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Abstract: In the field of engineering, time-delay is a typical occurrence. In reality, the inner dynamics
of many industrial processes are impacted by delay or after-effect events. This paper discusses the
identification of continuous-time fractional order system with unknown time-delay using the bias
compensated least squares algorithm. The basic concept is to remove the imposed bias by including
a correction term into the least squares estimations. The suggested approach makes a significant
contribution by the estimation, iteratively, of fractional order system coefficients as well as the orders
and the time-delay using a nonlinear optimization algorithm. The main advantage of this method is
to provide a simple and powerful algorithm with good accuracy. The suggest method performances
are assessed through two numerical examples.
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1. Introduction

In recent years, the use of fractional calculus has become increasingly widespread. In
fact, fractional order systems have received great interest and relevance [1–6]. Examples
can be found in a variety of scientific fields: in mechanics, such as dynamic models that
govern the relaxation of water on a porous dyke [7], dielectric materials [8], modeling of
rotor skin effect in induction machines [9], thermal diffusive phenomena [10–13], traffic
in information networks [14], and muscle relaxation in biology systems [15]. The feature
of fractional order differentiation is that it supplies a precious instrument for modeling
real-world processes with long memory, interactions, and hereditary properties, in contrast
to integer order differentiation, where such properties are neglected [16]. For these reasons,
researchers are interested in modeling with fractional order differential equations [17,18].

The fractional order system identification is the foundation of the stability analysis
and controller design for fractional order systems. In the literature, various methodologies
for the identification of systems can be found using fractional calculus: Battagalia et al. [19]
have proposed a fractional model which produces the transient thermal behavior of a
system. The simplified refined instrumental variable (SRIV) method has been extended to
identify both differentiation orders and coefficients of the fractional system by Malti et al.
in [20]. In Ref. [21], a lithium-ion battery has been identified using the fractional state space
model. Recently, in 2015, the fractional closed loop system identification emerged as an
important research area. Thus, an electronic real system has been estimated in closed loop
experiments in [22]. The parametric identification of fractional order nonlinear systems has
been studied by Mani et al. as indicated in [23]. In Ref. [24] coefficients and fractional orders
based on block pulse functions (BPF) through a two-stage algorithm has been established.
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All the aforementioned work involved fractional order systems without time-delay.
On the other hand, most realistic physical processes contain a time-delay. Therefore, the
identification of fractional order systems with an unknown time-delay is still a challenging
problem due to difficulty in formulation caused. It plays an important role in the fractional
order signal processing, stability theories, and fractional order control methods [2,25].
However, at present, only a limited number of methods have been extended to identify the
fractional order time-delay systems. A brief review is presented in this paragraph. The
problem of identifying a fractional order transfer function with time-delay was initiated in
2010 by Peng et al. [2].

In this work, the optimal fractional derivative order and the time-delay of the transfer
function model are found using harmony search, while the coefficients are obtained by
solving linear least squares problems. In 2011, a frequency domain subspace identification
of commensurate fractional order input time-delay systems has been established in [26].
Subsequently, the system identification problem of a Multi-Input-Multi-Output (MIMO)
fractional order system with delay in state is studied in [27]. Moreover, an identification
algorithm which combines the subspace method and a simulated annealing algorithm
and is based on the instrumental variables method has been properly extended to handle
the identification of the fractional time-delay systems in [28]. Then, Ref. [29] establishes
parameter and delay estimation of fractional order models from step response. In this work,
supposing that the fractional orders were known, the authors have presented an integral
equation approach for fractional order system modeling. The block pulse functions (BPF)
integration operational matrix was combined with the interior point algorithm to estimate
the model parameters [30]. Then, utilizing polynomial modulating functions, Gao et al.
have proposed a system identification method with measurements noise compensation
for fractional order systems with a known delay [31]. Thereafter, a recursive identification
of a MIMO fractional order Hammerstein model with time-delay is presented in [32].
Afterwords, a novel approach of fractional order time-delay system modeling based on
Haar wavelet has been elaborated in [33]. In 2019, the time-domain identification of one
non-integer order plus time-delay models from step response measurements was developed
in [34]. More recently, coefficients and delay estimation of the general form of fractional
order systems using non-ideal step inputs is detailed in [35]. Lately, in 2022, sin et al. have
proposed a new method based on BPF to identify fractional order time-delay systems.
Firstly, the operational matrices of BPF for fractional integral and time-delay operators are
derived. Then, these operational matrices are applied to convert the fractional order system
with time-delay to an algebraic equation. Finally, the system’s parameters and the time-
delay are all simultaneously estimated through minimizing a quadric error function [36].
The major drawbacks of this work are that, firstly, the BPF are fixed values in their definition
interval, which means that an error is produced when their integration operational matrices
are used to convert a fractional order time-delay system into an algebraic equation. In
addition, the initial conditions are treated as extra parameters and identified simultaneously
with the system parameters, which complicates the identification procedure and can lead
to inaccurate results. More importantly, the outputs of engineering systems are often noisy,
which greatly affects the consistency of parameter identification.

According to the aforementioned investigations, the primary aspect of this research is
first to supply an efficient method to estimate the parameters, namely both the coefficients,
the differentiation orders and the time-delay. Firstly, when the differentiation orders
and the time-delay are assumed to be known, the fractional order bias compensated
least squares ( f bcls) method, is applied, which is well-known for its conceptual clarity
and efficacy in the disciplines of identification and control theory [37,38]. To start this
method, firstly, the parameters vector estimations are derived from the fractional order
least squares ( f ols) method mixed with the state variable filter approach. Secondly, in order
to establish estimation consistency, the bias created by least squares parameter estimations
is removed. Furthermore, a specific aspect of fractional differential equation modeling is
the determination of differentiation orders. This task is too tricky because the order of the
model is updated and the optimization problem is nonlinear when minimizing the output
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error criterion. Therefore, the f bcls method is extended to estimate both the parameters
and the fractional orders differentiation. Identification is even more difficult when working
with a time-delay system as the total number of parameters increases. To analyze the
statistical properties of our new algorithm, Monte Carlo simulation analysis is suggested.

The remainder of this paper is organized as follows. In Section 2, the fractional
order differentiation and the description of the fractional order system with time-delay are
introduced. The parameter identification technique based on the least squares method and
the bias correction procedure is proposed in Section 3. In Section 4, the effectiveness of the
proposed method is verified by numerical simulations. Finally, conclusions are drawn in
Section 5.

2. Preliminaries
2.1. Fractional Order Differentiation

Three commonly used definitions for the fractional order differentiation are Grünwald-
Letnikov (G-L), Riemann-Liouville (R-L), and Caputo definitions [39]. In this paper
Grünwald-Letnikov will be used to implement fractional operators:

Definition 1. The Grünwald-Letnikov derivative approximation of the order α of function f (t) is
described as

GLDα
0,t f (t) ' 1

hα

b t
h c

∑
k=0

(−1)k
(

α
k

)
f (t− kh), ∀t ∈ R∗+, (1)

where h is the sampling period and
(

α
k

)
is the Newton’s binomial generalized to fractional orders.

2.2. Fractional Order System with Time-Delay Description

For subsequent use, we introduce a brief description of Continuous-Time (CT) frac-
tional order system with time-delay. Let us consider a linear time invariant Single-Input-
Single-Ouput (SISO) time-delay system where the input u(t) and the output y(t) of the
plant are connected by the following differential equation

N

∑
n=0

anDαn y(t) =
M

∑
m=0

bmDβm u(t− τ), (2)

where an|n=0:N , bm|m=0:M are the linear constant coefficients; (αn, βm) ∈ R+ are the frac-
tional orders and τ denotes the time-delay.

If all of the differentiation orders αn and βm are multiple integers of the same order
υ, the differential equation is said to be with commensurate order. It may be phrased as
follows in this case

na

∑
i=0

aiDiυy(t) =
nb

∑
j=0

bjDjυu(t− τ), (3)

where υ denotes the commensurate order.
In order to describe the dynamical behavior of systems, the Laplace transform is often

used. Expression (4) gives the Laplace transform of the Equation (3) taking into account
zero initial conditions

G(s) =
B(s)
A(s)

=

nb
∑

j=0
bjsjυ

na
∑

i=0
aisiυ

e−τs. (4)
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2.3. Problem Formulation

The system considered in this paper is presented as follows:

G0 :
{
A0(p)χ(t) = B0(p)u(t− τ),

y(t) = χ(t) + e(t).
(5)

Without loss of generality, a0 is taken equal to 1. p = d
dt denotes the differentiation

operator. u(t− τ), χ(t) and y(t) are, respectively, the delayed input signal, the system
noise-free output signal, and the measured output signal. e(t) is an additive zero-mean
white Gaussian noise corrupting the output signal and assumed to be uncorrelated with
the input signal.

A0(p), B0(p), are polynomials in p of degree na, nb represented as:
A0(p) = 1 +

na
∑

i=1
ai piυ,

B0(p) =
nb
∑

j=0
bj pjυ.

(6)

Consider the parameterized model describing the system G′ presented by the following
equation

M : y(t) = −
na

∑
i=1

aiDiυy(t) +
nb

∑
j=0

bjDjυu(t− τ) + ε(t). (7)

where

ε(t) = e(t) +
na

∑
i=1

aiDiυe(t). (8)

The following linear regression form explains the behavior of the fractional system’s inputs
and outputs.

y(t) = ΦT(t)ρ + ε(t), (9)

where ρ represents the parameters vector and Φ is the regression vector, which are defined,
respectively, as follows

ρ =
[

a1, . . . , ana , b0, . . . , bnb

]
∈ R(na+nb+1), (10)

ΦT(t) =
[
−Dυy(t), . . . , −Dnaυy(t), u(t− τ), . . . , Dnbυu(t− τ)

]
. (11)

and ε(t) is the residual error.
It should be pointed out that the inevitable direct fractional differentiation of noisy output

is a major problem in the fractional system identification, which leads to inaccurate estimates.
Therefore, the use of a state variable filter (svf) proposed in [18] is absolutely necessary.

Suppose the svf specified by the subsequent equation

Lυ(p) = pυ

(
v

v + p

)η

, (12)

where υ is the fractional order differentiation, the order η is an integer chosen such that
η > naυ and v denotes the filter cut-off frequency.

The filtered input and output signals u f (t) and y f (t) are determined as follows:{
Djυu f (t) = Ljυ(p)u(t),
Diυy f (t) = Liυ(p)y(t).

(13)
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So, the regression vector containing the filtered signals is represented as follows

ΦT
f (t) =

[
−Dυy f (t), . . . , −Dnaυy f (t),

u f (t− τ), . . . , Dnbυu f (t− τ)
]
.

Using the filtered input and output signals, Equation (9) can be reformulated as

y f (t) = ΦT
f (t)ρ + ε f (t), (14)

where ε f (t) is expressed as follows

ε f (t) =
na

∑
i=0

aiLiυe(t). (15)

In reality, the purpose of this research is to identify the fractional system with an
unknown time-delay from Ns samples of the input and noisy output signals using the bias
compensated least squares approach combined with a nonlinear optimization algorithm.

3. Fractional Order System Identification

The system identification procedure involves constructing an appropriate model
from input/output data. System identification is not simply a method for constructing a
model from collected data. However, a solid experimental design and prior information, if
available, are required for its use. In frequency domain and time domain system identifica-
tion, a fractional model structure was adopted [18,40,41]. Literature predominantly uses
two groups of methodologies: equation error-based methods and output error-based meth-
ods. Numerous actual systems are capable of being represented using the fractional model:
Electrode-electrolyte polarization, diffusion systems: electro-chemistry, heat transfer, and
electromagnetism, nuclear reactor, charge estimation of lead acid battery, semi-infinite
thermal system, thermal diffusion in a wall [16,17].

In this section, the identification of fractional order systems with an unknown time-
delay is discussed. The main objective is to identify the coefficients as well as the fractional
differentiation orders and the time-delay. There are two significant steps during the
presented new identification algorithm:

Step 1: suppose that the commensurate order υ and time-delay τ are known, and
the fractional bias compensated least squares ( f bcls) method is proposed to initialize the
coefficients vector.

Step 2: the nonlinear optimization method based on the Levenberg-Marquardt al-
gorithm is introduced to estimate, namely, coefficients, the differentiation order, and the
time-delay.

3.1. Compensation for Measurement Noises Existing in the Output Signal

It is assumed that the fractional commensurate order υ and the time-delay τ are
already known, and our goal is to estimate just the fractional differential equation coeffi-
cients. Initially, this section describes the fractional order least squares ( f ols) approach for
identifying the fractional order systems with time-delay.

Let ε f (t) the filtered equation error defined as

ε f (t) = y f (t)−ΦT
f (t)ρ. (16)

Consider the ρ̂ f ols(Ns) as the estimated vector of ρ generated by minimizing the
2-norm of the below criterion function

VNs

(
ρ̂ f ols(Ns)

)
=

1
Ns

Ns−1

∑
k=1

ε2
f

(
tk, ρ̂ f ols

)
. (17)
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Thus, the f ols estimate of ρ is obtained by the following equation

ρ̂ f ols(Ns) =

(
Ns−1

∑
k=0

Φ f (tk)Φ
T
f (tk)

)−1(Ns−1

∑
k=0

Φ f (tk)y f (tk)

)
= R−1

Φ f Φ f
RΦ f ε f

, (18)

where the auto-covariance matrix RΦ f Φ f and the cross-covariance RΦ f y f are given by the
following expressions :

RΦ f Φ f =
Ns−1

∑
k=0

Φ f (tk)Φ
T
f (tk). (19)

RΦ f y f =
Ns−1

∑
k=0

Φ f (tk)y f (tk). (20)

Theorem 1. Consider the consistency property of the f ols estimator, i.e., the behavior estimates of
the parameters when the number of data Ns tends to infinity:

lim
Ns→∞

ρ̂ f ols(Ns) = ρ + R−1
Φ f Φ f

RΦ f ε f

= ρ + Bρ. (21)

Under the sufficiently exciting condition, the Gaussian noise e(t) is independent with the input
signal u(t), the estimation error can be expressed as

Bρ = R−1
Φ f Φ f

RΦ f ε f

= R−1
Φ f Φ f

ΞRy f ε f , (22)

where the matrix Ξ =

[
Ina

0nb

]
∈ R((na+nb+1))×(na).

Proof. Based on the Equation (14) the f ols estimator (18) can be rewritten as the following form

ρ̂ f ols(Ns) =

(
Ns−1

∑
k=0

Φ f (tk)Φ
T
f (tk)

)−1(Ns−1

∑
k=0

Φ f (tk)
(

ΦT
f (tk)ρ + ε f (tk)

))

= ρ +

(
Ns−1

∑
k=0

Φ f (tk)Φ
T
f (tk)

)−1(Ns−1

∑
k=0

Φ f (tk)
(

ε f (tk)
))

(23)

= ρ + R−1
Φ f Φ f

RΦ f ε f
. (24)

It is clear if the input signal u(t) can sufficiently excite the identified system, the matrix
RΦ f Φ f is invertible and the bias expression is given by the following equation

Bρ = R−1
Φ f Φ f

RΦ f ε f , (25)

where Bρ denotes the bias introduced by the f ols method.
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Note that also the input signal u(t) is uncorrelated with the noise e(t); thus, RΦ f ε f can
be rewritten as follows

RΦ f ε f
(Ns) =



−Dυy f (tk)ε f (t)
...

−Dnaυy f (tk)ε f (t)
0
...
0



=



1
...
1
0
...
0


Ry f ε f . (26)

Replacing Equation (26) in Equation (23), we get the following equation

ρ̂ f ols(Ns) = ρ + R−1
Φ f Φ f

ΞRy f ε f

= ρ + Bρ. (27)

Therefore, the bias expression is Bρ = R−1
Φ f Φ f

ΞRy f ε f .
Obviously, Ry f ε f is different to zero and, thus, the bias estimate Bρ is certainly non-zero.

Then, the f ols estimator is biased.

The second step in our numerical scheme consists in compensating the bias intro-
duced by the f ols method Bρ using the f bcls method whose principle is given by the
following expression

ρ̂ f bcls = ρ̂ f ols − Bρ

= ρ̂ f ols − R−1
Φ f Φ f

ΞRy f ε f . (28)

The primary challenge with this technique is that the f ols method can only sup-
ply a single equation to estimate the bias Bρ. Therefore, it is essential to find other
equations to solve this problem. Basically, the idea of the proposed method is to aug-
ment the nominator parameters by na − nb dimensions and the introduced parameters
bj= 0 j ={nb + 1, . . . , na + nb}. As a result, the augmented model, which is used to get an
unbiased estimator, can be represented as follows

y f (t) = −a1Dυy f (t)− ...− ana Dnaυy f (t)
+b0u f (t− τ) + b1Dυu f (t− τ) + ... + bna+nb D(na+nb)υu f (t− τ).

(29)

Moreover, the filtered output signal can be expressed as follows

y f (t) = Φ̄T
f (t)ρ̄ + ε f (t), (30)

and the augmented parameters vector is presented by

ρ̄ =
[

ρ b̄T ]
, (31)
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where the vector b̄T is defined as follows

b̄T =
[

bnb+1 . . . bnb+na

]
=

[
0 . . . 0

]
∈ Rna . (32)

The augmented regression vector Φ̄T
f (tk) is given by the following expression

Φ̄T
f (tk) =

[
−Dυy f (tk) . . . −Dnaυy f (tk) u f (tk − τ) . . . D(na+nb)υu f (tk − τ)

]
=

[
ΦT

f (tk) ūT
f (tk)

]
, (33)

where the vector ūT
f (t) is defined by

ūT
f (tk) =

[
D(nb+1)υu f (tk − τ) . . . D(na+nb)υu f (tk − τ)

]
. (34)

Hence, the augmented estimator f ols is computed according to

ˆ̄ρ f ols = ρ̄ + R−1
Φ̄ f Φ̄ f

Ξ̄Ry f ε f , (35)

where the matrix Ξ̄ is given by the following equation

Ξ̄ =

[
Ina

0(na+nb)

]
∈ R((2na+nb+1))×(na). (36)

Let the augmented auto-covariance matrix decompose RΦ̄ f Φ̄ f
as follows

RΦ̄ f Φ̄ f
=

[
RΦ̄ f Φ̄ f

RΦ f ū f

RΦ f ū f Rū f ū f

]
, (37)

and its inverse R−1
Φ̄ f Φ̄ f

can be expressed as

R−1
Φ̄ f Φ̄ f

=

 R−1
Φ f Φ f

+ β −R−1
Φ f Φ f

RΦ f ū f X−1

−X−1RΦ f ū f
T R−1

Φ f Φ f
X−1

. (38)

where X = Rū f ū f − RT
Φ f ū f

R−1
Φ f Φ f

RΦ f ū f and β = R−1
Φ f Φ f

RΦ f ū f X−1RT
Φ f ū f

R−1
Φ f Φ f

. Replacing

Equation (38) in Equation (35), we get

ˆ̄b = −X−1RT
Φ f ū f

R−1
Φ f Φ f

R
Φ f y f

+ X−1Rū f y f

= −X−1
(

RT
Φ f ū f

ρ̂ f ols(Ns)− Rū f y f

)
. (39)

As b̄ = 0 and using Equations (31), (32) and (38), it is obvious that

ˆ̄b = b̄− X−1RT
Φ f ū f

R−1
Φ f Φ f

ΞRy f ε f

= −X−1RT
Φ f ū f

R−1
Φ f Φ f

ΞRy f ε f
.

(40)

In addition, equalize the two expressions (39) and (40) results

− X−1RT
Φ f ū f

R−1
Φ f Φ f

ΞRy f ε f
= −X−1

(
RT

Φ f ū f
ρ̂ f ols(Ns)− Rū f y f

)
. (41)
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It is obvious to obtain the expression of Ry f ε f using the Equation (41)

Ry f ε f =
(

RT
Φ f ū f

R−1
Φ f Φ f

Ξ
)−1(

RT
Φ f ū f

ρ̂ f ols(Ns)− Rū f y f

)
. (42)

Now, it is easy to calculate the bias estimation Bρ by substituting Equation (42) in the
Equation (22)

B̂ρ = R−1
Φ f Φ f

Ξ
(

RT
Φ f ū f

R−1
Φ f Φ f

Ξ
)−1(

RT
Φ f ū f

ρ̂ f ols(Ns)− Rū f y f

)
. (43)

Consequently, the f bcls estimator is obtained by the following equation

ρ̂ f bcls(Ns) = ρ̂ f ols(Ns)− Bρ.

= ρ f ols(Ns)− R−1
Φ f Φ f

Ξ
(

RT
Φ f ū f

R−1
Φ f Φ f

Ξ
)−1

×
(

RT
Φ f ū f

ρ̂ f ols(Ns)− Rū f y f

)
. (44)

Convergence Analysis

In this section, we show that the f bcls algorithm is strongly consistent. The main key
to establishing the consistency of the f bcls estimator is to demonstrate that the estimation
of Ry f ε f is consistent.

Theorem 2. Consider the proposed f bcls estimator for fractional order system identification with
time-delay. We may conclude that there is a coherent convergence of the parameters

lim
Ns→∞

ρ̂ f bcls(Ns) = ρ. (45)

Proof. Recalling that

lim
Ns→∞

Ry f ε f (Ns) =

(
RT

Φ f ū f
R−1

Φ f Φ f
Ξ
)−1
×(

RT
Φ f ū f

ρ̂ f ols(Ns)− Rū f y f

))
.

(46)

replacing ρ̂ f ols by its expression given by the Equation (27), we get

lim
Ns→∞

R̂y f ε f (Ns) =

(
RT

Φ f ū f
R−1

Φ f Φ f
Ξ
)−1
×(

RT
Φ f ū f

(
ρ + R−1

Φ f Φ f
ΞRy f ε f

)
− Rū f y f

)
.

(47)

so,

lim
Ns→∞

R̂y f ε f (Ns) =

(
RT

Φ f ū f
R−1

Φ f Φ f
Ξ
)−1

RT
Φ f ū f

ρ +

(
RT

Φ f ū f
R−1

Φ f Φ f
Ξ
)−1
×(

RT
Φ f ū f

R−1
Φ̄ f Φ̄ f

Ξ
)

Ry f ε f
−
(

RT
Φ f ū f

R−1
Φ f Φ f

Ξ
)−1

Rū f y f

= Ry f ε f
+

(
RT

Φ f ū f
R−1

Φ f Φ f
Ξ
)−1(

RT
Φ f ū f

ρ− Rū f y f

)
.

(48)

Since the independence between the noise e(t) and the input signal u(t), the multiplication
both side of the Equation (14) by ū f (t) implies that

ū f (t)y f (t) = ū f (t)ΦT
f ρ + ū f (t)ε f (t)

= ū f (t)ΦT
f ρ. (49)
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Consequently,
Rū f y f = RΦ f ū f (t)ρ. (50)

Combining the Equations (50) and (48) and letting Ns tends to infinity, we obtain

lim
Ns→∞

R̂y f ε f (Ns) = Ry f ε f . (51)

According to Equation (51), the estimation of Ry f ε f is asymptotically consistent.
It then follows immediately from (27), (28), and (51). Thus, the result is shown on the

following equation

lim
Ns→∞

ρ̂ f bcls(Ns) = lim
Ns→∞

ρ̂ f ols(Ns)− lim
Ns→∞

R−1
Φ̄ f Φ̄ f

(Ns)ΞRy f ε f
(Ns)

=

(
ρ + R−1

Φ̄ f Φ̄ f
ΞRy f ε f

)
− R−1

Φ̄ f Φ̄ f
ΞRy f ε f

(52)

= ρ. (53)

Thus, we have proved the consistency result.

3.2. Output Error Method for Fractional Order System with Unknown Time-Delay (FOSTD-OE)

In essence, the application of the f bcls technique is confined to situations where the
fractional orders are expected to be known beforehand. This part describes a strategy
for extending the identification method introduced in the preceding section to a more
realistic scenario in which fractional orders differentiation are assumed to be unknown
and calculated, along with coefficients. It is based on the combination of the f bcls method
for coefficient estimation and a nonlinear algorithm for optimization of the differentiation
order and the time-delay.

First of all, set ρ the parameter vector as follows

ρ =
[

a1, . . . , an, b0, . . . , bm, υ, τ
]
. (54)

The challenge of identifying parameters is represented as a functional minimization.
Therefore, the primary objective of this approach is to reduce the residual error relative
to υ and τ. In addition, the comparable order is updated repeatedly using the Levenberg-
Marquardt algorithm during the computing phase. The quadratic criterion is, therefore,
defined as follows

J(ρ̂) =
1
2
‖ε(t)‖2, (55)

where ε(t) is the output error defined by

ε(t) = y(t)− ŷ(t) (56)

This iterative algorithm calculates the fractional vector parameters ρiter+1 at the iteration
iter + 1. The proposed algorithm is named the Fractional System with Time-Delay Output
Error (FSTD-OE) algorithm and is described in the Algorithm 1.
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Algorithm 1 FSTD-OE algorithm

Data
{

u f (t), y f (t)
∣∣∣ t = 1, . . . , Ns

}
, Maximum number of iteration.

1: Initialization
• iter = 0
• Initialize υ0 and τ0.
• ρ̂0

f bcls : initial model parameter vector obtained by the f bcls method.
• Calculate J(ρ̂)(0).
• Initialize λ, which is a positive scalar.

2: repeat
• Levenberg-Marquardt algorithm estimates ρ̂ iteratively:

ρ̂iter+1 = ρ̂iter −
{
[H+ λI]−1 ∂J

∂ρ̂ f bcls

}∣∣∣∣∣
ρ̂iter

(57)



∂J
∂ρ̂

=
K

∑
k=1

∂ε(tk)

∂ρ̂
ε(tk) : Gradient

H '
K

∑
k=1

∂ε(tk)
T

∂ρ̂

∂ε(tk)

∂ρ̂
: pseudo−Hessian

∂ε(tk)

∂ρ̂
: Output sensitivity function

λ : a tunning parameter

(58)

3: until
∣∣∣∣ ρ̂iter − ρ̂iter−1

ρ̂iter−1

∣∣∣∣ < δ or a maximum number of iterations is reached.

4: return ρ̂ and the covariance matrix P̂ρ.

According to [42] and by supposing that the FSTD-OE algorithm converges (ρ̂ → ρ),
hence, the estimation of the covariance matrix P̂ρ can be calculated by the following equation:

P̂ρ = σ̂2H−1. (59)

where σ̂2 is, as previously, the empirical estimate of noise variance andH is the approximate
Hessian given by the Equation (58).

4. Numerical Example

The purpose of this section is to demonstrate the performance of the developed
identification approach through two numerical examples.

To evaluate the identification result, we define the mean squared error (MSE) and the
best fit rate (BFR), respectively, as follows

MSE =
1

Ns

Ns

∑
k=1

(y(k)− ŷ(k)), (60)

where ŷ is the simulated response of the estimated model.

BFR =max

1−

√√√√√√√√
Nd
∑

k=1
(y(tk)−ŷ(tk))

2

Nd
∑

k=1
(y(tk)−ȳ)2

, 0

.100%, (61)

where ȳ is the mean of the output signal.
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4.1. Example 1

Considering the following fractional order system with an unknown time-delay

y(t) = −a1Dυy(t) + b0u(t− τ), (62)

where the coefficients a1 = 0.50, b0 = 1.00, the fractional commensurate order υ = 0.7 and
the time-delay τ = 0.25 s.

Figure 1 depicts the input signal u(t) as a pseudo random binary sequence (PRBS)
with uniform distribution between [−1 1]. This example’s sample period is set at h = 0.019
s. Ns = 2631 data points represents the sample size. The output observation-corrupting
noise term e(t) is a white Gaussian noise with a fixed signal-to-noise (SNRy) ratio, which
is generated by

SNRy = 10 log

Ns
∑

k=1
(y− ȳ)2

Ns
∑

k=1
(e(k))2

. (63)
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Figure 1. The excitation signal.

The parameters vector of the fractional model is given by

ρ =
[

a1 b0 υ τ
]
. (64)

Figure 2 shows the Bode diagram of the system defined by (62).
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Figure 2. The bode diagrams of the system (62).

The svf parameters are chosen respectively as: v = 2 rad/s and η = 1.
The acquired findings are described in Tables 1 and 2, followed by a graphical repre-

sentation in Figures 3–5. It is evident from the values of the mean and standard deviation
shown in Table 1 and the estimation error recapitulated in Table 2 that the FOSTD-OE
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algorithm produces unbiased parameters estimates with low MSE and standard devi-
ation values. Therefore, the proposed algorithm gives accurate estimations in a noisy
environment even if the value of the SNR is low (10 [dB]).

Table 1. Mean and standard deviation of the fractional model parameter estimates obtained by the
FSTD-OE algorithm (nmc = 200 runs, SNRy = 20 and 10 [dB]): example 1.

SNR = 20 [dB] SNR = 10 [dB]

True ρ̂ ρ̂

a1 0.500 0.5001± 0.0031 0.501± 0.0101
b0 1.000 1.0002± 0.0035 1.0008± 0.0118
υ 0.700 0.6999± 0.0027 0.7009± 0.0086
τ 0.250 0.2503± 0.0018 0.2508± 0.0021

Table 2. BFR and MSE obtained by the FSTD-OE algorithm (nmc = 200 runs, SNRy = 20,
and 10 [dB]): example 1.

SNR = 20 [dB] SNR = 10 [dB]

Method MSE(%) BFR (%) MSE (%) BFR (%)

FSTD-OE 0.0429 99.00 0.16 98.85

The error between the true output y(t) and ŷ(t) is plotted in Figure 3.
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(a) SNR = 20 dB
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(b) SNR = 10 dB

Figure 3. The output error of example 1.

The true output y(t) and the simulated output sequences ŷ(t) of the estimated models
are plotted in Figure 4.

Figure 5 presents histograms that display the distribution of estimates and provide
meaningful information. It is clear that these distributions are roughly symmetric and
centered on the real values, which confirms the high accuracy of this approach.

This concludes that the proposed approach offers a good tradeoff in terms of consis-
tency, variance, and estimation error.
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Figure 4. The true and the estimated output signals of example 1.
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Figure 5. The histograms of the process estimates of example 1 with the FOSTD-OE algorithm
SNRy = 20 and 10 [dB] nmc = 200 runs.
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4.2. Example 2

In this example, the input−output representation to be identified is given by the
following equation

y(t) = −a1Dυy(t)− a2D2υy(t) + b0u(t− τ), (65)

where a1 = 1.2, a2 = 1.00, b0 = 1.00, υ = 0.5 and τ = 0.7 s.
The input signal used in this example is depicted in Figure 6. The sampling period

h = 0.0181 s and Ns = 2209 data.
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Figure 6. The excitation signal of the system (65).

The Bode diagram of the system defined by the Equation (65) is plotted in Figure 7.
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Figure 7. The bode diagrams of the system (65).

The svf parameters are selected respectively as: v = 1 rad/s and η = 2.
The parameter identification results are recorded in Tables 3 and 4 which summarize

the mean, standard deviation, MSE and BFR of the 200 Monte Carlo parameter estimations
for fractional models. Despite the noise in the output, it can be seen from the identification
results that the proposed method effectively estimates the system parameters
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Table 3. Mean and standard deviation of the fractional model parameter estimates obtained by the
FSTD-OE algorithm (nmc = 200 runs, SNRy = 20 and 10 [dB]): example 2.

SNR = 20 [dB] SNR = 10 [dB]

a1 = 1.200 1.1969± 0.0603 1.1849± 0.099
a2 = 1.000 0.9997± 0.0271 1.0101± 0.0947
b0 = 1.000 0.9990± 0.0153 0.9982± 0.0470
υ = 0.500 0.5001± 0.0038 0.4993± 0.0135
τ = 0.700 0.6992± 0.0018 0.6986± 0.0030

Table 4. BFR and MSE obtained by the FSTD-OE algorithm (nmc = 200 runs, SNRy = 20
and 10 [dB]): example 2.

SNR = 20 [dB] SNR = 10 [dB]

Method MSE(%) BFR (%) MSE (%) BFR (%)

FSTD−OE 0.340 98.92 0.540 96.02

The error between the true output y(t) and ŷ(t) is plotted in Figure 8.
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Figure 8. The output error of example 2.

The true output y(t) and the simulated output sequences ŷ(t) of the estimated model
are plotted for the two levels of noise in Figure 9.
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Figure 9. The true and the estimated output signals of example 2.

It is clearly shown that the proposed method has a small identification error, and that
the identification result is closer to the true one.

The statistical properties of the algorithm, plotted in Figure 10, are noticeable: the
average values are very close to the real parameters, with very low standard deviations
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and MSE and with BFR approximately equal to one. Moreover, the distribution of the
parameters is symmetric for the two levels of the SNR. The identification results confirm
that the proposed method is able to identify the model coefficients, orders, and time delay.

The accuracy and precision of the suggested approach to detect both coefficients,
fractional order differentiation, and time-delay in the situation of a noisy output signal and
even with a large number of parameters (Case of example 2:5 parameters) are validated by
simulation results based on two numerical cases. This indicates that the proposed method
is suitable for the identification of fractional order time-delay systems.
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Figure 10. The histograms of the process estimates of example 2 with the FSTD-OE algorithm
SNRy = 20 [dB] nmc = 200 runs.

5. Conclusions

This paper studies the identification of the fractional order system with time-delay.
It is known that the obtained coefficient estimations of the fractional order differential
equation using the least squares algorithm are biased. So, the bias correction procedure is
applied in this work in order to compensate this introduced bias and to obtain accurate
results. This procedure is combined with a nonlinear algorithm to identify iteratively the
coefficients as well as the fractional order differentiation and the time-delay. The main
features of the proposed method are: its consistency, its implementation simplicity, and
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its faster convergence. Two numerical examples were used to illustrate the validity of the
proposed guidelines and technique.

In an effort to approach more realistic assumptions, it is planned to expand this work
to the scenario when the input signal is influenced by additive noise.
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