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Abstract: The current graph-neural-network-based recommendation algorithm fully considers the
interaction between users and items. It achieves better recommendation results, but due to a large
amount of data, the interaction between users and items still suffers from the problem of data
sparsity. To address this problem, we propose a method to alleviate the data sparsity problem by
retaining user–item interactions while fully exploiting the association relationships between items
and using side-information enhancement. We constructed a “twin-tower” model by combining a
user–item training model and an item–item training model inspired by the knowledge distillation
technique; the two sides of the structure learn from each other during the model training process.
Comparative experiments were carried out on three publicly available datasets, using the recall and
the normalized discounted cumulative gain as evaluation metrics; the results outperform existing
related base algorithms. We also carried out extensive parameter sensitivity and ablation experiments
to analyze the influence of various factors on the model. The problem of user–item interaction data
sparsity is effectively addressed.

Keywords: recommended system; graphical convolutional neural networks; deep learning; knowl-
edge distillation; personalized recommendations

MSC: 05C99

1. Introduction

In recent years, with the advent of the 5G era and the popularity of intelligent mobile
terminals such as cell phones, the scale of online shopping has shown a continuous trend of
expansion. As a result, the data generated is growing exponentially, and there is a wealth
of information in this data. Therefore, it is essential for both users and merchants to quickly
and effectively mine valuable information from these data. Recommendation systems are
an essential tool to solve “information overload” [1,2] and have achieved good results
in many fields [3–6]. Based on the user’s needs and interests, recommendation systems
recommend items that may be of interest to the user from a large amount of data, such as
movies [7], books [8], music [9], and so on, through the corresponding recommendation
algorithms. At present, several successful applications of recommendation systems include
Amazon in the field of e-commerce, Today’s Headlines in the field of information, and
YouTube in the field of video browsing.

Against the backdrop of the global epidemic, more people tend to shop for what
they need through e-commerce platforms. Online shopping has brought convenience
to people while driving economic development. How to select items that may be of
interest to people from the vast amount of information has become one of the critical
challenges faced by e-commerce platforms. In recent years, breakthroughs and progress
with regard to deep learning in the fields of image processing, natural language processing,
and speech recognition also bring new opportunities for recommendation systems [10].
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Among them, the graph neural network (GNN), which borrows ideas from the RNN
and CNN, is a redefined and redesigned deep learning algorithm for processing data in
non-Euclidean space.

Currently, recommendation systems based on heterogeneous graph convolution have
achieved better results in the field of item recommendation, which is mainly achieved by
constructing a bipartite user–item-based graph for item recommendation. For example,
NGCF [11], a collaborative filtering recommendation algorithm based on graph convolution,
learns the embedding representation of users and items by designing a neural network
method that propagates recursively over the graph. Subsequently, LightGCN [12] further
optimized and streamlined the model based on NGCF and concluded through extensive
ablation experiments that using a network structure with symbolic representations of user
and item nodes, feature transformations, and nonlinear activations did not contribute to the
effectiveness of NGCF, but rather degraded the performance of the model. For LightGCN,
the authors constructed a user–item bipartite graph for representation learning; specifically,
after associating each user (item) with an ID embedding, the embedding representation is
propagated on the user–item interaction graph. The embedding information from different
propagation layers is then combined with a weight value to obtain the final embedding.
However, more information about the user–item interactions is considered only throughout
the learning process of the bipartite graph. In the whole dataset, the items that users have
interacted with represent a very small percentage of the item-set, as shown in Figure 1, and
the data sparsity problem is more serious, while the length distribution of the sequence of
user-interaction items is very scattered. Therefore, a more available representation of user
and item embeddings cannot be adequately obtained.
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partitioned dataset.

Because of the problem of data sparsity with regard to item recommendation, a
method using side-information enhancement is proposed to deeply mine the association
between items and obtain a more comprehensive and accurate user representation through
each user’s historical item interaction information to be used for recommendations. The
experimental results indicate that the method can better fuse the general characteristics
of users and items and effectively improve the recommendation effect to users. The main
contributions are as follows.

(1) A “twin-tower” structural model with side-information enhancement is proposed. A
more feature-rich user representation and item representation is obtained by use of a
graph neural network and graph embedding, which can more accurately represent
user preferences and characteristics of items.
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(2) In the model training process, a “mutual learning” strategy is used so that the two
sides of the structure with mutually independent weights maintain higher con-
sistency for the same sample, thus improving the expressiveness of the user and
item embedding.

(3) Related experiments were conducted on the Amazon public dataset and the Last.fm
dataset and the results show that the recommendation algorithm proposed in this
paper outperforms algorithms in the same category in terms of both the check-all rate
and the normalized discounted cumulative gain. Notably, the model proposed in this
paper has a more excellent lifting effect for data sets with higher sparsity.

2. Related Studies

The current study follows two precedents: (1) traditional recommendation algorithms
and (2) recommendation algorithms based on graph convolutional neural networks.

2.1. Traditional Recommendation Algorithm

Traditional recommendation algorithms can be broadly classified into collaborative
filtering-based recommendation methods [13], content-based recommendation methods [14],
and hybrid recommendation methods [15]. Among them, collaborative filtering-based
recommendation algorithms recommend items that users may be interested in through their
historical behavior records, and they are the most classic and widely used recommendation
algorithms. An example is matrix factorization [16], a method that uses the interaction infor-
mation between the user and the item to make recommendations for the user. Collaborative
filtering methods mainly include neighborhood-based methods and model-based methods.
Neighborhood-based methods first calculate the similarity between users (or items) by
the difference in users’ historical ratings and then calculate the utility value based on the
historical ratings of users and the similarity between users to make recommendations. The
model-based approach focuses on constructing a model of user preference to predict the
user’s preference for the item. Since collaborative filtering methods only apply the user’s
historical rating data, the model is simple and effective, but the recommendation accuracy
is not accurate enough for cold start problems and sparsity problems. Content-based
recommendation methods focus on mining other items that are similar in content to those
of which users have historically interacted with in order to produce recommendations.
Specifically, the process can be described as: First obtain the items that users have interacted
with through explicit feedback (e.g., rating, like/dislike) or implicit feedback (e.g., clicking,
searching, buying). Then, summarize and extract users’ preferences from historical items
and represent them as features to calculate the matching degree between each user and
the items they have not interacted with. Afterward, rank and make recommendations
based on the matching degree. Content-based recommendation methods do not require
a large amount of rating information and rely only on user preference features and item
features. Therefore, for new items, one only need extract new-items features for a recom-
mendation; while there is no data sparsity problem or cold start problem, there are often
difficulties in extracting features. Since every single recommendation model has its own
problems, a hybrid recommendation produced by combining different recommendation
algorithms can often produce better recommendation results. For example, integrating
content-based recommendation algorithms into a collaborative filtering framework can
effectively alleviate the data sparsity problem. The hybrid recommendation algorithm
models multiple recommendation algorithms and finally decides the final recommenda-
tion result by a voting method. A hybrid recommendation is theoretically no worse than
any single recommendation algorithm, but at the same time increases the complexity of
the algorithm.

2.2. Recommendation Algorithm Based on Graph Convolutional Neural Network

In recent years, applying deep learning to graph analysis has become a hot research
topic in various fields. Bruna et al. [17] first proposed graph convolutional neural networks,
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defining convolution in spectral space and developing a spectral approach to the field of
graph convolution; ChebNet [18] and GCN [19] parametrized the convolution kernel in the
spectral approach, thus significantly reducing the spatio-temporal complexity. Graph con-
volutional neural networks can be divided into spectral and spatial methods. The spectral
approach defines the graph convolution from the spectral domain, while the spatial ap-
proach aggregates each central node with its nearest neighbor node features by defining an
aggregation function. The most widely used graph convolutional neural networks currently
are spatially based graph convolutional neural networks. For example, GNNs [20] were
proposed to build neural network models on graphs, in which the aggregation function was
defined as a recurrent recursive function. GAT [21] adds an attention mechanism to the ag-
gregation function, and graph attention networks use attention weights to focus the feature
representations of surrounding nodes to intermediate nodes in a weighted aggregated man-
ner. A summary of applications based on graph convolutional neural networks is shown in
Table 1 [22]. In the field of recommender systems, Ying et al. [23] developed a convolutional
construction method based on efficient random wandering and successfully applied GCN
to commercial recommender systems for the first time; the NGCF [11] model was used
for user-personalized recommendation by constructing a user–item bipartite graph and
employing graph convolution operations for embedding representation learning of users
and items. Subsequently, He et al. [12] eliminated nonlinear operations and activation func-
tions that were ineffective for embedding representation learning based on NGCF to reduce
complexity and improve the model’s efficiency. Moreover, the development of KGCN [24]
introduced knowledge graphs to recommendation systems. The main idea was to aggregate
and merge biased neighborhood information when computing the representation of an
entity in the knowledge graph and to capture the local neighborhood structure and store
it in each entity by the operation of neighborhood aggregation. MixGCF [25] abandoned
negative sampling from the raw data based on graph convolution and instead designed the
hop mixing technique to synthesize hard negatives to make the training data more efficient.
Since many real-life situations cannot be described using regular graphs, recommendations
can be made using hypergraph convolution. UltraGCN [26] was developed with the belief
that LightGCN, as a multi-layer stacking for multi-layer messaging, would affect the train-
ing efficiency and effectiveness of GCN-based recommender systems; resultantly, the loss
function was constructed by setting the convergence method, thus avoiding the problems
caused by multi-layer stacking. DA-GCN [27] designs a domain-aware graph convolutional
network to learn the user’s representation. Moreover, two different attention mechanisms
are designed for the message delivery process so that messages can be selectively delivered.
Zhang et al. [28] compared the learning methods of regular graphs and hypergraphs in
terms of matrix decomposition, random wandering, and deep learning and introduced the
structural optimization of hypergraphs.

Table 1. Key differences between graph deep learning models.

Application Areas Model Name Node

Text classification TextGCN [29], HGAT [30],
HR-DGCNN [31] Word

User impact forecast DeepInf [32] User

Recommendation system NGCF [11], LightGCN [12] User, item

Semantic role annotation Semantic GCN [33], C-GCN [34],
LSTM + GCN [35] Word

However, the historical interaction information between users and items only occupies
a tiny portion of the overall items, so there is a data sparsity problem in using the interaction
information between users and items alone for a recommendation. In this paper, we aim to
alleviate the data sparsity problem and improve recommendation accuracy by fusing the
association relationship between items.
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This paper constructs an item relationship network based on the user–item bipartite
graph. We used an appropriate network representation learning method to obtain the
embedding of the item nodes. Our guiding principle was to fully explore the association re-
lationship between items and obtain a more comprehensive item embedding representation
in order to make more accurate recommendations.

3. Materials and Methods
3.1. Problem Description and Related Definitions

By introducing temporal information into the user’s interaction history, the user’s
historical behavior data is transformed into time series data. The historical user behavior
data with time information can be represented by a triplet < u, i, t >, which means that the
user u interacted with the item i at the time t.

Definition 1. Defining user interaction sequence D = {Dui , ui ∈ U}, where U is the set of users.
The sequence of user ui interactions can be denoted as Dui = {< ui, i1, t1 >,< ui, i2, t2 > . . .
< ui, ik, tk >}.

Definition 2. Defining user–item bipartite graph Gui. User interaction sequence D is known,
construct a user–item bipartite graph Gui = (Vui, Eui), where the set of nodes Vui = {U∪I}
contains the set of users U = {u} and the set of items I = {i}. The edges Eui indicate the existence
of interaction between user and item.

Definition 3. Defining item–item homogeneous network Gii. User interaction sequence D is
known, construct an item–item network Gii = (Vii, Eii), where Vii = {I} denotes the set of items.
If the historical interaction item i1 and item i2 of user u(u ∈ U) are adjacent in the interaction
series and the interaction time difference complies with ∆t =|t2 − t1|< ∂ , then establish an edge
relationship between the item i1 and the item i2, and the last edges set denoted as Eii.

3.2. Model Structure

According to Definition 2, the simple user–item bipartite graph has intense data
scarcity, which leads to inaccurate recommendation results. Therefore, we propose our
model, BiInfGCN. By building a “twin-tower” structure with independent weights for a
user–item bipartite graph and an item–item homogeneous network, a more comprehensive
representation of user and item characteristics can be obtained, thus improving the accuracy
of recommendations. The model is shown in Figure 2.

3.2.1. Graph Construction and Embedding Propagation

In the BiInfGCN model, the left-hand side is a graph convolution structure based on
the user–item bipartite graph, which mainly contains a bipartite graph construction layer,
initial embedding layer, and embedding propagation layer. First, according to Definition 2,
a user–item bipartite graph is constructed based on the interaction between users and items.
Then, the initial embeddings of user and item are obtained by the initial embedding layer.
The GCN-like propagation architecture is constructed in the embedding propagation layer,
and the graph convolution operation is performed by an iterative method so that each
node eventually aggregates the features of its neighbor nodes. The user node aggregation
is shown in Equation (1). Specifically, taking the user node u as an example, the node u in
the k + 1 layer of the graph convolution aggregates the features of the neighboring nodes
in the k layer. Similarly, the item node i in the k + 1 layer aggregates the features of the
neighboring nodes in the k layer, and the aggregation is shown in Equation (2).

e(k+1)
u = ∑

i∈Nu

1√
|Nu|

√
|Ni|

e(k)i (1)
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e(k+1)
i = ∑

u∈Ni

1√
|Ni|

√
|Nu|
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During the aggregation process, a symmetric normalization term is added, which is in
accordance with standard GCN design and can effectively prevent the excessive increase of
embedding size during graph convolution. The final user (item) embedding representation
uses the right-value sum of the embeddings of each convolutional layer, as shown in
Equations (3) and (4):

eu =
K

∑
k=0

∂ke(k)u (3)

ei =
K

∑
k=0

∂ke(k)i (4)

where K denotes the number of convolutional layers and the weight-value parameter for
each convolutional layer is adjustable. The final embeddings of users and items obtained
from the “left tower” structure are denoted as El

u = [el
u1

, el
u2

, · · · , el
uN

], El
i = [el

i1
, el

i2
, · · · , el

iM
],

respectively. The loss function lossleft is calculated from the user and item embeddings
obtained from the “left tower” structure as shown in Equation (5). yul il+ and yul il− are
defined as the inner product of user and item final representations, such as

_
y ui = eT

u ei.

lossle f t = ∑
(ul ,il+ ,il−)∈Dl

−[ln σ(yul il+ − yul il−)] (5)
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The right side shows the graph embedding structure based on an item–item homo-
morphic network. It mainly includes a homogeneous graph construction layer and a graph
embedding representation layer. First, according to Definition 3, the item–item isomorphic
graph is constructed, and then the final items’ embeddings are obtained by using the graph
embedding layer. We used two approaches to learn the information network embedding,
which are referred to as LINE 1 and LINE 2 in the following.

• LINE 1: First-order similarity method.

If two item nodes in the network are directly connected, then it indicates that the node
pair is more closely related and should have high similarity.

First-order similarity mainly characterizes the local similarity structure in the network.
Supposing there exists an edge between item nodes i1 and i2, and the embeddings of i1
and i2 are ei1 and ei2 , respectively, define the co-occurrence probability between the two as
shown in Equation (6), and the empirical distribution between the two exists as shown in
Equation (7):

p1(i1, i2) =
1

1 + exp(−→e i1 ·
→
e i2)

(6)

_
p 1(i1, i2) =

wi1i2
W

(7)

where wi1,i2 denotes the weight of edge e = (i1, i2) and W is the sum of the weights of
all edges. The goal is to make the co-occurrence probability as close as possible to the
empirical distribution, i.e., to minimize Equation (8).

O1 = d(
_
p 1, p1) (8)

d denotes the distance between the two distributions. Further, by introducing KL
scatter, Equation (8) can be reduced to Equation (9). Finally, model training by minimizing
the objective Equation (9) can lead to a low-dimensional dense embedding representation
of item nodes.

O1 = − ∑
(1,2)∈E

w12 log p1(i1, i2) (9)

• LINE 2: Second-order similarity method.

When the item–item network is constructed, the relationship between two nodes
directly connected is certainly close, but it fails to fully reflect the structural information
of the network. Here, the neighbors of the nodes are taken as the context information of
the current node, and the relationship between two nodes is closer assuming that there are
more common neighbors, i.e., two nodes have more similar context information. On this
basis, the second-order similarity aggregates both the neighboring node information and
the structural information of the node when calculating the node embedding representation.
In second-order similarity, each node acts as a central node and also as a context node for
other central nodes. Therefore, there exists a central vector representation and a context
vector representation for each item node. Suppose there exists an edge e between item
nodes i1, i2. The embedding of i1 as the central node is ei1 and the embedding of i2 as the
contextual node is e′i2 . Define the probability of generating context node i2 with i1 as the
central node as shown in Equation (10):

p2(i2|i1) =
exp(

→
e
′
i2

T ·→e i1)

∑
|V|
k=1 exp(

→
e
′
ik

T ·→e i1)
(10)
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where |V| denotes the number of nodes in the network. The conditional of the distribution
with node i1 as the central node can be expressed as p2(·|i1) . Meanwhile, there exist
empirical distribution probabilities as shown in Equation (11):

_
p 2(i2|i1) =

wi1i2
di1

=
wi1i2

∑
k∈N(i1)

wi1ik
(11)

where wi1i2 is the weight of edge e = (i1, i2) and N(i1) denotes the set of its contextual
nodes when i1 is the central node, i.e., the set of neighboring nodes of node i1. Therefore, the
empirical distribution with node i1 as the central node can be expressed as p̂2(·|i1) . Again,
the goal is to make the conditional distribution approximate the empirical distribution and
introduce KL scatter to characterize the distance between the conditional and empirical
distributions. We use the degree di1 of a node to denote the weight of that node in the
network. We can obtain the objective function as shown in Equation (12).

O2 = ∑
j∈V

djDKL( p̂2(·
∣∣ij), p2(·

∣∣ij)) (12)

Equation (13) is obtained by eliminating non-influential parameter simplification. We
can arrive at a low-dimensional dense item node embedding representation by minimizing
the objective function (13).

O2 = − ∑
(i1,i2)∈E

wi1i2 log p2(i2
∣∣i1) (13)

By LINE I or LINE II, we can obtain the item embedding matrix of the “right tower”
structure, denoted as Er

i = [er
i1

, er
i2

, · · · , er
iM
].

3.2.2. Obtain Embedded Representations and Score Predictions

Combining the item embedding representation Er
i obtained from the right tower’s

embedding representation layer with each user’s historical interaction sequence for the
item yields the user’s embedding representation, as shown in Equation (14):

→
e

r
u = ∑

i∈S(u)

→
e

r
i (14)

where S(u) denotes the set of historical interaction items of user u.
Finally, the embeddings of users and goods are obtained from the “right tower”

structure, denoted as Er
u = [er

u1
, er

u2
, · · · , er

uN
], Er

i = [er
i1

, er
i2

, · · · , er
iM
], respectively. The loss

function lossright is calculated from the user and item embeddings obtained from the “right
tower” structure as shown in Equation (15).

lossright = ∑
(ur ,ir+ ,ir−)∈Dr

−[ln σ(yur ir+ − yur ir−)] (15)

The bottom layer of the “twin tower” structure is the embedding connection layer and
the recommendation prediction layer. The embedding connection layer concatenates the
user embedding and the item embedding obtained from the “left tower” and the “right
tower” to obtain the final embedding matrix representation, as shown in Equations (16)
and (17).

Eu = El
u ⊕ Er

u = [eu1 , eu2 , eu3 . . . euN ] (16)

Ei = El
i ⊕ Er

i = [ei1 , ei2 , ei3 . . . eiM ] (17)

The score prediction layer calculates the similarity score between users and items
as shown in Equation (18) and makes recommendations to users based on high score.
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Afterward, we select the items with top k-ratings as the items that users are most likely to
interact with next in order to achieve the effect of personalized recommendation.

Score(ui, ij) = eui ⊗ eij , (eui ∈ Eu, eij ∈ Ei) (18)

3.2.3. Model Optimization

The experiments used Bayesian personalized ranking (BPR) loss, which is widely used
in recommender systems [36]; this loss function was a personalized ranking algorithm based
on Bayesian posterior optimization. The core aim was to personalize the recommendation
by modeling the user’s preferences, calculating the items of potential interest to the user,
and selecting the items from which the user has not interacted for ranking. The BPR loss
function is calculated as shown in Equation (19):

LossBPR =

∑
u,i+ ,i−∈D

∑
(ul ,il+ ,il− )∈Dl

∑
(ur ,ir+ ,ir− )∈Dr

−[ln σ(yui+ − yui− ) + ln σ(yul il+ − yur ir+ )] + lossright + lossle f t

4
+ λ||Θ||2 (19)

where Dl denotes the set of positive and negative user–item pairs obtained from the “left
tower” structure. Similarly, Dr denotes the set of user–item positive and negative sample
pairs obtained from the “right tower” structure. D denotes the final set of user–item
positive and negative sample pairs. The lossl−r = ln σ(yul ul+ − yurur+) loss function makes
both sides of the structure (“left tower” and “right tower”) learn from each other during
the back-propagation process. σ denotes the Sigmoid function. λ||Θ||2 is the canonical
term, where λ is a tunable parameter and ‖ · ‖2 is a two-parameter number to prevent
overfitting by adjusting the parameter size. Θ is actually the initial representation vector
of users and items in this loss function, i.e., Θ =

{
E0

u + E0
i
}

, and (e0
u0

, e0
u1

, · · · , e0
uN

) ∈ E0
u,

(e0
i0

, e0
i1

, · · · , e0
iM
) ∈ E0

i . Therefore, the trainable parameters in this model are the initial
vector representations of users and items, and the model is optimized using stochastic
gradient descent. The experiments used the control variable method to train the model
by adjusting the main parameters, and after several experiments, the main parameters
were set as shown in Table 2. The BiInfGCN model can achieve the best results under
comprehensive conditions.

Table 2. Model parameter table.

Parameter Name Parameter Description Parameter Value

lossl “Left tower” structure loss rate 0.0003

lossr “Right tower” structure loss rate 0.1

Layer Number of iterations of the “left tower” structure 4

Dim Dimension 128

Λ L2 regularization parameter 1 × 10−4

Batch Test set batch size 100

4. Results
4.1. Data Set and Evaluation Indicators

The more widely used Amazon dataset and the Last.fm music dataset were used
for this experiment. The Amazon dataset used video-partitioned goods and automotive-
partitioned goods. All of the above datasets included user ID, item ID, and interaction
timestamp information. For each user, the purchased items were sorted by time, with the
first 80% of the time as the training set and the last 20% as the test set. The statistical results
of the dataset are shown in Table 3.
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Table 3. Data set statistics table.

Dataset Number of
Users

Number of
Items

Number of
Interactions Density

Video 5130 1685 37,126 0.004295

Automotive 2928 1835 20,473 0.00381

Last.fm 1880 4489 52,668 0.006201

4.2. Comparison Models and Indicators

(a) LFM [37] (latent factor model) is a classical matrix decomposition algorithm that is
an implicit semantic model algorithm. According to the user’s interaction behavior such as
clicking or not clicking on the item, LFM retrieves the relationship between the user and
the item and makes a recommendation by judging the attention relationship between the
user and the item. Since this algorithm needs to traverse the graph structure, it has the
problem of low efficiency, and the sparsity and complexity of the real data set also affects
the performance of this algorithm.

(b) NGCF is a collaborative filtering algorithm on graph structure that applies the
GCN model to recommender systems to obtain the embedded representations of users
and items and calculates the relationship scores between them for prediction by using the
user–item bipartite graph.

(c) Light-GCN is based on NGCF, and it was developed with the belief that the feature
transformations and nonlinear activation functions in the NGCF model have no practical
effect on collaborative filtering, instead increasing the complexity of the model while
reducing the recommendation effect. Therefore, Light-GCN only adopts the neighborhood
aggregation method for iteration. The experimental results show that the recommendation
effect of Light-GCN is significantly improved.

(d) UltraGCN takes into consideration that the iterative layers in LightGCN can be
omitted, so the model is further simplified, and the loss function is added to improve the
recommendation effect.

The evaluation metrics used in this paper are the check-all rate (Recall@k) and the
normalized discounted cumulative gain (NDCG@k). The experimental results are given
in percentages. In this experiment, k was uniformly set to 20. Recall@k represents the
ratio of the number of items with real user interactions to the number of items with user
interactions in the test set in the given recommendation list of length k. Therefore, the higher
the completion rate, the better the recommendation effect. The formula for calculating the
full rate is shown in Equation (20):

Recall@k =
∑u∈U |R(u) ∩ T(u)|

∑u∈U |T(u)|
(20)

where R(u) denotes the list of recommendations made to user u and its length is 20. T(u)
denotes the list of items that user u has interacted with in the test set. NDCG@k is used to
evaluate the recommended list, which is calculated as shown in Equation (21).

NDCG@k =
DCG@k
IDCG@k

=

k
∑

i=1

reli
log2(i+1)

|REL|
∑

i=1

reli
log2(i+1)

(21)

reli denotes the authenticity-related score of the i− th result in the recommendation
list. Since the recommendation list is sorted according to the similarity score, the higher
the similarity with the user, the higher the ranking of the item. NDCG@k determines the
quality of the recommendation list based on the user’s real history of interacting with
the item.
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4.3. Experimental Results and Analysis

In this paper, extensive parameter sensitivity experiments are conducted and analyzed.
By adjusting the embedding dimension of the “right tower” structure, the evaluation index
values were calculated for node embedding dimensions of d = 16, 32, 64, 128, and 256, and
the results are shown in Table 4.

Table 4. Comparison of experimental results in different dimensions.

Dimension 16 32 64 128 256

Video
Recall 15.405507 15.54806 15.628977 15.963539 15.592613

NDCG 8.04577 8.11645 8.14968 8.350085 8.14689

Last.fm
Recall 27.24471 27.5966 28.05809 28.54347 27.98139

NDCG 20.86728 21.542451 21.76676 22.51918 21.664506

Automotive
Recall 9.366868 9.571416 9.771418 10.5495 9.139674

NDCG 4.937601 5.214604 5.282281 5.49125 5.034705
Bolded numbers indicate the best results of the experiment.

It is observed that both Recall@20 and NDCG@20 improve to different degrees as the
dimensionality increases. However, the effect decreases when the dimensionality increases
from 128 to 256, with the most significant decrease in the automotive dataset. To analyze
the reason, due to the different sparsity of different datasets, embeddings of different
dimensions were used to represent user and item nodes in different effects. Therefore,
the negative effect of overfitting occurred when a lower sparse dataset learned a high-
dimensional embedding representation, which led to an excessive reduction of evaluation
metrics. The results of the Last.fm dataset are also presented visually in Figure 3 so that the
degree of change of the evaluation indicators as dimensionality increases can be observed
more intuitively.
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The effect improvement is more apparent when the low dimension is increased, and
the effect improvement is relatively slow when the dimension is increased from 64 to 128.

In order to verify the relationship between the model and the number of training layers,
the “left tower” structure was set as 1–5 layers for experiments, and the experimental results
are shown in Table 5.
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Table 5. Iterative layer comparison test results.

Layer 1 2 3 4 5

Video
Recall 14.78157 15.383259 15.592613 15.963539 15.973481

NDCG 7.557849 7.927225 7.991041 8.350085 8.3550

Last.fm
Recall 27.14997 28.044526 28.468092 28.54347 28.54421

NDCG 20.720242 21.509124 21.944728 22.51918 22.52936

Automotive
Recall 7.47129 8.945426 9.656771 10.5495 10.449521

NDCG 4.011684 4.883305 5.111121 5.49125 5.49013
Bolded numbers indicate the best results of the experiment.

Table 5 shows that the model’s performance improved as the number of iteration layers
increased. In particular, the performance improvement was most significant when the
number of iterations increased from one to two. However, in the subsequent iterations, the
performance improvement was slower as the number of model layers increased. The reason
for this is that when the number of iteration layers is 1, each user node only aggregates the
features of historically interacted-with items, i.e., first-order neighbors, and cannot fully
explore the close relationships between similar users. Therefore, the nodes can learn more
information by increasing the number of iteration layers.

In contrast, the evaluation metrics of the automotive dataset decreased when the
number of iteration layers reached 5. This is because the automotive dataset was too
sparse, and overfitting occurs when the number of iteration layers is too deep. Therefore,
considering the model’s time complexity and performance, a 4-layer model was chosen for
the experiments.

For the “right tower” structure, the first-order and second-order similarities were used
for comparison experiments, and the results are shown in Table 6 below.

Table 6. The experimental results of first-order similarity and second-order similarity.

Model LINE-1 LINE-2

Video
Recall 15.815764 15.963539

NDCG 8.065501 8.350085

Last.fm
Recall 28.224349 28.54347

NDCG 22.539373 22.51918

Automotive
Recall 10.2309778 10.5495

NDCG 5.477437 5.49125
Bolded numbers indicate the best results of the experiment.

As seen in Table 6, for both the video and the automotive datasets, the second-order
similarity model Recall values and NDCG values are slightly higher than the first-order
similarity model. On the Last.fm dataset, the Recall value of the second-order similarity
model is higher than that of the first-order similarity model. On the other hand, the NDCG
value is slightly lower than that of the first-order similarity model. By visualizing the two
evaluation metrics of each dataset in Figure 4, the difference between the final effects of the
two models is not too significant. However, the second-order similarity model converges
faster, as shown in Figure 4c,d on the Last.fm dataset. Based on the above analysis, the
model structure of second-order similarity was used in this experiment.
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The experimental results in Table 7 show that on the publicly available datasets for
videos, Last.fm, and automotives, this paper’s model, BiInfGCN, scored higher than the
three benchmark models in the evaluation metrics Recall@20 and NDCG@20, with scores at
least 1.932% higher in Recall@20 and at least 1.375% higher in NDCG@20. The experimental
results demonstrate the validity of the BiInfGCN model. For the BiInfGCN model proposed
in this paper, the node vector representation was randomly initialized, and the stochastic
gradient descent algorithm was used to optimize the model. Meanwhile, to ensure the
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stability and accuracy of the experimental results, ten runs were conducted for this model
experiment and the comparison experiment, and the average value was taken as the final
evaluation basis.

Table 7. Experimental results of different models under 3 public datasets.

Model LFM NGCF Light-GCN UltraGCN BiInfGCN Improve (%)

Video
Recall 12.692095 11.568 15.04462 14.4278 15.963539 6.1

NDCG 6.746628 5.566 7.742759 7.67025 8.350085 7.84

Last.fm
Recall 17.727586 24.518 27.9957 28.0023 28.54347 1.932

NDCG 12.780049 18.659 22.17957 22.2137 22.51918 1.375

Automotive
Recall 5.835464 7.9051 9.8707 9.8247 10.5495 6.88

NDCG 3.032367 5.0963 5.2786 5.1428 5.49125 4.03

Bolded numbers indicate the best results of the experiment.

5. Discussion

Based on the fact that most of the current recommendation algorithm datasets suffer
from the sparsity problem of too little user–item interaction data or a significant gap in
the length of interaction sequences, this paper proposes to dig deeper into the association
relationships between items by building an item–item network, and subsequently more
accurate extraction of user preference information for items, thus improving recommen-
dation accuracy. Secondly, for the “twin-tower” structural model proposed in this paper,
we introduced the difference between the positive sample scores of the left structure and
the positive sample scores of the right structure into the BPR loss function so that the left
and right models could effectively learn from each other in the process of backpropagation.
Finally, extensive comparison experiments were conducted on the public Amazon and
Last.fm datasets. The results show that the recommendation model proposed in this paper
helps improve the recommendation effect.

As can be seen from Table 3, the sparsity of the three datasets is ranked from high to
low as automotive, video, Last.fm. According to Table 7, we can see the most noticeable
improvement of recommendation effect in the automotive dataset and video dataset; the
improvement in Recall reached more than 6%, while the improvement in NDCG reached
4.03% and 7.84%. In contrast, the Recall and NDCG of the Last.fm dataset only improved
by 1.932% and 1.375%. This shows that the BiInfGCN model significantly improved the
more intensely sparse dataset, while the improvement for the weakly sparse dataset was
average. Therefore, it is well demonstrated that the BiInfGCN model can effectively solve
the problem of poor recommendation caused by data sparsity.

6. Conclusions

The BiInfGCN model effectively solves or alleviates the problem of unsatisfactory
recommendation results caused by data sparsity. For example, fewer shopping or interac-
tion records exist for users who have just registered on the e-commerce platform, and this
model can effectively make accurate recommendations for users. However, this model still
has room for improvement. According to the actual situation, there is a specific relationship
between user preferences and time. Users may be more interested in recently browsed
or interacted items; that is to say, recently interacted items can better reflect the user’s
preferences and thus be more meaningful for a recommendation. The user embedding
representation of the “right tower” of the BiInfGCN model uses the mean value of the
embedding representation of the interacting items. It does not differentiate between all
interacting items based on time nodes. Therefore, we will focus on this point for the
following study.
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