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Abstract: A quantum color image encryption algorithm based on geometric transformation and
intensity channel diffusion was designed. Firstly, a plaintext image was transformed into a quantum
state form using the quantum image representation based on HSI color space (QIRHSI) representation
as a carrier. Next, a pseudo-random sequence was generated using the generalized logistic map,
and the pixel positions permuted multiple two-point swap operations. Immediately afterward, the
intensity values were changed by an intensity bit-plane cross-swap and XOR, XNOR operations.
Finally, the intensity channel of the above image was diffused in combination with the pseudo-
confusion sequence as produced by the quantum logistic map to perform a diffusion operation on
the intensity bit-plane to obtain the ciphertext image. Numerical simulations and analyses show that
the designed algorithm is implementable and robust, especially in terms of outstanding performance
and less computational complexity than classical algorithms in terms of security perspective.

Keywords: quantum computation; quantum image encryption; intensity channel diffusion; geometric
transforms; chaotic systems; plane permutation

MSC: 81P94

1. Introduction

Given the outstanding advantages of entanglement, superposition, and parallelism,
quantum computing is widely used in all aspects of information science [1–4]. Quantum
information processing is a new cross-disciplinary discipline based on mathematics, physics,
and computing, and has been widely used to increase the speed of information processing
and enhance communication security [5–9]. Focusing on the capture, operation, and
recovery of classical images for various purposes using quantum computing techniques,
Quantum IMage Processing (QIMP) [10] has evolved into a hot research topic with huge
storage capacity and parallel processing capability [11–14].

The first hurdle facing QIMP is how to use qubits to represent classical images in
a way that can be recognized by quantum computers. Therefore, a number of quan-
tum image representations [15–30] have been proposed, including, Qubit Lattice [15],
Real Ket [16], Flexible Representation of Quantum Images (FRQI) [17], Novel Enhanced
Quantum Representation of digital images (NEQR) [18], Multi-Channel Representation
for Quantum Image (MCRQI) [19], QUAntum Log-Polar Image (QUALPI) [20], Flexible
Quantum Representation for Color Images (FQRCI) [21], Generalized Quantum Image
Representation (GQIR) [22], Quantum States for M Colors and N Coordinates of an image
(QSMC&QSNC) [23], Novel Quantum representation of Color digital Images (NCQI) [24],
Flexible Representation of Quantum Color Images (FRQCI) [25], Quantum Representation
of Multi-Wavelength images (QRMW) [26], Improved Flexible Representation of Quantum
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Images (IFRQI) [27], Quantum Representation model of Color digital Images (QRCI) [28],
and Fourier Transform Qubit Representation (FTQR) [29]. Inspired by the ideas of FRQI [17]
and NEQR [18], Quantum Image Representation based on the HSI color space (QIRHSI) [30]
was proposed. The model encodes hue (H) and saturation (S) through two angular vectors,
respectively, and a binary sequence of q bits encodes intensity (I), not only making the
number of qubits required to encode color information (10 bits) smaller but also easier to
perform various operations on intensity channel.

Along with the development of quantum image representation, a number of quantum
image encryption algorithms [31–44] have emerged. The proposed encryption algorithms
can usually be divided into spatial and frequency domains. A novel quantum gray-scale
image encryption algorithm based on one-dimensional quantum cellular automata was
proposed by Yang et al. [31]. Zhou et al. [32] first designed a quantum realization of the
generalized Arnold transform, based on which they proposed a quantum image encryption
algorithm based on the generalized Arnold transform and double random phase encoding.
A new quantum color image encryption algorithm based on hyper-chaotic systems was
proposed by Tan et al. [33]. Wang et al. [34] proposed a quantum image encryption
and decryption algorithm based on the frequency–spatial domain transform iteration
framework. Li et al. [35] designed a quantum encryption algorithm for NCQI images
based on multiple discrete chaotic systems. Li et al. [36] designed a quantum gray image
encryption and compression scheme based on the quantum cosine transform and five-
dimensional hyperchaotic system. Li et al. [37] proposed an encryption algorithm based
on NASS quantum images using the quantum geometric transform, phase-shift transform,
and quantum Haar wavelet packet transform. The NEQR image encryption and decryption
algorithm based on a discrete quantum walk on a circle was proposed by Abd-El-Atty
et al. [38]. Abd El-Latif et al. [39] first used the controlled alternate quantum walk (CAQW)
to create PRNG, and then proposed schemes for encryption of quantum color images by
controlled quantum controlled NOT gates from key sequences generated by the PRNG
mechanism. Jiang et al. [40] proposed a quantum image encryption scheme based on GQIR
representation and two-dimensional Henon mapping. Musanna and Kumar [41] proposed
an encryption algorithm for a quantum 3D Baker mapping to scramble the 3D quantum
representation of an image. Zhou et al. [42] proposed a new quantum image compression
and encryption algorithm with Daubechies quantum wavelet transform (DQWT) and
3D hyperchaotic Henon maps. Zhou et al. [43] proposed a quantum image encryption
algorithm for improved FRQI (FRQIM) images based on Arnold scrambling and QWT. Liu,
Xiao, and Liu et al. [44] proposed a novel three-level quantum image encryption algorithm
based on Arnold transform and logistic maps.

In order to improve the security of quantum encrypted images, this paper presents
a color image encryption algorithm based on the QIRHSI representation of geometric
transformation and intensity channel diffusion. The main contributions of the work in
this paper are highlighted as follows: (1) The application of two-point swapping and a
generalized logistic map to permutated pixel planes further improves security. (2) Cross-
swapping and XOR, XNOR operations are applied to the intensity bit-plane to change the
intensity values. (3) The quantum logistic map is used to diffuse the intensity to obtain the
desired encryption effect.

The remainder of this paper is organized as follows. Section 2 is devoted to the QIRHSI
representation model, geometric transform, generalized logistic map, and quantum logistic
map. The proposed quantum image encryption and decryption scheme are discussed
in Section 3. Section 4 provides numerical simulations and a security analysis. Finally,
conclusions and future research work are presented in Section 5.

2. Background Knowledge
2.1. QIRHSI Representation Model

QIRHSI [30] was developed from the FRQI [17] and NEQR [18] models, where FRQI
uses a qubit encoded by an angle parameter and NEQR uses an entangled sequence of
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qubits to store grayscale information. The QIRHSI model encodes hue (H) and saturation
(S) information with two angles; intensity (I) and position information are represented by
an entangled sequence of qubits, respectively. The QIRHSI color image is defined as

|I(θ)〉 = 1
2n

22n−1

∑
k=0
|Ck〉 ⊗ |k〉 =

1
2n

22n−1

∑
k=0
|Hk〉|Sk〉|Ik〉 ⊗ |k〉, (1)

wherein,
|Hk〉 = cos θhk|0〉+ sin θhk|1〉
|Sk〉 = cos θsk|0〉+ sin θsk|1〉
|Ik〉 =

∣∣∣C0
k C1

k . . . Cq−2
k Cq−1

k

〉 (2)

θhk, θsk ∈
[
0, 2−1π

]
, Cj

k ∈ {0, 1}
j = 0, 1, . . . , q− 1

k = 0, 1, . . . , 22n − 1
(3)

Equation (2) implies that the intensity Ik takes values in the range [0, 2q − 1]. Thus, for
an image of size 2n × 2n, the total number of qubits required for QIRHSI is 2n + q + 2. A
21 × 21 QIRHSI image and representation are presented in Figure 1.
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Figure 1. A 21 × 21 QIRHSI image and representation.

Obviously, it can be seen from Equation (2) that the 256 intensity values consist of
8 bits, so the intensity channel of the QIRHSI image can be decomposed into 8 bit planes,
as indicated in Figure 2.
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2.2. Quantum Geometric Transformations of QIRHSI

Reference [45] investigates quantum geometric transformations based on the QIRHSI
model, including two-point swapping, circular translation, flipping transformation, and
right-angle rotation.

Definition 1. The two-point swap operation GP acts on the two positions i, j of the QIRHSI image
as follows

GP(|I(θ)〉) =
1
2n

22n−1

∑
k=0
|Ck〉 ⊗ P(|k〉) = 1

2n

{
|Ci〉 ⊗ |j〉+

∣∣Cj
〉
⊗ |i〉+

22n−1

∑
k=0,k 6=i,j

|Ck〉 ⊗ |k〉
}

,
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of which P(|k〉) = |k〉, k 6= i, j and P(|i〉) = |j〉, P(|j〉) = |i〉. Therefore

GP = I⊗2 ⊗ I⊗q ⊗ P = I⊗2 ⊗ I⊗q ⊗
{
|i〉〈j|+ |j〉〈i|+

22n−1

∑
k=0,k 6=i,j

|k〉〈k|
}

.

The complexity of the elementary quantum gate needed for the two-point swapping
operator GP for the quantum color image QIRHSI of size 2n × 2n is O

(
n2) [45].

2.3. Generalized Logistic Map

Jafarizadeh and Behnia [46] both introduced a hierarchy of one-parameter families of
chaotic mappings with invariant measures and generated generalized logistic mappings by
appropriate coupling. Equation (4) defines the generalized logistic map as

wδ+1 =
4η2wδ(1− wδ)

1 + 4(η2 − 1)wδ(1− wδ)
, (4)

where w0 ∈ [0, 1] is the initial value and η is the parameter. When η ∈ [−4,−2] ∪ [2, 4], the
sequence computed by the generalized logistic map is pseudo-random, and Equation (4) is
in a chaotic state [47].

2.4. Quantum Logistic Map

Quantum logistic mappings have many of the excellent properties of traditional chaotic
systems, such as sensitivity to initial values. Quantum chaos mapping was proposed in [48],
which is defined as

xn+1 = γ
(

xn − |xn|2
)
− γyn

yn+1 = −yne−2β + e−βγ[(2− xn − xn)yn − xnzn − xnzn]
zn+1 = −zne−2β + e−βγ[2(1− xn)zn − 2xnyn − xn]

, (5)

where β and γ are parameters. xn and zn are the conjugate complexes of xn and zn,
respectively. When xn ∈ [0, 1], yn ∈ [0, 0.1], zn ∈ [0, 0.2], β ∈ [6 , +∞), and γ ∈ [0, 4],
Equation (5) is in a chaotic state, and the quantum logistic map generates a pseudo-random
sequence [49], which is used in the image encryption [50–52].

3. Quantum Color Image Encryption and Decryption

The novel quantum image encryption scheme constructed in this paper includes three
steps. Firstly, the location information in the spatial domain is permuted using a generalized
logistic map and two-point swap. Secondly, the intensity value is changed by the intensity
bit-plane cross-swap and XOR, XNOR operations. Finally, the intensity values are diffused
using a quantum logistic map to acquire the encrypted quantum image. Figure 3 presents
the flow chart of the quantum color image encryption and decryption algorithm.

Assuming that the original color image to be encrypted is represented as |I(θ)〉 (where
q equals 8), its QIRHSI state is:

|I(θ)〉 = 1
2n

22n−1
∑

k=0
|Hk〉|Sk〉|Ik〉 ⊗ |k〉

= 1
2n

22n−1
∑

k=0
(cos θhk|0〉+ sin θhk|1〉)(cos θsk|0〉+ sin θsk|1〉)

∣∣C0
k C1

k . . . C7
k
〉
⊗ |k〉

where θhk, θsk ∈
[
0, 2−1π

]
, Cl

k ∈ {0, 1}, l = 0, 1, . . . , 7, k = 0, 1, . . . , 22n − 1.
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3.1. Image Encryption Scheme

(1) Pixel plane permutation.

Step 1: We compute the integers with the help of i0 = f loor
(
mod

(
w0 × 226, 22n))+ 1,

where function f loor(·) denotes the downward rounding operation.
Step 2: Using the initial value w0 and parameter η iterating Equation (4), wl is obtained.

il = f loor
(
mod

(
wl × 226, 22n))+ 1 is then calculated.

Step 3: If il 6= ij for all j = 0, 1, . . . , l − 1, then store il ; otherwise, there exists a j such
that il = ij, and we use Equation (4) to compute the next wl+1 until we obtain all different
ij, j = 0, 1, . . . , 22n − 1, obtained by ij = f loor

(
mod

(
wj × 226, 22n))+ 1.

Step 4: The operation of swapping two adjacent pixel positions |i2m〉 and |i2m+1〉,
m = 0, 1, . . . , 22n−1 − 1 on the QIRHSI image is shown in Equation (6).

GPm = I⊗2 ⊗ I⊗8 ⊗ Pm

= I⊗2 ⊗ I⊗8 ⊗
{
|i2m〉〈i2m+1|+ |i2m+1〉〈i2m|+

22n−1
∑

k=0,k 6=i2m ,i2m+1

|k〉〈k|
}

(6)

The operation GPm is applied to the QIRHSI image to obtain

GPm(|I(θ)〉) = 1
2n GPm

{
22n−1

∑
k=0
|Ck〉 ⊗ |k〉

}

= 1
2n

{∣∣Ci2m

〉
⊗ |i2m+1〉+

∣∣Ci2m+1

〉
⊗ |i2m〉+

22n−1
∑

k=0,k 6=i2m ,i2m+1

|Ck〉 ⊗ |k〉
} (7)
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We use Equation (7) twice to obtain Equation (8).

GPl GPm(|I(θ)〉) = 1
2n GPl GPm

{
22n−1

∑
k=0
|Ck〉 ⊗ |k〉

}
= 1

2n

{∣∣Ci2m

〉
⊗ |i2m+1〉+

∣∣Ci2m+1

〉
⊗ |i2m〉+

∣∣Ci2l

〉
⊗ |i2l+1〉+

∣∣∣Ci2l+1

〉
⊗ |i2l〉

+
22n−1

∑
k=0,k 6=i2m ,i2m+1,i2l ,i2l+1

|Ck〉 ⊗ |k〉
} (8)

For a total pixel position of 22n, only 22n−1 swaps are needed to traverse all pixel
positions. From Equation (8), we can obtain

G(|I(θ)〉) =
22n−1−1

∏
k=0

GPk (|I(θ)〉)

= 1
2n

{∣∣Ci0
〉
⊗ |i1〉+

∣∣Ci1
〉
⊗ |i0〉+

∣∣Ci2
〉
⊗ |i3〉+

∣∣Ci3
〉
⊗ |i2〉+ . . .+∣∣∣Ci22n−4

〉
⊗
∣∣i22n−3

〉
+
∣∣∣Ci22n−3

〉
⊗
∣∣i22n−4

〉
+
∣∣∣Ci22n−2

〉
⊗
∣∣i22n−1

〉
+
∣∣∣Ci22n−1

〉
⊗
∣∣i22n−2

〉}
= 1

2n

22n−1−1
∑

k=0

{∣∣Ci2k

〉
⊗ |i2k+1〉+

∣∣∣Ci2k+1

〉
⊗ |i2k〉

}
= 1

2n

22n−1
∑

j=0

∣∣∣Cij

〉
⊗
∣∣∣ij′
〉

= 1
2n

22n−1
∑

j=0

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣Iij

〉
⊗
∣∣∣ij′
〉

= |I1(θ)〉

(9)

Among them,

j′ = j + (−1)j =

{
j + 1, j = 0, 2, 4, . . . , 22n − 2
j− 1, j = 1, 3, 5, . . . , 22n − 1

.

(2) Intensity bit-plane permutation.

The intensity bit-plane is intended to “tamper” with the intensity value at pixel
position k. The intensity bit-plane cross-swap operation and XOR, XNOR operation are
two ways in which the intensity bit-plane can be permuted. Quantum circuits for intensity
bit-plane cross-swap operations are given Figures 4 and 5, presenting quantum circuits for
intensity bit-plane XOR, XNOR operations. The intensity bit-plane cross-swap operation
will cause the intensity bit-planes to be misaligned. Applying the U operator shown in
Figure 5 to

∣∣∣Iij

〉
yields

∣∣∣I′ij

〉
.
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For an arbitrary pixel location ij′ , the operator U is defined to act on
∣∣∣Iij

〉
as follows.

U
∣∣∣Iij

〉
= U

∣∣∣C0
ij

C1
ij

. . . C7
ij

〉
=
∣∣∣C5

ij
C4

ij
C7

ij
C6

ij
C1

ij
C0

ij
C3

ij
C2

ij

〉
. (10)

Applying the operator V shown in Figure 5 to Equation (10) in the intensity bit-plane
XOR, XNOR operation gives

∣∣∣I′ij

〉
. We define the operator V as shown in Equation (11).

V
(

U
∣∣∣Iij

〉)
= V

∣∣∣C5
ij

C4
ij

C7
ij

C6
ij

C1
ij

C0
ij

C3
ij

C2
ij

〉
=
∣∣∣C′0ij

C′1ij
. . . C′7ij

〉
=
∣∣∣I′ij

〉
. (11)

It should be specified that the 8-layer bit-plane representation of
∣∣∣I′ij

〉
is as follows:∣∣∣C′0ij

〉
=
∣∣∣∼ C5

ij
⊕ C6

ij
⊕ C7

ij
⊕ C4

ij

〉
,
∣∣∣C′1ij

〉
=
∣∣∣∼ C4

ij
⊕ C1

ij
⊕ C6

ij
⊕ C7

ij

〉∣∣∣C′2ij

〉
=
∣∣∣∼ C7

ij
⊕ C0

ij
⊕ C1

ij
⊕ C6

ij

〉
,
∣∣∣C′3ij

〉
=
∣∣∣∼ C6

ij
⊕ C3

ij
⊕ C0

ij
⊕ C1

ij

〉∣∣∣C′4ij

〉
=
∣∣∣∼ C1

ij
⊕ C2

ij
⊕ C3

ij
⊕ C0

ij

〉
,
∣∣∣C′5ij

〉
=
∣∣∣∼ C0

ij
⊕ C′0ij

⊕ C2
ij
⊕ C3

ij

〉∣∣∣C′6ij

〉
=
∣∣∣∼ C3

ij
⊕ C′1ij

⊕ C′0ij
⊕ C2

ij

〉
,
∣∣∣C′7ij

〉
=
∣∣∣∼ C2

ij
⊕ C′2ij

⊕ C′1ij
⊕ C′0ij

〉
Therefore, the intensity bit-plane permutation operator F can be defined as Equation (12),

F =
(

I⊗2 ⊗V ⊗ I⊗2n
)
·
(

I⊗2 ⊗U ⊗ I⊗2n
)

, (12)

and acting the operator F on the image |I1(θ)〉 gives

F(|I1(θ)〉) = 1
2n F

{
22n−1

∑
j=0

∣∣∣Cij

〉
⊗
∣∣∣ij′
〉}

= 1
2n

22n−1
∑

j=0

∣∣∣Hij

〉∣∣∣Sij

〉
⊗V

(
U
∣∣∣Iij

〉)
⊗
∣∣∣ij′
〉

= 1
2n

22n−1
∑

j=0

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣C′0ij
C′1ij

. . . C′7ij

〉
⊗
∣∣∣ij′
〉

= 1
2n

22n−1
∑

j=0

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣I′ij

〉
⊗
∣∣∣ij′
〉

= |I2(θ)〉

(13)

(3) Intensity bit-plane chaotic diffusion

The intensity bit-plane chaotic diffusion operation is done with the help of the chaotic
sequence produced by the quantum logistic map given in Equation (5). Using the given ini-
tial values x0, y0, z0 and parameters β, γ, Equation (5) will produce three chaotic sequences.
Here, we only take the pseudo-random sequence

{
d(k)

∣∣k = 1, 2, . . . , N, N + 1, . . . , N + 22n }
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generated by x, discarding the first N values to avoid transient effects. Since the elements
in {d(k)} take values in the range [0, 1], the elements in {d(k)} are converted to integers by
Equation (14).

dk = mod
(

f loor
(

d(k)× 1016
)

, 256
)

. (14)

The quantum operations in the quantum color image intensity bit-plane chaotic dif-
fusion stage can divide into 4n XOR sub-operations to achieve XOR operations on the
intensity of each pixel. To implement the sub-operation, the sequence D = {d1, d2, . . . , d22n}
to control the NOT operation, where dk = d0

kd1
k . . . d7

k , dm
k ∈ {0, 1}, m = 0, 1, . . . , 7,

k = 0, 1, . . . , 22n − 1. The operation W is defined in Equation (15). If dm
k is equal to 1,

then Wk is a NOT operation; otherwise, it is an identity operation I.

Wk = W0
k W1

k . . . W7
k . (15)

Thus, the XOR operation of the intensity of the image |I2(θ)〉 can be realized by the
operation Wk.

Wk

∣∣∣I′ik〉 =
7
⊗

m=0

(
Wm

k

∣∣∣C′mik 〉) =
7
⊗

m=0

∣∣∣C′mik ⊕Wm
k

〉
=

7
⊗

m=0

∣∣∣C′′mik

〉
=
∣∣∣I ′′ik〉. (16)

Then, the operation Lk is constructed from the XOR operation Wk, as shown in Equa-
tion (16).

Lk = I⊗2 ⊗ I⊗8 ⊗
22n−1

∑
j=0,j 6=k

∣∣∣ij′
〉〈

ij′
∣∣∣+ I⊗2 ⊗Wk ⊗ |ik′〉〈ik′ |. (17)

The XOR operation on the intensity information can be implemented through the
sub-operation Lk. The quantum circuit for the chaotic diffusion of the intensity bit-plane is
seen in Figure 6.

Lk(|I2(θ)〉) = 1
2n Lk

{
22n−1

∑
j=0

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣I′ij

〉
⊗
∣∣∣ij′
〉}

= 1
2n

{
22n−1

∑
j=0,j 6=k

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣I′ij

〉
⊗
∣∣∣ij′
〉
+
∣∣Hik

〉∣∣Sik
〉
⊗Wk

∣∣∣C′0ik C′1ik . . . C′7ik

〉
⊗ |ik′〉

}

= 1
2n

{
22n−1

∑
j=0,j 6=k

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣I′ij

〉
⊗
∣∣∣ij′
〉
+
∣∣Hik

〉∣∣Sik
〉
⊗
∣∣∣C′′0ik

C
′′1
ik

. . . C
′′7
ik

〉
⊗ |ik′〉

}

= 1
2n

{
22n−1

∑
j=0,j 6=k

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣I′ij

〉
⊗
∣∣∣ij′
〉
+
∣∣Hik

〉∣∣Sik
〉∣∣∣I ′′ik〉⊗ |ik′〉

}
(18)
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When j = k, m, we apply it to the image |I2(θ)〉, and obtain

LmLk(|I2(θ)〉) = 1
2n LmLk

{
22n−1

∑
j=0

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣I′ij

〉
⊗
∣∣∣ij′
〉}

= 1
2n

{
22n−1

∑
j=0,j 6=k,m

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣C′0ij
C′1ij

. . . C′7ij

〉
⊗
∣∣∣ij′
〉
+

|Him〉|Sim〉
∣∣∣C′′0im C

′′1
im . . . C

′′7
im

〉
⊗ |im′〉+

∣∣Hik
〉∣∣Sik

〉∣∣∣C′′0ik
C
′′1
ik

. . . C
′′7
ik

〉
⊗ |ik′〉

}
= 1

2n

{
22n−1

∑
j=0,j 6=k,m

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣I′ij

〉
⊗
∣∣∣ij′
〉
+

|Him〉|Sim〉
∣∣∣I ′′im〉⊗ |im′〉+

∣∣Hik
〉∣∣Sik

〉∣∣∣I ′′ik〉⊗ |ik′〉
}

(19)
From Equation (18), it follows that

L(|I2(θ)〉) =
22n−1

∏
j=0

Lj(|I2(θ)〉)

= 1
2n

22n−1
∑

j=0

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣C′′0ij
C
′′1
ij

. . . C
′′7
ij

〉
⊗
∣∣∣ij′
〉

= 1
2n

22n−1
∑

j=0

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣I ′′ij

〉
⊗
∣∣∣ij′
〉

, |Ie(θ)〉

(20)

3.2. Image Decryption Scheme

The whole encryption process is reversible because the quantum operation satisfies
the unitary property. It is possible to recover the original image exactly. In the decryp-
tion scheme, there are three stages: inverse intensity bit-plane chaotic diffusion, inverse
intensity bit-plane permutation, and inverse pixel plane permutation. The details are
developed below.

(1) Inverse intensity bit-plane chaotic diffusion.

The image |I2(θ)〉 is obtained using the same pseudo-random sequence generated
during the chaotic diffusion of the intensity bit-plane. Applying the operator L−1 to the
ciphertext image |Ie(θ)〉 gives

L−1(|Ie(θ)〉) = 1
2n

22n−1
∏
j=0

L−1
j

{
22n−1

∑
j=0

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣I ′′ij

〉
⊗
∣∣∣ij′
〉}

= 1
2n

22n−1
∏
j=0

L−1
j

{
22n−1

∑
j=0

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣C′′0ij
C
′′1
ij

. . . C
′′7
ij

〉
⊗
∣∣∣ij′
〉}

= 1
2n

22n−1
∑

j=0

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣C′0ij
C′1ij

. . . C′7ij

〉
⊗
∣∣∣ij′
〉

= 1
2n

22n−1
∑

j=0

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣I′ij

〉
⊗
∣∣∣ij′
〉

= |I2(θ)〉

(2) Inverse intensity bit-plane permutation.
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The operator F−1 acts on the image |I2(θ)〉 as follows to give |I1(θ)〉.

F−1(|I2(θ)〉) = 1
2n F−1

{
22n−1

∑
j=0

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣I′ij

〉
⊗
∣∣∣ij′
〉}

= 1
2n

22n−1
∑

j=0
F−1

{∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣C′0ij
C′1ij

. . . C′7ij

〉
⊗
∣∣∣ij′
〉}

= 1
2n

22n−1
∑

j=0

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣C0
ij

C1
ij

. . . C7
ij

〉
⊗
∣∣∣ij′
〉

= 1
2n

22n−1
∑

j=0

∣∣∣Hij

〉∣∣∣Sij

〉∣∣∣Iij

〉
⊗
∣∣∣ij′
〉

= |I1(θ)〉

(3) Inverse pixel plane permutation

The original image |I(θ)〉 was obtained using the same pseudo-random sequence
generated during the pixel plane permutation. Performing the operation G−1 on the image
|I1(θ)〉 yields

G−1(|I1(θ)〉) =
22n−1−1

∏
j=0

1
2n G−1

Pj

{
22n−1−1

∑
k=0

(∣∣Ci2k

〉
⊗ |i2k+1〉+

∣∣∣Ci2k+1

〉
⊗ |i2k〉

)}
= 1

2n

22n−1
∑

k=0
|Ck〉 ⊗ |k〉

, |I(θ)〉

4. Numerical Simulation and Analysis

The current conditions do not allow the use of quantum computers to store and
manipulate quantum states, so we simulated the experiments on a conventional computer
with the help of MATLAB. In this paper, we used a laptop computer with Intel(R) Core(TM)
i5-3230M CPU @2.60 GHz, 4 GB RAM, and a 64-bit operating system with MATLAB
software 2018a installed for the simulation experiments. Airplane, Baboon, House, Peppers,
Sailboat, and Splash are six test images [53] of size 512 × 512, as seen in the first column
of Figure 7. The intensity channels of the test images are given in the second column of
Figure 7. Initial values w0 = 0.9969, x0 = 0.4634, y0 = 0.0453, z0 = 0.0021 and parameters
η = 3.999, β = 29, γ = 3.99, N = 513 are set. The third column of Figure 7 gives the
encrypted image. The encrypted image intensity is seen in the last column of Figure 7.

4.1. Statistical and Differential Analysis

The statistical analysis of encrypted images is an extremely important metric for
measuring encryption algorithms [54,55]. To clearly portray the strengths and weaknesses
of encryption algorithms, statistical and differential analyses of the designed algorithm
were performed, including histogram analysis, Shannon entropy analysis, correlation of
adjacent pixels, NPCR and UACI analyses, spectrum analysis, and MSE and PSNR analyses.

4.1.1. Histogram Analysis

The histogram provides a visual representation of how the image pixels are situated
in terms of their grayscale values. Figure 8A–F present the histograms of the intensity
channels of the plaintext image in order, and (a–f) show the histograms of the intensity
channels of the ciphertext image step by step. The results show that the histograms of the
intensity channels of the plaintext images are high and low, while the histograms of the
intensity channels of the ciphertext images are well-proportioned.
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scheme is resistant to histogram attacks. 
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Figure 7. Results of the six test images under the encryption algorithm. The first column shows the
plaintext images of airplane (a), baboon (e), house (i), peppers (m), sailboat (q) and splash (u). The
second column is the intensity channel of the first column. Column three presents the image after the
encryption algorithm. The intensity channels of the encrypted images are given in column four.
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To quantitatively analyze the histogram, Equation (21) is used to calculate the var(H)
and, thus, portray the uniformity of the intensity channels of the ciphertext image [56].

var(H) =
1

28 × 28

28−1

∑
i=0

28−1

∑
j=0

1
2
(
hi − hj

)2. (21)

where H is a vector of histogram values and the counts with pixel values i and j are
recorded as hi and hj, respectively. The var(H) of the intensity channels of the plaintext and
ciphertext images are presented in Table 1. Looking at Figure 8, notice that the histogram
distribution of the intensity channels of the plaintext images is non-uniform and the
histogram distribution of the intensity channels of the ciphertext images is uniform. The
quantitative results presented in Table 1 provide side-by-side proof that the constructed
scheme is resistant to histogram attacks.

Table 1. Histogram variance of the intensity of the six images.

Images Plaintext Images (I) Ciphertext Images (I)

Airplane 3.1592 × 106 971.3
Baboon 6.8068 × 105 1333.1
House 1.3026 × 106 902.4

Peppers 7.7600 × 105 1065.3
Sailboat 8.3552 × 105 1167.4
Splash 1.7304 × 106 1164.3

4.1.2. Shannon Entropy Analysis

The magnitude of image uncertainty features can be measured by entropy [57]. The
entropy H(s) is defined as

H(s) =
M

∑
i=0

p(si) log2(p(si))
−1,

whereby the probability of si is noted as p(si). The smaller the difference between the
H(s) of the encrypted image and 8 bits, the better the cryptosystem is at resisting “wild”
attacks. Table 2 lists the Shannon entropy of plaintext and ciphertext images. It is clear
that the encryption algorithm performs well with values larger than 7.999, which is closer
to the theoretical value of 8. Compared to [58], our test scheme is effective at resisting
entropy attacks.

Table 2. Shannon entropy of plaintext and ciphertext images.

Images Plaintext
I Channel

Ciphertext I
Channel

Reference
[58] R

Channel

Reference
[58] G

Channel

Reference
[58] B

Channel

Airplane 6.5866 7.9993 7.9474 7.9556 7.9692
Baboon 7.3899 7.9991 7.9882 7.9888 7.9912
House 7.2699 7.9994 - - -

Peppers 7.4320 7.9993 7.9795 7.9683 7.9640
Sailboat 7.4049 7.9992 - - -
Splash 7.1201 7.9992 - - -

4.1.3. Correlation between Adjacent Pixels

The role of encryption algorithms is to disrupt the correlation between pixels and,
thus, achieve the purpose of effectively protecting the image information. The closer the
absolute value of the correlation coefficient between adjacent pixels in a ciphertext image is
to zero, the more resistant it is to statistical attacks.
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To measure the correlation of the adjacent pixels in the horizontal direction (HD),
vertical direction (VD), and diagonal direction (DD) in plaintext and ciphertext images,
respectively, we perform the following operation to randomly select N = 10000 pairs of
adjacent two pixels (HD, VD, DD) from plaintext and ciphertext images, and calculate the
correlation coefficients with the help of Equation (22):

γxy =

N
∑

i=1

(
xi − N−1

N
∑

i=1
xi

)(
yi − N−1

N
∑

i=1
yi

)
√

N
∑

i=1

(
xi − N−1

N
∑

i=1
xi

)2

·

√
N
∑

i=1

(
yi − N−1

N
∑

i=1
yi

)2
, (22)

in which the correlation coefficient is denoted γxy, the two adjacent pixel values are denoted
xi and yi, and the chosen total number of pixel pairs is N. Observing Figure 9, the γxy of
the ciphertext image intensity channels is much weaker than that of the plaintext image
intensity channels. Table 3 presents the correlation values for the plaintext and ciphertext
image intensity channels HD, VD, and DD, which have values close to 1 and 0, respectively.
This confirms from the side that the proposed encryption algorithm can resist the correlation
attack. In addition, Table 4 presents a comparison between the correlation coefficients of
the proposed encryption algorithm and the algorithm in [58]. The results show that the
proposed algorithm is comparable to the algorithm in [58].

Table 3. Correlation coefficients of the intensity channels of plaintext and ciphertext images.

Images HD VD DD

Airplane (I) 0.9843 0.9856 0.9756
Enc Airplane (I) 0.0129 −0.0195 −0.0264

Baboon (I) 0.8638 0.9083 0.8439
Enc Baboon (I) −6.5926 × 10−4 −0.0016 −0.0060

House (I) 0.9685 0.9770 0.9547
Enc House (I) 0.0248 −0.0201 6.5579 × 10−4

Peppers (I) 0.9838 0.9820 0.9750
Enc Peppers (I) −0.0067 −0.0038 0.0063

Sailboat (I) 0.9727 0.9758 0.9613
Enc Sailboat (I) −0.0116 −0.0090 0.0078

Splash (I) 0.9889 0.9821 0.9779
Enc Splash (I) 0.0113 −0.0130 0.0021

Table 4. Correlation coefficients of ciphertext images obtained by different algorithms.

Images HD VD DD

Enc Airplane I channel 0.0129 −0.0195 −0.0264
Reference [58] R channel 0.0039 0.0032 −0.0076
Reference [58] G channel 0.0074 0.0010 0.0005
Reference [58] B channel −0.0057 −0.0021 0.0009

Enc Baboon I channel −6.5926 × 10−4 −0.0016 −0.0060
Reference [58] R channel 0.0063 0.0058 −0.0063
Reference [58] G channel 0.0004 0.0075 −0.0091
Reference [58] B channel −0.0046 0.0029 −0.0032

Enc Peppers I channel −0.0067 −0.0038 0.0063
Reference [58] R channel 0.0079 −0.0025 0.0087
Reference [58] G channel −0.0023 0.0180 −0.0014
Reference [58] B channel −0.0037 0.0205 −0.0011
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4.1.4. NPCR and UACI Analysis

The Number of Pixel Change Rate (NPCR) and Uniform Average Change Intensity
(UACI) can be used to measure the sensitivity of the encryption algorithm to plaintext
images. The NPCR and UACI are defined as follows.

NPCR =
1

2n × 2n

2n−1

∑
i=0

2n−1

∑
j=0

D(i, j)× 100%,

D(i, j) =
{

1, i f X(i, j) 6= Y(i, j)
0, i f X(i, j) = Y(i, j)

,

UACI =
1

2n × 2n

2n−1

∑
i=0

2n−1

∑
j=0

|X(i, j)−Y(i, j)|
28 − 1

× 100%,
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where X and Y denote the intensity channel of the ciphertext image and the intensity
channel of the plaintext image changed by one pixel, respectively. The value of the first
pixel in the intensity channel of the plaintext image is added by 1 and the corresponding
NPCR and UACI are calculated. The results are shown in Table 5. The NPCR of the intensity
channels of all six images hovered around 99.60%, so the designed encryption algorithm is
sensitive to slight variations of pixels in the intensity channels of the plaintext images.

Table 5. Results of NPCR and UACI tests.

Images NPCR(%) UACI(%)

Airplane (I) 99.6086 32.2671
Baboon (I) 99.5918 27.8789
House (I) 99.6128 30.1007

Peppers (I) 99.6101 28.7183
Sailboat (I) 99.6143 31.3058
Splash (I) 99.6078 29.1101

4.1.5. Spectrum Analysis

A spectrum analysis is also used as an important analytical tool to measure the
statistical properties of ciphertext images [38,59]. Figure 10 displays the spectrum of six
image intensities.
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The standard deviations [60] of six image intensity channels were calculated using the
function std(·), and the results are shown in Table 6. The standard deviation of all ciphertext
image intensity channels is close to 73.9, which in turn confirms the well-distributed pixels
in the ciphertext image intensity channels. Therefore, the encryption algorithm is highly
effective against spectrum attacks.

Table 6. Standard deviation of six image intensities.

Images Plaintext Images (I) Ciphertext Images (I)

Airplane 41.5005 73.9329
Baboon 43.0336 73.8667
House 49.8598 73.9198

Peppers 45.5237 73.9726
Sailboat 63.6911 73.8974
Splash 47.5419 73.9627

4.1.6. MSE and PSNR Analysis

The ideal ciphertext and plaintext images should have significant differences. We use
the mean square error (MSE) to measure the difference between ciphertext and plaintext
images, which is defined below:

MSE =
1

2n × 2n

2n−1

∑
i=0

2n−1

∑
j=0

(
fij − gij

)2, (23)

where fij and gij denote the intensity values of plaintext and ciphertext image pixels ij,
respectively. The quality of the intensity channel of the ciphertext image can be measured
by the peak signal-to-noise ratio (PSNR), as expressed in Equation (24):

PSNR = 10 log10

(
28 − 1√

MSE

)2

. (24)

Table 7 lists the MSE and PSNR values of the ciphertext images, which in turn corrob-
orate the better cryptographic quality of our proposed scheme.

Table 7. MSE and PSNR for plaintext and ciphertext images.

Images MSE I Channel PSNR I Channel PSNR [58]

Airplane 1.0140 × 104 8.0706 7.9741
Baboon 7.2915 × 103 9.5026 8.7691
House 8.7339 × 103 8.7187 -

Peppers 7.8308 × 103 9.1927 8.0732
Sailboat 9.5619 × 103 8.3458 -
Splash 8.6710 × 103 9.0615 -

4.2. Key Sensitivity Analysis

The higher the key sensitivity of the encryption algorithm, the more subtle key changes
can cause decryption to fail. In this paper, we took the intensity channel of a splash
image of size 29 × 29 as an example, and decrypted the intensity channel of the ciphertext
image by a slight change of the key; the decryption results are displayed in Figure 11.
Observing Figure 11, the ciphertext image cannot be restored to the plaintext image when
the decryption key undergoes a slight transformation. Therefore, any slight change in the
key will result in unsuccessful decryption.
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Figure 11. The decrypted image intensity channels using the correct and incorrect keys. (A) Correct
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4.3. Key Space Analysis

All keys in a cryptosystem constitute the key space. In the designed algorithm, the
total key consists of the initial value w0 of the generalized logistic map and parameters η,
initial values x0, y0, z0 of the quantum logistic map, and parameters β, γ. Since the keys
are independent of each other, the key space of the algorithm is

Key Space = 1015 × 1015 × 1015 × 1016 × 104 × 103 × 1015 = 1083 ≈ 2276 >> 2100.

Table 8 compares the key space of the constructed quantum color image encryption
algorithm with other quantum color image encryption algorithms and can prove that our
algorithm has a larger key space. In other words, the total key space can effectively resist
violent attacks.

Table 8. The key space of the algorithm in this paper and other related algorithms.

Algorithms Key Space

Proposed 1083

Khan et al. [58] (9!)2 · 1042

Tan et al. [33] 1060

Li et al. [35] 1042

Abd El-Latif et al. [39] 2359

4.4. Robustness Analysis

A common method for assessing the robustness of encryption algorithms against
occlusion attacks is to lose part of the data of the ciphertext image and then restore only the
original image from the remaining data. Figure 12 displays the encrypted images and the
decrypted images obtained under different occlusion scenarios. It is found that most of the
information can be recovered after decryption, which in turn indicates that the designed
scheme is resistant to occlusion attacks to a limited extent.
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All keys in a cryptosystem constitute the key space. In the designed algorithm, the 

total key consists of the initial value 0w  of the generalized logistic map and parameters 
η , initial values 0 0 0, ,x y z  of the quantum logistic map, and parameters ,β γ . Since the 
keys are independent of each other, the key space of the algorithm is 

15 15 15 16 4 3 15 83 276 100Key Space 10 10 10 10 10 10 10 10 2 2= × × × × × × = ≈ >> .  

Table 8 compares the key space of the constructed quantum color image encryption 
algorithm with other quantum color image encryption algorithms and can prove that our 
algorithm has a larger key space. In other words, the total key space can effectively resist 
violent attacks. 

Table 8. The key space of the algorithm in this paper and other related algorithms. 

Algorithms Key Space 
Proposed 8310  

Khan et al. [58] ( )2 429! 10⋅  

Tan et al. [33] 6010  
Li et al. [35] 4210  

Abd El-Latif et al. [39] 3592  

4.4. Robustness Analysis 
A common method for assessing the robustness of encryption algorithms against oc-

clusion attacks is to lose part of the data of the ciphertext image and then restore only the 
original image from the remaining data. Figure 12 displays the encrypted images and the 
decrypted images obtained under different occlusion scenarios. It is found that most of 
the information can be recovered after decryption, which in turn indicates that the de-
signed scheme is resistant to occlusion attacks to a limited extent. 
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Figure 12. Intensity channels of decrypted images for different occlusion cases. The (A–F) encrypted
Splash image is occluded, and the (a–f) corresponding to the decrypted image.

4.5. NIST SP 800-22 Analysis

To verify the randomization properties of the ciphertext image airplane intensity
channel (see Figure 7d), the randomness of the sequence is tested using the NIST SP 800-22
tool [39]. Each test generates a p-value in [0, 1], and only when the p-value is greater than
the threshold µ = 0 means that the test is passed. The test results in Table 9 show that our
scheme has successfully passed the NIST SP 800-22 test.
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Table 9. NIST SP 800-22 test results for the encrypted airplane image intensity channel.

Test Name P Enc Airplane I Channel Passed

Frequency 0.583692
√

Approximate Entropy 0.363808
√

Block Frequency 0.773887
√

Cumulative Sums Forward 0.658723
√

Cumulative Sums Reverse 0.657795
√

FFT 0.861586
√

Linear Complexity (block = 500) 0.328508
√

Longest Run 0.445217
√

Non Overlapping Template 0.468400
√

Overlapping Template 0.309034
√

Random Excursions (x = −1) 0.572277
√

Random Excursions Variant (x = 1) 0.679398
√

Rank 0.730751
√

Runs 0.472942
√

Serial 1 0.346267
√

Serial 2 0.481713
√

Universal 0.542511
√

4.6. Computational Complexity Analysis

To calculate the complexity of the quantum circuits in the encryption algorithm, CNOT
gates and NOT gates are used as the basic quantum gates. The designed image encryption
scheme consists of three steps, so the complexity of computing quantum gates depends
on the pixel plane permutation, intensity bit-plane permutation, and intensity bit-plane
chaos diffusion. In the pixel plane permutation stage, the complexity of the quantum gates
required for operation G is O

(
n2). In the intensity bit-plane permutation stage, operation

F uses eight swap gates, 24 CNOT gates, and 16 NOT gates, and one swap gate is used
with three controlled NOT gates; therefore, operation F needs 48 CNOT gates and 16 NOT
gates. In the intensity bit-plane chaos diffusion stage, in order to calculate the quantum
gates required for operation Lk, it is sufficient to consider only the quantum gates required
for sub-operation Wk. The intensity of each pixel in the image QIRHSI is encoded by eight
qubits and the operation Wm

k acts on each qubit. When dm
k = 1, Wm

k will be implemented
by 2n− CNOT. A n− CNOT gate has the same effect as 4n− 8 Toffoli gates. A Toffoli gate
can achieve the results of 6 CNOT gates [61,62]. Therefore, 384n− 384 CNOT gates are
required for quantum operation Lk, i.e., 384n− 384 CNOT gates are required to operate Lk.

In summary, the complexity of the quantum gates required for the encryption algo-
rithm is shown below.

O
(
n2)+ O(48 CNOT + 16 NOT + 384n− 384 CNOT)

= O
(
n2 + 384n− 320

)
≈ O

(
n2) (25)

Equation (25) implies that the designed quantum color image encryption method can
encrypt 2n × 2n QIRHSI images by using O

(
n2) elementary quantum gates when the value

of q is 8. Thus, all things being equal, quantum algorithms are more cost effective than
classical algorithms O

(
22n).

5. Discussions

The quantum color image encryption scheme based on geometric transformation and
intensity channel diffusion constructed in this paper has flexibility and high security, but
it also has some limitations. The encryption scheme includes pixel-plane permutation,
intensity bit-plane permutation, and intensity bit-plane chaos diffusion operations, but fails
to perform color diffusion operations on the hue and saturation channels. In the future,
more research should be conducted to make fuller use of the relevant properties of the hue
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and saturation channels to design a more perfect encryption scheme and achieve a better
encryption effect.

6. Conclusions

We propose a quantum color image encryption scheme based on geometric transfor-
mation and intensity channel diffusion. The scheme includes pixel plane permutation,
intensity bit-plane permutation, and intensity bit-plane chaotic diffusion, and the corre-
sponding quantum circuit is given. In order to make the pixel plane permutated “more
random”, the pixel plane permutation stage is combined with a generalized logistic map
for permuting, and the key space is increased by setting different initial values and parame-
ters. During the intensity bit-plane permutation stage, cross-swapping and XOR, XNOR
operations are used to tamper with the intensity values. In addition, the intensity bit-plane
chaotic diffusion stage is accomplished by interacting the chaotic sequence generated by
the quantum logistic mapping with the intensity bit-plane via the XOR operation.

After a series of tests and experimental analyses, the algorithm has high key sensitivity
and a large key space. In addition, various statistical and differential analyses covering
histogram, Shannon entropy, correlation coefficient, NPCR and UACI, spectrum analysis,
MSE, and PSNR are performed in this paper. The Shannon entropy is very close to the
ideal value of 8, the correlation coefficient is nearly 0, the value of NPCR is close to 99.60%,
the standard deviation is almost 73.9, the MSE is approximately 8704.85, and the PSNR is
close to 8.8153. Subsequently, it is verified that the algorithm has good robustness against
occlusion attacks. The bit sequence of the ciphertext image passed the NIST random
number detection.

The significance of this paper involves the combination of geometric transformation
and the intensity channel with two chaos mappings, which, on the one hand, can combine
geometric transformation (i.e., two-point swapping) with chaos mapping, and on the other
hand can sufficiently apply chaos mapping to intensity channel diffusion. The quantum
image encryption algorithm designed in this paper is not only resistant to various attacks,
but it also has portability and is a secure and reliable quantum image encryption scheme.

Future focus should be on a further combination of the quantum image representation
model QIRHSI with chaotic systems and its application in quantum cryptography or
medical images.
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