
S1 of S6

Supplementary Materials: Introduction of Algorithmic
Complexity and Coding Theory
Hoover H. F. Yin, Ka Hei Ng, Shi Kin Ma, Harry W. H. Wong and Hugo Wai Leung Mak

This supplementary materials provide a brief introduction of algorithmic complexity
and coding theory for readers who are not familiar with these topics.

1. Introduction of Algorithmic Complexity

It takes time for a computer to conduct every operation, e.g., addition, multiplication,
etc. An algorithm is a finite sequence of operations (which can be directly computed by the
computer) to solve a problem or perform a computation. The non-constant parameters
of the problem are the inputs of the algorithm, where the input size is measured in bits
(the number of binary symbols). The number of operations needed to solve a problem
by an algorithm can be expressed as a function of the input size. That is, this function
can be regarded as a measure of the time required in solving the problem, with the use
of such algorithm. When the input size is significantly large, the running time, which
is dominated by the dominant term of the function, to solve the same problem by two
different algorithms can be significantly differed.

In this appendix, we roughly describe the expression of time complexity in big O
notation, and the complexity classes P, NP, NP-complete and NP-hard. For a more rigorous
discussion, we refer readers to computer science textbooks such as [31,32].

1.1. Complexity Class P

To describe the efficiency of an algorithm, big O notation is used in the context of
algorithmic complexity. Let n be the input size, f (n) be the number of operations needed
to solve the problem by the algorithm, and g(n) be the comparison function for estimating
f (n). We write

f (n) = O(g(n))

if there exist positive integers c and n0 such that f (n) ≤ cg(n) for all n ≥ n0. Then,
we say that the algorithm solves the problem in O(g(n)) time. For example, let f (n) =
5n3− 4n2 + 3n− 2. As n is a positive integer, we have f (n) ≤ 5n3 + 4n3 + 3n3 + 2n3 = 14n3.
Therefore, we know that f (n) = O(n3), where the dominant term n3 is extracted by the
big O notation.

If the algorithm runs inO(g(n)) time, where g(n) is a finite-degree polynomial expres-
sion in n, then we say that the algorithm is a polynomial-time algorithm. Roughly speaking,
the complexity class P consists of all decision problems, i.e., yes-no questions, which can
be solved by some polynomial-time algorithms. A more rigorous definition involves the
definition of deterministic Turing machine, which is out of the scope of our discussion in
this paper. As a rule of thumb, the problems in P are considered as “efficiently solvable
problems”.

1.2. Complexity Class NP

The computer that we considered in the above context can only run operations one by
one. That is, when we want to compute multiple branches, we can only compute them in a
step-wise manner. A figurative example is that we are solving a maze - at a certain point,
we need to determine whether turn left or turn right. In principle, we will need to try both
ways to ensure that we can find an exit. That is, we have to come back to this position and
try the other way later. Yet, if we have a multicore processor, we can try both ways at the
same time in different cores. Suppose the processor has infinitely many cores, and we can
solve a problem in polynomial time (in parallel), then we say that the problem can be solved
by an algorithm in non-deterministic polynomial time. Roughly speaking, the complexity



S2 of S6

class NP is the collection of all decision problems that can be solved in non-deterministic
polynomial time. Similarly, a more rigorous definition involves the non-deterministic
Turing machine, but in this context, we omit such an in-depth discussion.

We can regard NP as a class of decision problems that can be verified in polynomial
time. For example, suppose we obtain a path in a maze, and we want to verify whether
this path could lead to the desired exit. What we need to do is to follow this path and
see if we can really reach the exit. This can be done in polynomial time, because this path
was generated by one of the cores in polynomial time when solving the maze. Note that P
is a subclass of NP, because we can verify the answer in polynomial time by solving the
problem as well.

1.3. Complexity Class NP-Complete

In mathematics, we usually transform a problem to another one that we know how
to solve. This is known as reduction. When we reduce a problem A to a problem B, it
means that problem B covers all the instances of problem A. If the reduction can be done
in polynomial time, we say that A is reduced to B in polynomial time. In other words, if
we can efficiently solve problem B, then we can also efficiently solve problem A with a
polynomial-time reduction. However, the converse is not always true. Although it is called
“reduction”, we are actually transforming a problem to a “harder” problem.

The hardest type of problems in NP is called NP-complete problems. That is, any
problem in NP can be reduced to an NP-complete problem in polynomial time. If we
can solve any of the NP-complete problems in polynomial time, then we can solve all NP
problems in polynomial time, which implies that P equals NP. However, the existence of
such a polynomial-time algorithm is still unknown. Proving or disproving the existence
of such algorithm can actually solve the “P versus NP problem”, which is one of the
Millennium Prize Problems in Mathematics [33]. The answer of this problem has crucial
consequences and implications in different branches of mathematics and computer science
[34,35]. Throughout recent decades, it is widely believed that no such algorithm exists
[36–38], but it is yet to be proven.

1.4. Complexity Class NP-Hard

A problem that is reduced from an NP-complete problem in polynomial time is called
an NP-hard problem. In other words, an NP-hard problem is no “easier” than any NP-
complete problems. Note that an NP-hard problem may not be in NP, i.e., we may not
be able to verify the answer in polynomial time. If an NP-hard problem is in NP, then
the problem is NP-complete, and this is actually a standard technique to prove the NP-
completeness of a particular problem. A convention is that the class “NP-hard” is not
restricted to decision problems. If the decision problem (e.g., does a solution exist?) is
NP-complete, then its associated function problem, i.e., finding an instance of the solution,
is NP-hard. This is because if we obtain a solution, we can also answer the decision problem,
thus the function problem is no easier than NP-complete.

2. Crash Course on Coding Theory

We focus on describing the background of coding theory that is related to this paper.
As a convention, when we say coding theory, we refer to channel coding theory, which is
a study of error correction. We refer the readers to textbooks such as [39,40] for a more
comprehensive discussion of coding theory.

2.1. Error-Correcting Codes

One of the main goals in coding theory is to send a message (represented by a sequence
of symbols) from a source to a destination via a “noisy” medium that could introduce
“errors” to the message. A common form of “errors” is to modify some symbols in the
message. To ensure that the destination can accurately and effectively recover the message,
we need to add redundant information to the message to form a codeword of an error-



S3 of S6

correcting code. Due to some practical considerations, such as the way to distinguish
different codewords, most error-correcting codes, e.g., [41,52], have assumed that every
codeword is of the same length. Every possible sequence that has the same length as a
codeword is called a word.

The overall picture is that the source transforms a message m into a codeword c, then
transmits c to the destination. The destination receives a word ĉ, which may be different
from c due to errors. Then, the destination tries to guess the correct codeword c, then
transforms it back to the message. It is easy to visualize that some constraints must be
imposed on the number of errors, otherwise there is no clue to guess the correct codeword
in a systematic and scientific manner.

In convention, we use Hamming distance as the metric to measure the number of errors.

Definition 1 (Hamming Distance). The Hamming distance between two sequences of the same
length is defined as the number of symbols at which the corresponding values are different.

Let n be the length of any word, and q ≥ 2 be the size of the alphabet used by the
words. That is, there are totally qn possible words. For each possible codeword c, let Ballr(c)
be the set that contains every word w such that the Hamming distance between w and c is
at most r. In other words, Ballr(c) is the closed Hamming ball of radius r centered at c. By
direct counting, the volume of Ballr(c) is

Vol(Ballr(c)) :=
r

∑
i=0

(
n
i

)
(q− 1)i.

Definition 2 (Distance of Codes). The distance of an error-correcting code, denoted by d, is
defined as the minimum Hamming distance between any pair of distinct codewords.

As long as the Hamming balls Ballr(c) of all possible codewords c do not overlap,
when we receive a word w, we say that the correct codeword is c if w ∈ Ballr(c). To
maximize the number of correctable words, we maximize the radius of the balls as long as
they do not overlap with each other. The distance of the code, d, is either 2r + 1 or 2r + 2.
In other words, such code can guarantee to detect at most d− 1 errors, and correct at most
b d−1

2 c errors.
The aforementioned decoding approach is called the minimum distance decoding, or

the nearest neighbor decoding, which finds the closest codeword by modifying the fewest
number of symbols in the received word. A binary symmetric channel (BSC) is a channel
model such that every symbol (0 or 1) has the same (crossover) probability to be modified
into another symbol. For a BSC with a crossover probability of less than 0.5, the minimum
distance decoding process is equivalent to the maximum likelihood decoding process, which
aims at finding a codeword that has the maximum likelihood.

Definition 3 (Covering Radius). The covering radius R is the smallest r such that all words
are covered by the union of all codeword-centered Hamming balls of radius r.

In other words, any words must have a codeword within R Hamming distance. The
covering radius is applied in coding for write-once memories [42], football pool betting
[43], etc.

2.2. Hamming Bound & Singleton Bound

Given q, n and d, the maximal number of codewords among all possible codes is
denoted by Aq(n, d), and the code having Aq(n, d) codewords is called an optimal code. The
method to find the exact value of Aq(n, d) for arbitrary q, n and d remains to be an open
problem, and is known as the main coding theory problem. Nevertheless, many bounds of
Aq(n, d) have already been established. Some of the bounds are rexpressed in the form
of an inequality, e.g., the Plotkin bound [44] and the Gilbert-Varshamov bound [45,46],



S4 of S6

while some of them are expressed in the form of an optimization problem, e.g., the linear
programming bound [47] and the semidefinite programming bound [48].

One of the earliest bounds is the Hamming bound [52]. The idea is straightforward:
The total volume of all non-overlapping Hamming balls cannot excess the number of all
possible words. We can ensure the non-overlapping constraint when the radius of every
Hamming ball centered at a codeword is no larger than b d−1

2 c. Mathematically speaking,

Aq(n, d) ≤ qn

∑
b d−1

2 c
i=0 (n

i )(q− 1)i
. (Hamming Bound)

A code such that the equality case of the Hamming bound holds is called a perfect code.
That is, in a perfect code, every word is covered by one and only one codeword-centered
Hamming ball of radius b d−1

2 c, thus every word can be corrected as a unique codeword.
However, Tietäväinen [49] has proven the non-existence of perfect codes over a prime-
power alphabet except trivial perfect codes (the code distance is either 1 or n), Hamming
codes (widely used in error correction code (ECC) memory), and Golay codes (used by the
NASA’s Voyager [50]).

Another bound that we used in this paper is called the Singleton bound [26]. The
idea of this bound is that, if we delete the first (d− 1) symbols of every codeword, i.e., the
length of every codeword is now (n− d + 1), then each pair of altered codewords is still
separated by a Hamming distance of at least 1. The number of altered codewords, which is
the same as the number of original codewords, is at most qn−d+1. Mathematically speaking,

Aq(n, d) ≤ qn−d+1. (Singleton Bound)

A class of codes known as the maximum distance separable (MDS) codes achieves the equality
of the Singleton bound. Reed-Solomon code [41] is a type of MDS code that has been
applied in many modern technologies, including CDs, QR codes, etc.

2.3. Linear Codes

A linear code is a vector space. Linear codes are of interests in the community of coding
theory, as we can apply a wide range of tools in linear algebra. However, this also means
that we have restricted the alphabet size to a prime power, as the vector space is defined
over a finite field. Further, the number of codewords, i.e., the size of the vector space, must
be a power of q. Given q, n and d, the maximal number of codewords among all possible
linear codes is denoted by Bq(n, d), and the linear code having Bq(n, d) codewords is called
an optimal linear code. Note that Bq(n, d) must satisfy

Bq(n, d) ≤ qblogq Aq(n,d)c.

Definition 4 (Hamming Weight). The Hamming weight of a codeword c, denoted by wt(c), is
the Hamming distance between c and the zero vector, i.e., the number of non-zero symbols in c. The
Hamming weight of a code is the minimal Hamming weight among all the non-zero codewords of
this code.

Let u and v be two codewords such that the distance in between is d. As a vector
space, the linear combination of codewords is also a codeword. Therefore, u− v is also a
codeword. Note that wt(u− v) = d. In other words, the distance of a linear code equals to
the Hamming weight of the code. Despite the simplified criteria, finding the Hamming
weight of a code is an NP-hard problem [16].

In the following, we express the message m and the codeword c as row vectors. To
encode m, we calculate c = mG, where G is called the generator matrix of the linear code.
The generator matrix is associated with a parity check matrix H such that GHᵀ gives a zero
matrix. In standard form, G is written as a block matrix (I | P) for some matrix P and



S5 of S6

identity matrix I. Thus, we can write H = (−Pᵀ | I). Note that the identity matrices in G
and H may be of different dimensions.

Although encoding is easy, decoding is generally an NP-hard problem [7,8], unless we
can exploit some special structures of the code, e.g., as described in [51]. For linear codes,
we can extract some information regarding the error pattern. In particular, let w be the
received word. We can express w := c + e for some error e from a codeword c. Recall that
GHᵀ gives a zero matrix, therefore we have

wHᵀ = (c + e)Hᵀ = mGHᵀ + eHᵀ = eHᵀ,

which is known as the syndrome of w, and such syndrome identifies the error pattern. In
other words, if we pre-compute the syndromes for all possible correctable error patterns,
i.e., the syndromes of all e with wt(e) ≤ b d−1

2 c, then we have a lookup table of size

∑
b d−1

2 c
i=0 (n

i )(q− 1)i for mapping a syndrome to e. We can correct a word w by w− e, where e
is obtained by looking up the syndrome of w from the table, i.e., wHᵀ. This approach is
known as syndrome decoding.

Further, let C be the abelian group of all codewords under vector addition. As C
is a normal subgroup of Fn

q under vector addition, we have the quotient group Fn
q /C =

{C + e : e ∈ Fn
q}. Every entry in the quotient group is a coset.

Definition 5 (Coset Leader). The word that has the minimal Hamming weight in each coset is
the coset leader of this coset.

That is, the coset leader is the minimum-weight error pattern that leads or maps a
codeword to a word in this coset. We can view the decoding procedure of a word in the
coset as subtracting the given word by the coset leader of the coset.

At last, we describe the shortening technique, which is a propagation rules of modifying
linear codes. Shortening means that for any linear code of codeword length `, dimension
k (i.e., the number of codewords is qk) and code distance d, there exists a linear code of
codeword length `− x, dimension k− x and code distance d for any 1 ≤ x ≤ k− 1. This can
be achieved by removing some columns of the parity check matrix. The proof of shortening
can be found in standard textbooks on coding theory such as [40].

2.4. Repetition Codes, Hamming Codes, and Extended Hamming Codes

For simplicity, we only consider binary field in this sub-section.
Repetition code is one of the simplest codes that repeats a single bit to be encoded into a

length n codeword. That is, there are totally two codewords in this code. To decode a word,
we look for the symbol (0 or 1) that dominates the bit string. If there are more 0s than 1s,
then we decode to the bit 0, and vice versa. The distance of the code is n, therefore every
repetition code achieves the equality of the Singleton bound, thus being an optimal code.

Hamming code [52] is a perfect code, i.e., achieves the equality of the Hamming bound,
thus it is an optimal code. Let r ≥ 2. A (binary) Hamming code is a linear code with
codeword length 2r − 1 and code distance 3, with a parity check matrix whose columns
consist of all the non-zero vectors of Fr

2. The dimension of the code (i.e., vector space) is
2r − r− 1, hence the number of codewords is 22r−r−1. As the distance is 3, the Hamming
code is exactly equivalent to a single error correcting code. An example of the parity check
matrix for the case of r = 3 is 1 0 0 0 1 1 1

0 1 0 1 1 0 1
0 0 1 1 0 1 1

.

It is remarked that the order of the columns are not fixed. However, if the columns are
arranged in the order of increasing binary numbers, i.e., the j-th column is the binary
representation of the number j, then the syndrome can directly indicate the location of the



S6 of S6

error. More precisely, if the syndrome is the binary representation of the number j, then the
error is located at the j-th bit.

Extended (binary) Hamming code is a Hamming code by appending a parity check bit.
If H is the parity check matrix of a Hamming code, then the corresponding extended
Hamming code has a parity check matrix

0

H
...
0

1 · · · 1 1

.

This code is a linear code of codeword length 2r and code distance 4, thus it can correct
exactly one error. As the extra bit is only a parity bit, the number of codewords remains the
same as the Hamming code. As a result, the dimension of the code is 2r − r− 1, and the
number of codewords is 22r−r−1.

Abbreviations
The following abbreviations are used in this supplementary materials:

P polynomial time
NP non-deterministic polynomial time
BSC binary symmetric channel
ECC error correction code / error-correcting code
MDS maximum distance separable


	Appendix 1
	Appendix 1.1
	Appendix 1.2
	Appendix 1.3
	Appendix 1.4

	Appendix 2
	Appendix 2.1
	Appendix 2.2
	Appendix 2.3
	Appendix 2.4


