), and this
pattern was repeated several times for the activities in a workshop. They also discussed
and implemented the recruitment strategies and assigned roles to the instructors. The first
author was the lead instructor. The second author was the participatory observer who took
three sets of typed field notes. The third and fourth authors were the facilitators.

During the workshops, a variety of topics and activities were presented to in-service
teachers. Workshop 1 had four activities: decahedron tiles, laser-cut rectangular puzzle,
Voronoi flipbook, and Voronoi stained glass. Five different activities were offered in
workshop 2: golden ratio transparent plexiglass, golden ratio calipers, origami chompers,
icosahedron, and string art. Another four activities were provided at workshop 3: conic
sections, nautilus gears, Mercator projection, and objects of constant width. Appendix A
illustrates the details of the workshop activities. For each workshop, multiple materials and
digitally fabricated tools were used. These materials and tools were prepared beforehand
by the researchers and then given out to the participants as compensation at the conclusion
of the workshops.

3.2. Participants

Participants were recruited through convenience sampling of in-service teachers who
were enrolled in an instructional technology graduate program. Nine in-service teachers
completed the workshops and voluntarily participated in this study. Among them, three
are men, and six are women. One teacher was 21–30 years old, four were 31–40 years
old, three were 41–50 years old, and one was 51–60 years old. Two teachers are African
Americans, two are Asians, one is Hispanic or Latino/a, three are White, and one preferred
not to tell. Participants’ teaching experience ranged from 3 to 14 years, with an average of
7.9 years of teaching experience. Participants taught various grade levels and subjects, as
shown in Table 1. Among these teachers, two made their own math manipulatives before,
while seven did not. One teacher had used a laser cutter before, while eight had never used
one. None of them had any experience in using laser-cut math tools, and they never used
strategies that combine math and laser-cut math tools in their teaching experiences.

Table 1. Participants’ demographic information.

Teachers Gender Age Range Ethnicity Years of Teaching Grade Level Content Area(s) Certification(s)

Scarlett Female 31–40 Other 7 K–2 All Early Childhood
Education

Mia Female 51–60 White 10 2nd All PK–5th
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Table 1. Cont.

Teachers Gender Age Range Ethnicity Years of Teaching Grade Level Content Area(s) Certification(s)

Ava Female 31–40 White 8 3rd All PK–5th

Riley Female 31–40 African
American 8 6th–8th Science Math and

Science (4–8)

Lucas Male 41–50 African
American 8 6th–8th Special

Education, STEM

Special
Education,

Social Sciences

James Male 41–50 White 5 7th Math Math and Social
Studies

William Male 21–30 Asian 3 8th Math, Science

Math (6–12),
Science (6–12),

Engineering and
Technology,

ESOL, Gifted

Chloe Female 41–50 Asian 14 9th Math (Geometry) Secondary Math

Olivia Female 31–40 Hispanic/Latina 9 11th Math K–5 Elementary,
6–12 Math

3.3. Data Collection

The researchers used multiple data collection methods to gather qualitative data,
including observation notes, a semi-structured group interview, artifacts (images and
objects), and a follow-up survey. First, during each workshop, a researcher observed
the session and took observation notes using a laptop focusing on the conversations of
content, pedagogy, and technology guided by the TPACK framework. In particular, the
observer gathered authentic quotes and double checked with other workshop instructors
for accuracy. Each packet of observation notes was six pages. Altogether, the researcher
recorded 18 pages of observation notes. Second, at the end of the third workshop, the
researchers conducted a group interview with all nine in-service teachers using five semi-
structured interview questions (see Appendix B). The researchers took detailed notes and
recorded the answers to these questions on a shared Google Doc. Afterward, they read the
document and checked for accuracy. The researchers collected the images of participants’
artifacts, such as their maker objects and math tools as well as the images they shot and sent
to the lead researcher. Last, the researchers sent out an online follow-up survey 14 days
after the workshop with a checklist and open-ended questions asking how teachers used or
shared the tools, along with a table of workshop activities and pictures (see Appendix C).

3.4. Data Analysis

The qualitative data sources (i.e., field notes, open-ended survey questions, and
participant-generated artifacts) were analyzed using a hybrid approach [81] that included
both deductive coding based on the TPACK framework and inductive open-thematic
coding [82]. First, the lead researcher used a collaborative document to independently code
the qualitative data for the barriers and supports of integrating digitally fabricated math
tools in their practice (RQ1 and RQ2). In order to facilitate data analysis, the data were
split into episodes that included pre-workshop and one episode for each of the 13 digitally
fabricated math tools and the final whole-group discussion. Within each episode, multiple
data sources (i.e., observation notes, semi-structured group interview transcripts, and
artifacts) were included to support triangulation of data. For example, multiple sources
suggested that participants were experiencing limited buy-in from school culture. This
included comments recorded in field notes, specific mentions regarding aligning lessons
with school mission and vision, and lack of support from administrators. Table 2 shows
the data sources used to answer the research questions and the methods used for data
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triangulation. Following the hybrid coding approach, all data were coded using the
TPACK framework with the initial codes of technological knowledge (TK), pedagogical
knowledge (PK), content knowledge (CK), and contextual knowledge (XK). The data were
then analyzed a second time using open-thematic coding to identify any additional themes.
A second researcher then checked these coded responses, and both researchers worked
together to verify, modify, and refine the codes until interrater reliability of 100% was
achieved. A total of 44 codes were organized and categorized into emerging themes using a
constant comparative method [83]. For RQ1, themes included supporting tactile and visual
learning, real-world connection, economics, and community. Additionally, themes for RQ2
included both physical (i.e., economic, environmental, technical, time, and people) and
psychological (i.e., pedagogical knowledge, student prior knowledge, and culture) barriers.

Table 2. Data sources and triangulation.

Research Questions Data Sources Used Data Triangulation

1. In what ways do digital fabrication
tools support teachers’ perceptions
of mathematics teaching, learning,
and curriculum?

• Observation notes
• Semi-structured group

interview transcripts
• Artifacts and documentation

• Key findings were supported by
field notes, photos, and follow-up
survey. Participants reported using
math tools to support hands-on
learning and multiple participants
reported creating more
manipulatives at school.

2. What challenges do in-service
teachers face when applying digital
fabrication tools to mathematics in
terms of teaching, learning,
and curriculum?

• Observation notes
• Semi-structured group

interview transcripts
• Artifacts and documentation

• Challenges were identified through
the triangulation of field notes,
semi-structure group interviews,
and follow-up survey. Findings
indicate physical and psychological
barriers: particularly from buy-in
from existing school culture.

3. In what ways do the workshops
influence teachers’
conceptualization and practices of
broadening participation in
learning mathematics?

• Observation notes
• Semi-structured group

interview transcripts
• Artifacts and documentations
• Follow-up survey data

• Participants provided multiple
forms of evidence about broadening
participation in mathematics
through the photos sent between
workshops and discussions about
sharing math tools with
other teachers.

Second, all data were transferred to a collaborative Google Sheet, so themes and
episodes could be viewed side by side. Columns were setup based on the TPACK frame-
work using the same TK, PK, CK, and XK deductive themes. Taking a hybrid approach,
inductive coding was then used to identify additional themes related to the concept of
broadening participation in mathematics. These new themes included aesthetics, par-
ticipant examples, and misconceptions (see Appendix D). Furthermore, the spreadsheet
included an additional notes column to help researchers synthesize the data. Each data
source was coded by at least two researchers who constantly compared data, codes, and
themes. Data were reanalyzed to resolve any disagreements until 100% interrater reliability
was reached.

4. Results

This section reports the results of this study. It has been organized according to the
research questions. In each sub-section, detailed results are presented.

4.1. RQ1: In What Ways Do Digital Fabrication Tools Support Teachers’ Perceptions of
Mathematics Teaching, Learning, and Curriculum?

Analysis of qualitative data indicated that digital fabrication tools supported teachers’
exploration of mathematics teaching, learning, and curricula in various ways, such as tactile
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and visual, real-world connections, economic, and community support. First, participants
said that digital fabrication tools are tactile, which supports hands-on math activities
focusing more on problem-solving and creativity. These tools help teachers and students
better visualize mathematics concepts while developing conceptual understanding. In
terms of pedagogy, all participants commented that math tools such as manipulatives
were used more in elementary school but less in secondary schools. Secondary education
teachers particularly highlighted the importance of play and fun in mathematics learning in
the middle and high school context. They advocated for more tactile and visual hands-on
activities using math manipulatives for middle and high school students.

Second, all teachers agreed that digital fabrication math tools can help students
develop conceptual understanding, make real-world connections, and develop agency.
Several teachers expressed the importance of teaching real-world connections to stu-
dents as a way of developing a contextual understand of mathematics. For example,
Chloe mentioned,

“You can use slope and quadratics in the real world, but simplifying a rational
expression is hard to explain to kids since you don’t know where you will need it
in the real world. But things like statistics you are going to use in the real world.
Sometimes it’s applicable and sometimes it’s not worth talking about. Just here is
the standard and let’s move on.”

Teachers also gave a few examples of how to connect the mathematics concepts they
teach to nature and real life. Some suggested that students can find the Fibonacci sequence
in flowers, and teachers can take students outside to explore. Others proposed finding
Voronoi patterns in nature and architecture. One teacher proposed that they could let
students search for stained glass windows in their community and then create their own
designs. Scarlett stated that she will have her students use the golden ratio calipers to
measure their bodies and find patterns in nature that follow the golden ratio rule. All
teachers concurred with the potential of these tools in cultivating students’ engagement and
ownership since they will be working on the maker math activities/projects from start to
finish, which involve exploration, learning mathematics concepts, and designing their own
artifacts. In such activities, students will actively engage in artistic design and developing
their technological skills while bringing what they create on paper to life. Participants
emphasized that these design-related math activities/projects help students become makers
instead of consumers.

Third, the digitally fabricated tools introduced and used in the workshops were created
using inexpensive materials, such as cardboard, plywood, and filament. These materials
are relatively inexpensive and easy to work with. Making math tools using these materials
is more economic than purchasing commercial sets because no shipping and other fees are
involved. Once teachers develop their technological knowledge needed to operate these
digital fabrication tools, they can begin designing their own creations and mass-produce
classroom sets for their students at a very low cost. Moreover, they will be able to teach
their students how to make their tools and customize their designs.

Lastly, although the materials are inexpensive and easy to use, teachers still need
school/community support to obtain digital fabrication machines, such as crafting and cut-
ting machines, 3D printers, and laser cutters. Thus, participants reported that developing
school/community support is crucial to ensuring these tools can be successfully imple-
mented within their teaching contexts. James mentioned that an outside company helped
purchase a 3D printer for his school. With eight 3D printers in total after various support
efforts, he was able to apply his technological knowledge to design more 3D printing math
activities for his students. Other teachers agreed on the affordances of 3D printing math
activities for real-life applications. For example, students can create unique designs and
make custom fidget spinners to sell in the school stores, which helps them develop both
their math skills and entrepreneurship. All teachers suggested that school/community
support is an indispensable part of promoting digital fabrication in K–12 schools, and
ideally, every classroom should have some digital fabrication machines and materials such
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as a 3D printer and filament to support the ongoing development of how these technologies
can impact learning in the K–12 mathematics setting.

4.2. RQ2: What Challenges Do In-Service Teachers Face When Applying Digital Fabrication Tools
to Mathematics in Terms of Teaching, Learning, and Curriculum?

Analysis of qualitative data identified several constraints that may impact in-service
teachers’ use of digital fabrication tools in their teaching practice. During the focus group
interview, teachers spoke of various physical and psychological barriers to using digital
fabrication tools in their practice.

The physical barriers that teachers identified included economic, environmental,
technical, time, and people. Teachers shared concerns about the heavy upfront cost, amount
of training needed, the requirement to purchase materials, and the space that was needed
to start the integration of digital fabrication in their schools. They also discussed aspects
related to the design of the learning environment, such as the location and ventilation of
laser cutters, the number of math tools needed for the whole classroom, and the materials
and resources each teacher needs to teach mathematics concepts in depth. Compared to the
relatively low barriers of 3D printing, participants believed that laser cutting had relatively
higher technical barriers for teachers and students. Time was a considerable barrier to all
participants (e.g., limited instruction time for the content beyond the standards that must
be covered, limited planning time, and time needed to attend meetings). Meanwhile, the
pacing of their math curricula posed some challenges, as teachers had to finish teaching
their curricula before the state standardized testing. Teachers also spoke of constraints on
their agency. For example, Olivia noted that in her district, teachers are held accountable
for using “common activity, common lessons, and common testing”. Because of the
heavy workload and strong emphasis on accountability, participants felt like they had
no time to learn, play with, or make the math tools as well as participate in PD. As a
result, the teachers expressed that it was difficult for them to develop the pedagogical and
technological knowledge needed to implement digital fabrication tools in a K–12 math
context. Furthermore, the preparation time of designing and offering these maker math
activities gave teachers the perception of adding extra time and work to their existing
workload, which made them feel less confident. The last physical barrier these teachers
mentioned were people. They commented that one teacher might not be enough for the
maker math activities, and it would be easier to have multiple teachers in the classrooms to
help students break down the mathematical concepts in small groups.

The psychological barriers that teachers identified included pedagogical knowledge,
student prior knowledge, and culture. During the focus group interview, teachers expressed
that they felt they lacked enough pedagogical knowledge of how to use digitally fabricated
tools in mathematics instruction. They suggested that their lack of confidence in pedagogy
might prevent them from trying out new maker math activities in their classrooms. Another
concern was the consistency across multiple teachers, especially the buy-in from other
teachers in the same professional learning communities who taught the same curriculum.
Moreover, buy-in from multiple levels in the school, such as administration, was needed. A
few teachers mentioned that their school districts required common activities and lessons.
This requirement also made it challenging to use creative pedagogical strategies. Besides
the pedagogical knowledge, teachers believed that students did not have enough prior
knowledge in connecting mathematics concepts to the real world, and they did not have
enough technical skills to design and make digitally fabricated artifacts. More importantly,
participants strongly advised that school culture could be a barrier to integrating digital
fabrication math activities in their classrooms. For example, William said that the maker
math activities might not align with his school’s and district’s mission and vision. A
few teachers agreed on the misalignment of the maker math activities and the mission
and vision of their schools and districts. They mentioned a few possible reasons for this
misalignment, such as the novelty of the activities, request to purchase equipment and
materials, lack of experience, no previous exposure, and conflict between the requirement



Mathematics 2022, 10, 3069 12 of 31

of the state and the need of the county. Again, teachers believed buy-in from people at
multiple levels of the schools and districts was fundamental to promoting the digitally
fabricated math activities. Therefore, teachers interested in implementing these activities
need to develop a strong contextual understanding of their school and district.

4.3. RQ3: In What Ways Do the Workshops Influence Teachers’ Conceptualization and Practices of
Broadening Participation in Learning Mathematics?

In line with the goals of NCTM, the workshops aimed to broaden participants’ con-
ceptualization of the purposes of learning mathematics. This section details findings of
how participants visualized mathematics at the intersection of nature and art and how
the tools from the workshops could be used to broaden participation in their classrooms.
Additionally, this section documents how teachers shared their tools with students, col-
leagues, family, and friends and provides a list of participant-generated recommendations
for future workshops.

4.3.1. Visualizing Mathematics at the Intersection of Nature and Art

In total, five participants sent a total of 11 photos either via text message or e-mail
between workshops. Photos fell into three categories: (a) nature, (b) visual arts, or (c) string
art. Nature pictures included a mint leaf with a Voronoi pattern throughout its veins, two
photos of pine cones (top and side view) depicting a three-dimensional golden ratio spiral,
and four photos of orchids with the Fibonacci sequence found in the flower of the plant
(one lip, three inner petals, and five outside petals). One visual art photo depicted a school
mural with a tractor breaking through a wall with a Voronoi-like pattern (but the pattern
was not mathematically accurate). Three photos were string art created by the participants.
Of the string art, two depicted somewhat random patterns with the string radiating from
a focal point or creating a zig-zag pattern. One string art included two parabolas, which
formed a circular pattern (see Figure 2).

The visual aspects of the workshops were often expressed through the participants’
aesthetic choices involving color and symmetry when working with the laser-cut math
tools. Starting with the decahedron activity (workshop 1, activity 1), the laser-cut plywood
pieces were pre-colored with water-soluble bingo daubers, so one side was either red,
yellow, green, purple, or blue, and the backside was colored black. The use of color added
an additional layer of symmetry to the “round” shapes, with the majority of participants
focusing on the rainbow colors, and only one participant incorporating the black tiles into
their creation. Similarly, participants were given a choice of colorful loom rubber bands
to create the edges of their icosahedron (workshop 2, activity 4). The use of more than
one color of rubber band provided generative space for participants to arrange the colors
in ways that produced different types of symmetry within three-dimensional space. This
desire for symmetry sparked conversations about how many rubber bands were needed
to complete the shape and raised questions about the optimal number of colors needed to
create the most symmetrical patterns.

Asymmetry also played an important role in the discussions about the wonder, joy,
and beauty of mathematics while also serving to facilitate discussion about mathematical
concepts. For example, during the Voronoi stained glass activity (workshop 1, activity 4),
color played a major role in highlighting the asymmetry of their Voronoi-esque creations,
with several participants spacing out their like-colored cells to avoid any two adjacent
cells from having the same color. These spacing of these colors resulted in mathematical
conversations between participants about minimum number of colors they would need to
avoid having any like-colored cells touch. Additionally, activities involving the golden ratio
spiral (workshop 2, activity 1) and calipers (workshop 2, activity 2) helped participants
uncover how the visual arts and nature contain asymmetrical proportions and ratios.
While golden ratios are often present in contexts such as paintings from the Renaissance,
participants were more likely to see connections to the golden ratio through the use of the
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calipers by measuring the portions in their body (e.g., elbow, wrist, fingertip), puppets and
stuffed animals, and pictures of insects, birds, and mammals from oversized library books.
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Figure 2. Participants’ photos: (a) James—Mint leaf, Voronoi pattern; (b) Chloe—Orchid petals,
Fibonacci sequence (one lip, three inner petals, and five outside petals); (c) Mia—String art, circular
pattern with two parabolas (conic section or two quadratic functions).

4.3.2. Broadening Participation in Mathematics

While broadening participation in mathematics was one of the overarching goals of
the workshops, data analysis revealed a tension between whether these activities are for all
students or if they best serve specialized populations (e.g., gifted and talented students or
special education). During the focus group interview, numerous participants indicated that
these activities could serve as an extension or as a reward/challenge for more advanced
students who finish their work early. Olivia discussed how she thought the wooden tile
activities (workshop 1, activities 1 and 2) could be fun for students to use during their free
time or as part of a “brain break”. As part of the follow-up survey, Mia wrote, “My plan is
to be a gifted teacher in a couple of years which means I’ll be teaching 1st–5th graders and
have more opportunities to use the math tools”. This finding indicates that teachers need
further development of their pedagogical knowledge to feel comfortable implementing
these digitally fabricated math tools with general education students.

In contrast, several participants indicated that these activities could be used as hands-
on tools to introduce new content. During the focus group interview, William mentioned
that these tools could be “used as an activating strategy to introduce a topic, or as a student-
led conclusion or summary”. Chloe explained that she thought the conic section tool
(workshop 3, activity 1) could be “used as a model to have students explain what they
learned, or as an activating strategy”. Additionally, as part of the follow-up survey, Chloe
noted that “I plan to use the Fibonacci plexiglass and golden ratio calipers as part of my
lesson during the ‘Arithmetic and Geometric sequence standard’ and Fibonacci numbers
as an extension in Unit 9”. Riley saw these tools extending the practices of the traditional
mathematics classroom by stating that “in order to properly teach [mathematics], it needs to
be a combination of both pen and paper and hands-on”. Furthermore, several participants
thought these tools could serve as hands-on rainy day activities or as an extension after
state testing is over.

One of the limiting factors preventing the broadening of participation in mathematics
was teachers’ content knowledge. This situation was partially due to the fact that concepts
such as the Fibonacci sequence, golden ratio, and Voronoi patterns are not conventionally
taught in K–12 education. However, several participants used deficit speech to describe
their own mathematical knowledge. For example, Lucas noted, “I was good at math until
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they started putting letters in there” and Mia explained that the content “was way out of
my comfort zone, it’s been 30 years since I have heard many of these terms”. Yet, despite
the lack of comfort with the advanced topics, Mia also saw value in the rectangular puzzle
(workshop 1, activity 2) by noting that “I want to use the rectangular puzzle to introduce
quadrilaterals, my [second grade] students are just learning that quadrilaterals have four
sides”. The use of these hands-on math tools also helped to uncover several misconceptions,
including William stating that the 36-36-108 degree triangles in the decahedron (workshop
1, activity 1) could be used to teach the Pythagorean theorem despite the lack of right angles.
Additionally, several participants placed their golden ratio spirals (workshop 2, activity 1)
backward on pictures of snail shells and plants and did not seem to realize that the spirals
did not align.

4.3.3. How Teachers Shared and Used the Tools

Results from the final survey and email correspondences showed that all nine teachers
shared the tools and pedagogies with their family members, friends, students, and/or
colleagues; implemented the activities in the classrooms; or made new digitally fabricated
math tools (see Table 3). Eight participants shared the tools with family members. Five
teachers showed the tools to friends who are not teachers (i.e., “non-education friends”).
Five participants shared the tools with their students. Moreover, eight teachers introduced
the concepts and tools and provided coaching feedback to their colleagues on technology
integration using digital fabrication. For example, Mia wrote, “I demonstrated the Fibonacci
plexiglass and golden ratio calipers to a colleague teaching a unit on da Vinci. She was
excited to show those to her students”.

Table 3. Frequencies of in-service teachers’ usage of tools after the workshops (n = 9).

Laser-Cut Math Tool
Students Colleagues Family Non-Ed Friends

n % n % n % n %

Decahedron Tiles 4 44 4 44 5 56 2 22
Rectangular Puzzle 4 44 5 56 5 56 2 22
Voronoi Flipbook 1 11 3 33 3 33 0 0
Voronoi Stained Glass 1 11 3 33 6 67 3 33
Fibonacci Transparent Plexiglass 0 0 5 56 5 56 2 22
Golden Ratio Calipers 2 22 6 67 5 56 3 33
Origami Chompers 0 0 2 22 4 44 2 22
Icosahedron 1 11 2 22 4 44 0 0
String Art 2 22 2 22 4 44 3 33
Conic Sections 3 33 5 56 3 33 3 33
Nautilus Gears 3 33 3 33 3 33 1 11
Mercator Projections 0 0 3 33 1 11 0 0
Objects of Constant Width 1 11 2 22 2 22 0 0

Grand Total (n = 117) 22 19 45 38 53 45 21 18
Note: Bold numbers show the tools that were shared by more than 40% of the participants.

Six teachers implemented some workshop math activities in their classrooms. At the
elementary level, Mia reported, “I used the decahedron tiles with my 2nd-grade students
when we were learning about polygons”. Mia even created a new set of digitally fabricated
math tools for implementation: “I made a rectangular puzzle out of cardstock for each
of my students (I got the pattern from the MathHappens website) to play with when we
were learning about quadrilaterals”. Similarly, Ava let her 3rd-grade students use the
decahedron tiles to make a circle and describe the patterns they noticed within the shapes.
She also gave the rectangular puzzles to her students as a fun morning activity. Similar to
Mia’s classroom, the students were so intrigued by the activity, and they worked together
to make more paper copies of the rectangular puzzles, so each student had a set they could
manipulate. Additionally, while conic sections are usually not introduced until high school,
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Riley noted, “For the conic sections, I used it with the 5th-grade math class I am working
with to just show shapes”.

Several of the activities were also popular at the secondary level; James described
that some of his 7th-grade math students, “were interested in seeing how the objects of
constant width worked as I described the task with placing the book on top and moving it
around. The students then created their own objects of constant width using the 3D printer
within the school”. William noted that the laser-cut rectangular puzzle and decahedron
tiles were an easy way for his 8th-grade math students to “begin exploring and thinking
during free time”. Chloe implemented the activities in several ways with her 9th-grade
geometry students: “I asked students to create art using the square and strings and used
the conic section to summarize the 3D to 2D cross-sections of the cone before our unit 4B
test”, and “I let my students play with nautilus gears as a fidgeting device”.

4.3.4. Recommendations for Future Workshops

Participants shared their recommendations for future workshops during the semi-
structured group interview. Suggestions included more technological knowledge, sus-
tainability of digital fabrication, deep dive into the conceptual understanding of math
content knowledge, workshops for different grade levels, readily available curricula, and
interdisciplinary projects. Most participants suggested holding more technical workshops
on digital fabrication in the future. They would like to see the behind-the-scenes steps of
designing and digitally fabricating the math tools. They also want to learn how to design
and create laser-cut files and how to produce their math tools for their classrooms. A
few participants asked for workshop topics to be centered on the sustainability of digital
fabrication in the K–12 schools, especially the cost-effectiveness of digital fabrication tools,
cheaper options for the laser cutters, and alternative digital fabrication tools, such as Cricut
machines. Almost all participants proposed that future workshops should be structured
with a deep dive into one mathematics topic first, fully explaining the conceptual under-
standing of the mathematics content knowledge. Then, the workshop instructors should
spend ample time on the maker activities and the discussion on how to transition from
teaching the concept to adding more maker math activities. These teachers also favored
the idea of designing workshops for different grade levels (elementary, middle, and high
schools), so the math content knowledge could be fully aligned to the standards. All
participants expressed that at the end of the workshops, they would like to have readily
available lesson/unit plans, which could be taken back to the classrooms. In addition, some
participants recommended future workshops should focus on technology integration into
other content areas or interdisciplinary lesson/project ideas.

5. Discussion

Based on these findings, the following section discusses issues related to the misalign-
ment of standards with goals of broadening the purposes of mathematics, PD suggestions
for how math teachers can better integrate technology, and implications for future research
and practice.

5.1. Misalignment between Standards and Broadening the Purposes of Learning Mathematics

These workshops sought to broaden the purposes of learning mathematics by ex-
posing in-service teachers to the intersection of mathematical inquiry, nature, and the
arts. Our findings indicate that teachers need a great deal more PD to shift their mindset
beyond current standards-based practices. Based on the semi-structured group discussion,
participants indicated that there were numerous systemic structures, policies, and practices
in K–12 education that continue to undermine their ability to teach for deep mathematical
understanding. Currently, there is a misalignment between state math standards and the
broader goal of teaching mathematics as a coherent whole [4].

In order to broaden the purposes of learning mathematics, teachers and teacher edu-
cators need to address the tension that exists between the procedural versus conceptual
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understanding of mathematics. There is a difference between being able to “do” the math
procedures associated with functions versus understanding their real-world applications.
For example, students learning linear functions often solve for slope and intercept without
enough context to develop a deep understanding of what those values mean. Instead,
mathematical inquiry of the natural world provides students with a context that is more
likely to spur connections that may lead to an appreciation for the wonder, joy, and beauty
of mathematics. However, it is important to note that despite the numerous connections be-
tween nature and mathematics, the word “nature” does not appear in most state standards
or the common core outside of the “nature of attributes” in data and “quantities in nature
and society” [84]. Furthermore, the Fibonacci sequence is only mentioned once in common
core as an example of how to define a function recursively.

To address this misalignment, teachers should look to nature to find hands-on activities
where students can engage in mathematical inquiry. For example, concepts such as pi are
usually taught with rote memorization to the nearest hundredth or provided to students
on a formula sheet. Instead, students can “discover” pi by going outside and hugging
a tree with a rope, measuring the diameter of the trunk, and comparing their answers
with their peers to socially construct its numerical value. Similarly, digitally fabricated
math tools can support the development of deeper learning by allowing students to search
for naturally occurring golden ratios with the use of clear acrylic spirals and golden ratio
calipers. Furthermore, 3D-printed tools, such as the Mercator projection, can support
interdisciplinary investigations into the nature of light, the curvature of the world, and
how visual representations can be used to distort the truth.

While the goal of broadening the purposes of learning mathematics deserves praise,
the idea continues to face the challenges in a standardized world. Wonder, joy, and beauty
are concepts that are very difficult to standardize and measure. Since beauty is in the eye of
the beholder, teachers need more opportunities to move beyond the standards and develop
an appreciation for mathematics within the context of the natural world. Teacher education
and PD programs may choose to address this issue through mathematical field trips to
local botanical gardens and museums to discover how math is embedded in nature and
the arts. Furthermore, teacher education programs may consider adding a course focused
on math appreciation to help teachers reconceptualize mathematics beyond number and
symbol manipulation.

5.2. Professional Development for Math Teachers to Integrate Technology

Both the mathematics concepts and technology tools chosen for the workshops were
somewhat unfamiliar and uncomfortable for the participants, as evidenced in the field
notes, semi-structured interviews, and follow-up survey. Results from the data indicated
that participants tended to overfocus on the technical use of the technology tools [79,85]
and connections to content standards instead of the higher-order thinking skills.

Participants in this study also encounter some similar barriers to implementation as
those identified in the literature [79]: (a) teachers’ beliefs that technology-rich activities
of higher-order thinking skills are time-consuming, ineffective, and needy of too much
preparation [86] and (b) school culture being relatively conservative and not open to
integrating more technology-rich tasks in the classrooms [87]. As a result, similar to a
study conducted by Bray and Tangney [77], this study also found a misalignment between
the research-based best practices for math technology integration advocated in the PD
workshops and teachers’ actual implementation in their classrooms. The results of the
final survey illustrated that except for one teacher (11%), the other four teachers (44%)
who implemented the activities in their classrooms did not design technology-rich math
activities to address students’ higher-order thinking skills, not to mention the four other
teachers (44%) who did not implement any activity in their classrooms after the workshops.

This study also found that school culture played a major role in whether the technology
would be implemented following PD. Issues such as misalignment with the mission and
vision of the school and district along with administrative priorities were factors that
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impeded teachers from using these tools in their practice. Those teachers that did envision
implementing tools from the workshops tended to focus on gifted and talented populations,
indicating that high-tech math tools have the potential to replicate the Matthew Effect,
where the technology-rich become richer; while the poor become poorer [88]. In order to
address issues related to school culture, those creating PD sessions should think about
including a broad range of stakeholders including teachers, administrators, parents, and
community members who have outside expertise. This may help build capacity within the
organization to create buy-in from school administration and the broader community, which
can help shape the mission and vision of the school and district to support technology-rich
learning environments. Those leading workshops should consider open discussion with
teachers about what the school culture means within the context of their implementation
and provide teachers with strategies to help them overcome barriers.

5.3. Added Value of the Present Work

This study is situated within the context of multiple initiatives that seek to broaden
the study of mathematics in relation to nature and the arts. While the guiding premise of
the study stems from the NCTM’s Catalyzing Change series [1–3], the authors acknowledge
that international efforts are taking place within the global FabLab network to explore the
intersection of mathematics, nature, and the arts through digital fabrication [45]. Integrating
new tools, technologies, and pedagogies is challenging since school systems and teacher
education programs do not teach integrated curricula. This is partially due to the limited
amount of time teachers have to teach the established curricula and the teaching dilemma
that emerges from the tension between agency and structure in the classroom [89]. However,
the maker projects outlined in this study are very simple from the perspective of design
and fabrication and only require basic computer-aided design (CAD) and laser-cutter skills
to create any of these mathematic manipulatives.

Findings from this study add value by sharing numerous digitally fabricated mathe-
matic manipulatives in the context of teacher PD workshops. While these workshops took
place at a maker lab that had access to a consumer-grade laser cutter and 3D printer, the
study also highlighted the ingenuity of several participants to use conventional tools in
their classroom to make class sets of the rectangular puzzle and decahedron tile activities.
In the hopes of minimizing the digital divide, future studies are planned that will examine
how teachers can design their own mathematic manipulatives using CAD and vector appli-
cations. Rather than relying entirely on 1/8” plywood and acrylic, these future workshops
will also explore inexpensive materials such as cardboard and cardstock and alternative
digital fabrication tools such as the Silhouette Cameo and Cricut machines, which are more
affordable for most schools.

5.4. Implications for Future Research and Practice

The findings of the current study reiterated that there exists a misalignment between
what is taught in the PD workshops and teachers’ implementation. Thus, researchers
and teacher educators need to further investigate PD workshops’ learning environment,
topic, design, and length as well as school cultures in order to improve teachers’ TPACK
development and self-efficacy in technology integration [90]. As Polly and Hannafin
summarized and promoted, PD programs focusing on technology integration should follow
the learner-centered principles, which are student-focused, teacher-owned, collaborative,
content and theory-laden, reflective, and comprehensive [86]. Future research could use
these principles to guide the design of the PD workshops and test their effectiveness on
in-service teachers’ development of TPACK and other relevant variables. Some researchers
also suggested that PD programs for technology integration in mathematics classrooms
should emphasize conceptual understanding, teaching strategies, time, assessment, grade
level, and student engagement [69,71,74]. Each of these variables could be examined
further in future studies. Additionally, instruments examining teachers’ attitudes and
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self-efficacy could be used to triangulate data to better understand the effectiveness of the
PD programs [91].

For future practice, the researchers recommend the following suggestions for PD work-
shop design. First, future PD workshops should be designed specifically for different grade
levels (elementary, middle, and high school) so that each workshop can focus on specific
mathematics standards/goals and provide teachers with opportunities to consider how to
implement the technology-rich math tasks with their students [92]. Workshop instructors
should allocate ample time for teachers to reflect and discuss how these technology tools
can support student learning during math tasks. It is worth investigating whether teachers
increase their TPACK development in the workshops designed for their grade levels.

Second, PD workshops should be designed to be more standards-focused and stu-
dent learning-outcomes-focused to potentially address the challenge of lack of time for
implementation [86,93]. Teacher educators could provide practitioners with opportunities
to explore high-level mathematical tasks in which digitally fabricated tools support their
learning using a practice-based approach [94–96]. In this approach, in-service teachers will
first explore mathematical tasks as learners. After fully unpacking the mathematics for
themselves, teachers can consider how best to support and facilitate students’ learning.

Third, more time and exposure will be ideal to make the PD ongoing and comprehen-
sive, so teachers will have more support on math conceptual understanding and domains
in TPACK. The researchers of the current study plan to offer another set of PD workshops
focusing on how to design digital fabrication tools using the software and mass produce the
designs for teachers’ classrooms. In addition, it will be optimal to go to schools and class-
rooms to provide additional coaching for implementation [97–99]. Longitudinal research
investigating how to support ongoing PD is greatly needed.

Lastly, PD workshops should consider school culture, including leadership styles
and administrative barriers [98,100,101]. Teacher educators should provide teachers with
opportunities to develop and practice strategies that promote innovation within their
schools [102]. In-depth research on the relationship between school culture, PD, and
innovation will contribute to PD policy and practice.

6. Limitations

Limitations of this study include using recruiting participants through convenience
sampling of teachers who were enrolled in an instructional technology graduate program.
Due to this sampling method, some participants may already have a bias toward believing
in the benefits of technology in education. All participants were enrolled at one university
in the southeastern United States, which means the findings of this study may not represent
the mathematical culture of other regions or countries. Additionally, this study took a
“buckshot” approach by introducing a large number of tools rather than focusing on how
individual tools could be applied in grade-specific contexts. While the follow-up survey
captured how several of the teachers implemented the tools in the classroom, this study
was not able to directly measure student reactions to these tools. Additionally, this study
took place in February and March of 2022, while COVID protocols were still active. As such,
it was not possible to recruit enough participants to conduct this study with a control group
using more conventional mathematics manipulatives. Lastly, participants had limited
access to digital fabrication tools, with only one laser cutter and one 3D printer being
accessible in the maker lab. As a result, researchers produced the majority of tools in
advance, which provided fewer opportunities for participants to develop their technology
knowledge and learn technical skills, such as setting the power and speed of the laser cutter
for different materials (e.g., plywood, cardboard, and acrylic).

7. Conclusions

This study aimed to examine how digitally fabricated mathematics tools can be used
to help in-service teachers explore the wonder, joy, and beauty of mathematics through
the authentic connections that exist between mathematics, nature, and the arts. Findings
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from the study indicate that digitally fabricated math tools need to be aligned with grade
level, content, and standards to be successfully adopted by teachers. Furthermore, the
affordances of digitally fabricated math tools included opportunities for hands-on learning,
visual support at the secondary level, and real-world connections that go beyond the
state standards. Barriers include purchasing a laser cutter, ventilation and noise issues,
time constraints (i.e., too many meetings, no time for training, preparation time to cre-
ate materials), misalignment with school and district mission and vision, and a lack of
administrative support.

Based on the goal of broadening the purposes of learning mathematics, this study
found that there is a misalignment between the current standardized mathematics curricu-
lum and the broader goals of appreciating the wonder, joy, and beauty of mathematics.
Evidence from participants suggests that some of the math topics included in these work-
shops (e.g., Fibonacci sequence, golden ratio, and Voronoi diagrams) can be used to help
teachers form a contextual understanding of the connections between nature and mathe-
matics. Low-tech math tools, such as laser-cut wooden geometry tiles, were more accessible
and could serve as an entry point for teachers interested in introducing new math manipu-
latives to their classrooms and curricula. More research is needed to better understand how
PD can support teachers in the development of their TPACK through the design, creation,
and implementation of digitally fabricated math resources.
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Appendix A

Table A1. Description and photos of workshop activities.

Workshops Activities Examples

Workshop 1

1. Decahedron tiles (20 min)

• Teachers first freely play with the pieces
without instructions.

• Then, teachers discuss their observations.
• Next, teachers need to use all 20 triangle

pieces to form a “round” shape.
• Teachers are given instructional sheets with

five unique designs.
• The instructors lead a discussion of the

activity focusing on shapes, colors,
and angles.
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angle pieces to form a “round” 
shape. 

• Teachers are given instructional 
sheets with five unique designs. 
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the activity focusing on shapes, col-
ors, and angles. 

 

Workshop 1 (cont.)

2. Laser-cut rectangular puzzle (20 min)

• Participants received the packs of pieces
and peeled off the blue painter’s tape used
to prevent smoke marks on the
laser-cut pieces.

• Then, they begin the challenge to figure out
how to make larger rectangles with 5, 6, 7,
and 8 pieces.

• The instructors lead a discussion on the
activity and how it can be implemented in
the curricula of various grade levels.
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Table A1. Cont.

Workshops Activities Examples

4. Voronoi stained glass (45 min)

• Participants begin tracing the frames on the
tracing paper once receiving all materials.

• Then, they cut the tracing paper according
to the shape of the frame and design their
own Voronoi patterns that are meaningful
to them.

• The instructors talk about the math content
knowledge of the Voronoi patterns.

• Participants color their designs and glue
the tracing paper and frames together.

• The instructors lead a discussion on how to
use this activity in the classrooms at
various grade levels.
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use the acrylic pieces to find golden ratios
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while discussing with each other and the
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• The whole group reflects on this activity
and shares their findings.
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Table A1. Cont.

Workshops Activities Examples

Workshop 2 (cont.)

3. Origami chompers (10 min)

• The instructors hand out pre-cut chompers,
googly eyes, and glue sticks and explain
the design and materials of this activity.

• Teachers fold and decorate their chompers.
• Then, the instructors lead a whole group

discussion on the use of the chompers, the
design of origami, and
implementation ideas.
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Table A1. Cont.

Workshops Activities Examples

Workshop 3

1. Conic sections (20 min)

• The instructors hand out the laser-cut conic
section pieces and playdoh.

• Teachers first assemble the conic sections
and then work on forming the playdoh into
cones. Then, they use rulers to cut the
playdoh imitating the conic section models.

• Then, the whole group discusses how this
activity can be used in the classrooms at
various grade levels.
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in map-making.

• Then, the whole group discusses how other
content areas such as social studies can be
taught with math content knowledge.
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Table A1. Cont.

Workshops Activities Examples

Workshop 3 (cont.)

4. Objects of constant width (35 min)

• The instructors hand out the
pre-3D-printed objects to teachers and let
them experiment.

• Teachers conduct a variety of experiments,
for example, putting the shapes under a
thick book and then rotating the book.

• Teachers sit together on the carpet to do
more experiments and share their thoughts
with each other.

• The instructors showcase how to laser cut
cardboard into the foundational shape of
this object of constant width and explain in
detail how this shape forms.

• Then, the whole group discusses how this
activity can be used in the classrooms at
various grade levels.
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Appendix B

Semi-structured group interview questions:

1. What are some affordances and constraints of the laser-cut math tools in your perspective?
2. What are some of your ideas about how these laser-cut math tools and activities could

be implemented in your classrooms?
3. What challenges do you have if you want to implement these laser-cut math tools in

your math curricula? What viable solutions do you see for these challenges?
4. What connections between nature and mathematics came up for you during the

workshops? Between the workshops?
5. What are some of your suggestions and recommendations for future workshops?

How can we improve and better serve your needs?

Appendix C

Follow-up survey:
What is your first and last name?
Which tools have you used with students, colleagues, family, and/or non-educational

friends? Check all that apply. (Please see e-mail for link to photos of tools).
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Maker Tools Students Colleagues Family
Non-Education

Friends

Decahedron tiles

Laser-cut rectangular puzzle

Voronoi flipbook

Voronoi stained glass

Fibonacci transparent plexiglass

Golden ratio calipers

Origami chompers

Icosahedron (rubber band shape)

String art

Nautilus gears

Mercader projections

Objects of constant width (the
spheroids)

Please provide a brief description about how you have used any of the tools you have
checked above.

Is there anything else you would like to share with us?

Appendix D
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Table A2. Sample of the qualitative codebook for the decahedron and rectangular puzzle activities.

Activity Technological
Knowledge

Pedagogical
Knowledge Content Knowledge Contextual

Knowledge Aesthetics Participant
Examples Misconceptions Additional Notes

Decahedron
(triangular
pieces)

3 mm plywood
cutting
speed/power, how
to color plywood
with water-based
bingo dabbers.

Discovery
learning/free
play.

Teachers mention their
observation of the
triangular pieces are
similar to Tangrams.

The Instructor
offered the
opportunity to get
the instructional
sheet that has five
designs on it for the
activity. Four
teachers decided to
take the sheet and
explored the
patterns, and the
other four teachers
decided to continue
to try themselves.

After successfully
coming up with new
patterns, teachers
immediately engage in
conversations about how
the shapes look like in
the patterns and how
colors play into the
design. “Does that shape
remind you of anything?”
Teachers also want to
make the patterns
visually pleasing by
coordinating the
colored pieces.

Stop sign,
decagon, paper
airplane, star.

Connection to
Pythagorean
theorem
(Triangular pieces
have no
right-angle,
36-36-108 degrees).

Participants were asked to
use all 20 pieces to make a
“round” shape after a period
of free play. Participants
were informed to not use the
hexagonal piece from their
baggie of pieces.

The instructor asked the
teachers the degrees of the
triangles and asked them to
think about their degrees.
“How many sides are there
in the pattern?” “10 sides,
1440-degrees (sum of the
interior angles, (n-2)*180.
(NOTE: Participants
identified the interior with
36*10 = 360 degrees).

Instructor asked the
kindergarten teacher
what she thinks
about this activity
for kindergarteners,
participants thought
the activity was
good for all ages.

Teachers commented
that they began playing
by grouping the pieces
based on colors, and
then, it came together
into the full pattern.
Most teachers agreed
that colored pieces are
more appealing than
plain wood pieces, and
the colors help with the
play and design.

NOTE: Not mentioned during
workshop, this is the Phi
triangle, with phi as the short
legs, and hypotenuse of
phi + 1. Also called the Divine
Triangle. See video: https://

www.youtube.com/watch?
v=z4hCcI_Ates(accessed on
19 August 2022)

Rectangular
Puzzle

Activity packs
were distributed to
teachers, and
teachers peeled off
the stickers (blue
painter’s tape) on
the pieces.
Teachers
mentioned they
smelled like a
campfire.

Challenge-
based
learning.

Elementary teachers,
similar to manipulatives.
Middle school teachers,
surface areas, and columns.
High school teacher, very
different from high school
math teaching, rational
expression, logs, imaging
numbers. Everyone agreed
that we were
doing geometry.

Challenge: Find a
rectangle with 5, 6, 7,
and 8 pieces.

Some people liked the
colors; one said color did
not make any difference,
and some preferred plain
wood color.

(Real-world
example) Similar
to buildings and
lands, this can be
used by people
doing architecture
and lands.

6 vs. 9 for
upside-down piece
of puzzle due to
symmetrical piece.

“The challenge is to try to
figure out how to make large
rectangles and how to make
the rectangles with 5, 6, 7,
and 8 pieces”. One group
figured it out immediately
and said, “Let’s just do the
eight pieces really quick”.
Teachers celebrated once they
completed a rectangle.
Everyone was very engaged,
and there was a lot
of laughter.

https://www.youtube.com/watch?v=z4hCcI_Ates(accessed
https://www.youtube.com/watch?v=z4hCcI_Ates(accessed
https://www.youtube.com/watch?v=z4hCcI_Ates(accessed
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Table A2. Cont.

Activity Technological
Knowledge

Pedagogical
Knowledge Content Knowledge Contextual

Knowledge Aesthetics Participant
Examples Misconceptions Additional Notes

One teacher asked
about the 3D
shapes. Whether
we can print the
3D shapes for
these activities?
The instructor
showcased the 3D
printed Pi vase to
teachers, 28 h
of printing.

How this
activity will be
easier or
harder if we
don’t have the
numbers on
it?” One
teacher
mentioned
that it might
be easier.

One teacher talked
about city
planning, figuring
out the roads,
parallels, different
building shapes,
and so on.

The instructor showcased the
book, Earnest Irving Freese’s
Geometric Transformations: The
Man, the Manuscript, the
Magnificent Dissections!
written by Greg N.
Frederickson and talked
about 15 ways to do
pentagons and talked about
tiles and quilting.
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