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Abstract: In this paper, we propose models that significantly expand the scope of practical applica-
tions, namely, queueing systems with various nodes for processing heterogeneous data that require
arbitrary resource capacities for their service. When a customer arrives in the system, the customer
typeis randomly selected according to a set of probabilities. Then the customer goes to the server of
the corresponding device type, where its service is performed during a random time period with
a distribution function depending on the type of customer. Moreover, each customer requires a
random amount of resources, of which the distribution function also depends on the customer type,
but is independent of its service time. The aim of this research was to develop a heterogeneous
queueing resource system with an unlimited number of servers and an arrival process in the form of
a Markov-modulated Poisson process or stationary renewal process, and with requests for a random
number of heterogeneous resources. We have performed analysis under conditions of growing
intensity of the arrival process. Here we formulate the theorems and prove that under high-load
conditions, the joint asymptotic probability distribution of the n-dimensional process of the total
amounts of the occupied resources in the system is a multidimensional Gaussian distribution with
parameters that are dependent on the type of arrival process. As a result of numerical and simulation
experiments, conclusions are drawn on the limits of the applicability of the obtained asymptotic
results. The dependence of the convergence of experimental results on the type of distribution of
the system parameters (including the distributions of the service time and of the customer capacity)
are also studied. The results of the approximations may be applied to estimating the optimal total
number of resources for a system with a limited amount of resources.

Keywords: resource heterogeneous queue; asymptotic analysis; the growing intensity of the arrival
process; multidimensional Gaussian distribution

MSC: 60G07; 60G10; 60G15

1. Introduction

The development of modern info-communication systems and networks has provided
access to many different services for use by subscribers. In modern conditions, users are
not only people; rather, a variety of devices can also be connected to the network. At the
same time, the rapid growth of the generated load can cause overloads in some parts of the
network, which lead to the deterioration of quality. There are more and more opportunities
for the users’ behavior to influence the formation of incoming streams, the frequency of
calls, the length of messages, their number, etc. Many multimedia and service applications
on subscriber devices can automatically generate such requests without any restrictions.
Overflows begin to appear on sections of the network, which leads to the failure of network
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segments, leading to the complete failure of its operation. Identifying and investigating the
effect of aspects of behavior on the quality of the network allows one to plan and prepare
a network in advance in such a way as to reduce the loss of calls. The greatest area of
interest, from a practical perspective, is the consideration of extreme working conditions,
for example, overload conditions, when the state of the network differs from the normal
(planned) state.

The theoretical and the applied foundations of research in the field of data transmission
and processing in info-communication systems are based mainly on probability theory,
random process theory, queueing theory, and teletraffic theory. The initial research in
the field of computer networks, presented in the works of L. Kleinrock, G. P. Basharin,
M. Schwartz, and V. M. Vishnevsky, as well as in the works of A. K. Erlang, was based
on simplified models of information systems with the Poisson arrival process and an
exponential distribution of the packets’ service times. The monographs of the Russian and
foreign scientists G. P. Basharin, V. M. Vishnevsky, A. N. Dudin, A. Melikov, K. E. Samouylov,
E. Gelenbe, W. Whitt, G. Pujolle, D. Gross, C. Harris, L. Kleinrock, J. W. Roberts, and
M. Schneps-Schneppe give a detailed overview of modern applications of the queueing
models in the field of telecommunications, modern computer networks, and information
systems [1–4].

The analysis of modern communication systems is complicated by the fact that requests
for data transfers are not homogeneous. The servicing of such applications may differ
both in terms of the time of service and the volume of additional resources provided. To
reduce data transmission losses, it is necessary to take into account the random amount of
requested resources and service characteristics. Identifying these aspects and analyzing
their impact on systems allows networks to be optimized to reduce losses.

In classical queueing system (QSs), the devices and waiting places (buffer, orbit) play
the role of discrete resources which are necessary for maintenance. In real-world systems,
in addition to the devices and the wait locations, customers may require various resources
(both discrete and continuous) to be occupied while waiting for a service to start, or during
a service, or while the requirement is in the system. In this case, the terms “resource QS”
or “QS with a random volume of requirements” are used. The random volume of the
resource occupied by the customer for the entire duration of their stay in the system can be
either discrete or continuous. Resources are related to the most commonly used amount
of memory. At the same time, in wireless networks, such as long-term evolution (4G LTE)
networks or New Radio (5G NR), network bandwidth is understood as a resource, which
is notoriously limited and must be distributed when the user receives a call and released at
the end of the session by the device or a separate system. E. L. Romm and V. V. Skitovich
first formulated a generalization of the Erlang problem, in which each arriving customer
has some information quality, which the authors call the amount of the requirement [5].
Later, O. Tikhonenko, M. Kawecka, W. M. Kempa, E. Morozov, K. E. Samouylov made a
significant contribution to the development of research methods on resource QSs [6–12].

In their works, the authors considered a QS with a random volume of requirements,
as a class of systems with some capacity, which is dependent upon or independent of the
volume of requirements and the time of service. Resource QSs with limited resources have
been used in some works as models of the next generation of wireless communication
networks [13–15].

Despite the large list of applied problems that can be solved using queuing models
with an arrival process involving a random amount of requirements, to date, accurate
analytical results regarding the study of the total volume of requirements in the system
exist only for the case of the Poisson arrival process and classical QSs. However, the results
of studies of real flows indicate the presence of a correlation and a large variance between
the moments of receipt of requests, which has led to the use of models of correlated flows.
Therefore, the queueing theory with correlated flows developed by G. P. Basharin, M. Neuts,
D. Lucantoni [16,17] has found wide application in the study of telecommunication systems.
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However, it should be noted that for resource systems with non-Poisson arrival
processes (non-Markov systems), there is currently no universal approach to the study
and most of the results are obtained by means of simulations, and analytical results have
been obtained only for some special cases. Therefore, in this article we propose to use
asymptotic methods for the study of a QS developed at the Tomsk scientific school of
applied probabilistic analysis under the guidance of A. A. Nazarov [18]. Such methods
make it possible to obtain asymptotic expressions acceptable for practice regarding the
desired characteristics of the system in cases where their analytical analysis is impossible.

The first results for a QS with an infinite number of servers were obtained in the
middle of the last century in [19–22]. The main distinguishing feature of systems with an
unlimited number of servers is the lack of queues and the dropping of service applications.
Markovian QSs with an unlimited number of servicing devices were investigated in the
first half of the 20th century, when the most of the problems of queueing theory were
solved for models with the stationary Poisson arrival process and an exponential time for
servicing applications. It was shown that the number of occupied devices in the M/M/∞
system is distributed according to Poisson’s law. For systems with an arbitrary function
of the distribution of the service time, B. A. Sevostyanov solved the Erlang problem for
M/G/N systems in 1958 and showed that as N → ∞ the distribution converges to the
Poisson distribution. A similar result was obtained in 1969 by L. Takacs [23], who showed
that in stationary mode, the number of customers in the M/G/∞ system has a Poisson
distribution, which depends on the average speed of receipt of applications and the average
time of call service.

In the work of D. Eaglehart [24], a diffusion approximation of the number of occupied
devices for the M/M/∞ model with identical independent servers was obtained under the
condition of a high incoming flow intensity (λ→ ∞) and fixed service time characteristics
µ, and it was shown that in stationary mode, it is distributed according to the normal law
with parameter λ

µ . Similar results were first obtained for non-exponential service time by
A. A. Borovkov, and later in the papers of other scientists [25–27].

As a rule, when studying multi-server systems, it is usually assumed that the servers
are identical and that arriving requests can occupy an arbitrary server to be serviced. QSs
with heterogeneous servers are much less frequently studied, which makes them a more
interesting object of research [28–34]. Nontrivial optimization problems often arise related to
the assignment of servers to arriving orders depending on the ratio of the service rates of
the facilities and the costs of their use.

Non-trivial optimization problems also often arise related to the assignment of servers
to incoming calls depending on the ratio of the service rates of the funds and the costs
of their use. For example, in the theory of teletraffic, the concepts of “fast” and “slow”
communication channels are used. In this case, a situation is possible when a copy is
created for the incoming request, which is transmitted via another communication channel.
In this case, as a mathematical model, one can use a QS with parallel service [35].

In this paper, we propose models that significantly expand the scope of practical appli-
cations, namely, a QS with various nodes for processing heterogeneous data (information)
that require arbitrary resource capacities for their service. When a customer arrives in
the system, its customer type is randomly selected according to the set of probabilities pi.
Then the customer goes to a server of the corresponding device type, where its service is
performed during a random time interval with a distribution function depending on the
type of customer. Moreover, each customer requires a random amount of resources, of
which the distribution function also depends on its type, but is independent of its service
time. In practice, the total amount of resources is limited, which leads to additional losses of
customers. In this study, we make the assumption that resources are unlimited. In contrast
to the previously known models, the models under consideration will make it possible to
estimate the required volumes of reserved resources, for example, for Internet of Things
traffic, and to develop a resource allocation strategy with competing traffic.
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The object of our study is heterogeneous queueing resource systems with an unlimited
number of servers and an arrival process in the form of a Markov-modulated Poisson
process or a stationary renewal process, and requests for a random amount of heterogeneous
resources. Our research goal was to obtain a random process that describes the total
volumes of occupied resource capacities.

To study a random process that describes the total volumes of occupied resource
capacities, dynamic probabilities are introduced, the aim of which is to consider only those
requests with their own volumes that have not completed their service.

Analysis is performed under the condition of the growing intensity of the arrival
process. We formulate theorems stating that under high-load conditions the total resource
amount has a multidimensional Gaussian distribution. This paper is a continuation and
generalization of previously obtained results [32–34]. Different distribution laws of the
random variables which characterize the amount of the occupied resource and the time
required to serve the customers are considered. It is shown for the first time that the type
of distribution of the main parameters of a heterogeneous-resource QS does not affect the
range of applicability of the approximation.

The considered mathematical model is described in Section 2. In Section 4, the method
of asymptotic analysis is proposed and applied to this study. The numerical analysis is
presented in Section 5. It includes a comparison of asymptotic and simulated distributions,
as well as numerical examples for various values of the model parameters. Problems
and discussions about the applicability of the obtained approximations are presented in
the conclusion.

2. Mathematical Model of Resource Queues with Different Types of MMPP and
Renewal Arrivals

Consider a queueing system with n different customers types and assume that each
customer requests a random amount of resources (see Figure 1).

Figure 1. Resource queueing system with n different customer types.

Customers arrive in the system according to a stochastic process (a Markov-modulated
Poisson process (MMPP) or a renewal process). The MMPP process is given by the underly-
ing Markov chain k(t) with a finite number of states K, the set of non-negative intensities λk.
Note that k(t) is determined by the infinitesimal generator matrix Q = |qνk|, ν, k = 1, . . . , K.
When the Markov chain k(t) stays in the state k, k = 1, . . . , K, the customers arrive accord-
ing to the stationary Poisson process with intensity λk, k = 1, . . . , K. The renewal arrival
process is characterized by the distribution function A(z) of the intervals between the
arrivals’ moments.

At the time of occurrence of any event in the arrival process, only a single customer
arrives in the system and its type is randomly selected according to the set of probabilities
pi (i = 1, . . . , n). Then the customer goes to the appropriate device type, where its service
is performed during a random time interval ξi > 0 with the distribution function Bi(x) =
P{ξi < x} (i = 1, . . . , n) according to the type of the customer. Moreover, depending on
its type, each customer requires a random amount of resources νi > 0, i = 1, . . . , n, drawn
from the distribution function Gi(y) = P{νi < y} (i = 1, . . . , n), which is independent
of its service time. Let us denote by Vi(t) the total amount of occupied resources of the
i-th type (i = 1, . . . , n) at time t. The goal is to find the stationary probability distribution
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of the n-dimensional random process {V1(t), V2(t), . . . , Vn(t)}. However, this process is
non-Markovian; therefore, we will use the dynamic screening method for the investigation
of this problem [32,36]. Let the system be empty at moment t0, and let us fix any moment
T in the future. The set of dynamic probabilities Si(t) = pi(1− Bi(T − t)) (i = 1, . . . , n)
indicates that a customer arriving at time t has the i -type and it has not finished servicing
at the moment T for t0 ≤ t ≤ T. We will consider such customers screened.

For resource queueing systems, we denote the amount of resources allocated by the
original request that arrived at time instant t and screened by Wi(t) and (i = 1, . . . , n). Then
the probability distribution of the amount of resources allocated in the system at time instant
T coincides with the probability distribution in the screened process. The main idea of
the dynamic screening method is to analyze the n-dimensional process {W1(t), . . . , Wn(t)}
and, substituting t = T, we obtain a result for the process {V1(t), . . . , Vn(t)} at the time
instant T.

It is easy to prove this property for the probability distribution of stochastic pro-
cesses [34]:

P{V1(T) < w1, . . . , Vn(T) < wn} = P{W1(T) < w1, ..., Wn(T) < wn}, wi ≥ 0, i = 1, . . . n.

The resulting n-dimensional stochastic processes are also non-Markovian. Thus, we
add the state of the Markov chain k(t) for a system with an MMPP-flow and a residual
time from t to the next arrival z(t) for system with the renewal arrival process.

3. Kolmogorov Integro-Differential Equations

We can write systems of Kolmogorov integral differential equations to obtain the
probability distribution of the resulting (n + 1)-dimensional Markovian processes.

3.1. For System with MMPP Arrival Process

The probability distribution of the process {k(t), W1(t), . . . , Wn(t)} is

P(k, w1, . . . , wn, t) = P{k(t) = k, W1(t) < w1, . . . , Wn(t) < wn}, k = 1, . . . , K,

w1 > 0, . . . , wn > 0.

Taking into account the formula of the total probability, we can write the following
system of Kolmogorov differential equations:

∂P(k, w1, . . . , wn, t)
∂t

=
K

∑
ν=1

P(ν, w1, . . . , wn, t)qνk+

+
n

∑
i=1

λk

(1− Si(t))P(k, w1, . . . , wn, t) + Si(t)
wi∫

0

P(k, w1, . . . , wi − y, . . . , wn, t)dGi(y)

,

k = 1, . . . , K.

(1)

We introduce the partial characteristic function

h(k, u1, . . . , un, t) =
∞∫

0

ejw1u1 · · ·
∞∫

0

ejwnun P(k, dw1, . . . , dwn, t),

where j =
√
−1 is the imaginary unit.

Then we can write the following equations:

∂h(k, u1, . . . , un, t)
∂t

= λkh(k, u1, . . . , un, t)
n

∑
i=1

Si(t)[G∗(ui)− 1]+

+
K

∑
ν=1

h(ν, u1, . . . , un, t)qνk, k = 1, . . . , K,

(2)
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where

G∗(ui) =

∞∫
0

ejuiydGi(y), i = 1, . . . , n. (3)

Then we can write the vector-matrix equation

∂h(u1, . . . , un, t)
∂t

= h(u1, . . . , un, t)

[
Q +

n

∑
i=1

Si(t){G∗(ui)− 1}Λ
]

,

h(u1, . . . , un, t0) = r,

(4)

where h(u1, . . . , un, t) = [h(1, u1, . . . , un, t), h(2, u1, . . . , un, t), . . . , h(K, u1, . . . , un, t)] and
r = [r(1), r(2), . . . , r(K)] is the vector of the stationary probability distribution of the
underlying Markov chain, defined by the following system of linear equations:{

rQ = 0,
re = 1,

(5)

e =


1
1
...
1


1×K

, Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λK

.

3.2. For a System with a Renewal Arrival Process

The probability distribution of process {z(t), W1(t), . . . , Wn(t)} is

P(z, w1, . . . , wn, t) = P{z(t) < z, W1(t) < w1, . . . , Wn(t) < wn}, z > 0, w1 > 0, . . . , wn > 0.

The system of Kolmogorov differential equations has the form

∂P(z, w1, . . . , wn, t)
∂t

=
∂P(z, w1, . . . , wn, t)

∂z
+

∂P(0, w1, . . . , wn, t)
∂z

(A(z)− 1)+

+A(z)
n

∑
i=1

Si(t)

 wi∫
0

∂P(0, w1, . . . , wi − yi, . . . , wn, t)
∂z

dGi(y)−
∂P(0, w1, . . . , wn, t)

∂z

.
(6)

We define the initial conditions in the form

P(z, w1, . . . , wn, t0) =

{
R(z), if w1 = · · · = wn = 0,
0, otherwise,

where R(z) is the stationary probability distribution of the stochastic process z(t):

R(z) = λ

z∫
0

(1− A(x))dx, a =

∞∫
0

(1− A(x))dx, λ =
1
a

. (7)

Let us introduce the partial characteristic function

h(z, u1, . . . , un, t) =
∞∫

0

eju1w1 · · ·
∞∫

0

ejunwn P(z, dw1, . . . , dwn, t), z > 0,
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then, we obtain the following equation:

∂h(z, u1, . . . , un, t)
∂t

=
∂h(z, u1, . . . , un, t)

∂z
+

+
∂h(0, u1, . . . , un, t)

∂z

[
A(z)− 1 + A(z)

n

∑
i=1

Si(t)(G∗(ui)− 1)

]
,

h(z, u1, . . . , un, t0) = R(z),

(8)

where G∗(ui) has form (3).

4. Gaussian Approximation of the Probability Distribution of the Total
Resource Amounts

It was previously proven that under the asymptotic condition of an infinitely growing
service time

• For resource queue MMPP/GI(2)/∞: the joint probability distribution of the number
of customers and total capacities is a multidimensional Gaussian distribution [34];

• For resource queue GI/GI(n)/∞: the n-dimensional probability distribution of the total
resource amounts is asymptotically Gaussian [29].

To construct a Gaussian approximation of the distribution function of the random pro-
cess {V1(t), V2(t), . . . , Vn(t)}, we use the method of asymptotic analysis with the asymptotic
conditions of the growing intensity of the arrival process. In the models under considera-
tion, the flow intensity is represented as Nλ, where λ is a fixed value and the parameter N
has large values (in theoretical studies N → ∞). The value of N will be called the parameter
of high flow intensity [37].

• For MMPP: to represent matrix of intensity Λ as Λ1 = NΛ =


Nλ1 0 . . . 0

0 Nλ2 . . . 0
...

...
. . .

...
0 0 . . . NλK


and the infinitesimal generator matrix Q as Q1 = NQ;

• For renewal arrivals: let us represent t = ξ
N , where ξ is some non-negative random

variable with the distribution function A(z). Value N > 0 is a parameter of high flow
intensity, the meaning of which is described above. Then for the distribution function
of interval lengths t, we have [38,39]

P{t < x} = P{ ξ

N
< x} = P{ξ < Nx} = A(Nx). (9)

Then Equation (6) is transformed into

1
N

∂P(z, w1, . . . , wn, t)
∂t

=
∂P(z, w1, . . . , wn, t)

∂z
+

∂P(0, w1, . . . , wn, t)
∂z

(A(z)− 1)+

+A(z)
n

∑
i=1

Si(t)

 wi∫
0

∂P(0, w1, . . . , wi − yi, . . . , wn, t)
∂z

dGi(y)−
∂P(0, w1, . . . , wn, t)

∂z

.
(10)

Equation (8), in turn, takes the form

1
N

∂h(z, u1, . . . , un, t)
∂t

=
∂h(z, u1, . . . , un, t)

∂z
+

+
∂h(0, u1, . . . , un, t)

∂z

[
A(z)− 1 + A(z)

n

∑
i=1

Si(t)(G∗(ui)− 1)

]
,

h(z, u1, . . . , un, t0) = R(z).

(11)

We state and prove the following theorems.
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Theorem 1. Under the condition of the growing intensity of the arrival process, the joint asymptotic
probability distribution of the n-dimensional process of the total amounts of the occupied resources in
the heterogeneous QS is the n-dimensional Gaussian distribution with parameters that are dependent
on the type of arrival process. The expectation vector has the form

a = Nλ
[
a1b1 . . . anbn

]
, (12)

and the covariance matrix has the form

K = N(λK(1) + κK(2)). (13)

Here

K(1) =

d1b1 · · · 0
· · · · · · · · ·
0 · · · dnbn

, K(2) =

β11a1a1 · · · β1na1an
· · · · · · · · ·

βn1ana1 · · · βnnanan

,

ai =

∞∫
0

ydGi(y), di =

∞∫
0

y2dGi(y), bi = pi

∞∫
0

(1− Bi(x))dx,

βij = pi pj

∞∫
0

(1− Bi(x))(1− Bj(x))dx, i = 1, . . . , n, j = 1, . . . , n,

λ and κ are defined by the type of arrival process:

• For MMPP:
λ = rΛe, κ = 2g(Λ− λI)e, (14)

g is the solution of system {
gQ = r(λI−Λ),

ge = 0;

• For the renewal process:

λ =

 ∞∫
0

(1− A(x))dx

−1

, κ = λ3
(

σ2 − a2
)

, (15)

where a and σ2 are the expectation and variance of a random variable given by the distribution

function A(z), I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


K×K

.

Proof of Theorem 1. Step 1. For a system with MMPP.
Let us perform substitutions

ε =
1
N

, ui = εxi, i = 1, . . . , n, h(u1, . . . , un, t) = f1(x1, . . . , xn, t, ε). (16)

Then problem (4) takes the form

ε
∂f1(x1, . . . , xn, t, ε)

∂t
= f1(x1, . . . , xn, t, ε)

[
Q +

n

∑
i=1

Si(t){G∗(εxi)− 1}Λ
]

,

f1(x1, . . . , xn, t0, ε) = r.

(17)
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Let ε→ 0, then problem (17) has the form

f1(x1, . . . , xn, t)Q = 0,

f1(x1, . . . , xn, t0) = r,

and the asymptotic solution f1(x1, . . . , xn, t) of (17) should be searched in the follow-
ing form:

f1(x1, . . . , xn, t) = rΦ1(x1, . . . , xn, t),

Φ1(x1, . . . , xn, t0) = 1,
(18)

where Φ1(x1, . . . , xn, t) is some scalar function.
We then substitute (18) into (17) and multiply the resulting equation by e. Then, given

that rΛe = λ, we get

ε
∂Φ1(x1, . . . , xn, t)

∂t
= λΦ1(x1, . . . , xn, t)

n

∑
i=1

Si(t){G∗(εxi)− 1}. (19)

We use the expansion of the exponent in the Taylor series for G∗(εxi):

G∗(εxi) =

∞∫
0

ejεxiydGi(y) =
∞∫

0

(
1 + jεxiy + O(ε2)

)
dGi(y) =

= 1 + jεxiai + O(ε2),

(20)

where ai =
∞∫
0

ydGi(y).

Substituting this into (19) and then divide the resulting equation by ε (ε→ 0), we derive

∂Φ1(x1, . . . , xn, t)
∂t

= jλΦ1(x1, . . . , xn, t)
n

∑
i=1

Si(t)xiai. (21)

The solution of the differential Equation (21) is

Φ1(x1, . . . , xn, t) = exp
{

jλ
n

∑
i=1

xiai

t∫
t0

Si(τ)dτ

}
. (22)

By performing back-substitutions and putting t0 = −∞, T = t = 0, we can write the
first-order asymptotic characteristic function h1(u1, . . . , un) in the form

h1(u1, . . . , un) = h1(u1, . . . , un, 0)e ≈ f1(x1, . . . , xn, 0)e =

= r exp
{

jλ
n

∑
i=1

xiai

0∫
−∞

Si(τ)dτ

}
e = exp

{
jNλ

n

∑
i=1

uiaibi

}
.

(23)

To construct the second-order asymptotic characteristic function h2(u1, . . . , un, t), we
represent the function h(u1, . . . , un, t) in the following form:

h(u1, . . . , un, t) = h2(u1, . . . , un, t) exp
{

jNλ
n

∑
i=1

uiaibi

}
. (24)

Substituting this expression into (4), we obtain the equation regarding h2(u1, . . . , un, t)

1
N

∂h2(u1, . . . , un, t)
∂t

= h2(u1, . . . , un, t)
{

Q +
n

∑
i=1

Si(t)[(G∗(ui)− 1)Λ− jλuiaiI]
}

,

h2(u1, . . . , un, t0) = r.

(25)
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Let us use the following substitutions in (25):

ε2 =
1
N

, ui = εxi, i = 1, . . . , n, h2(u1, . . . , un, t) = f2(x1, . . . , xn, t, ε).

ε2 ∂f2(x1, . . . , xn, t, ε)

∂t
= f2(x1, . . . , xn, t, ε)

{
Q +

n

∑
i=1

Si(t)[(G∗(εxi)− 1)Λ− jλεxiaiI]
}

,

f2(x1, . . . , xn, t0, ε) = r.

(26)

Let us find the asymptotic solution f2(x1, . . . , xn, t) = lim
ε→0

f2(x1, . . . , xn, t, ε). Let ε→ 0;

then, Equation (26) becomes

f2(x1, . . . , xn, t)Q = 0,

f2(x1, . . . , xn, t0) = r.

We can represent the solution f2(x1, . . . , xn, t, ε) of Equation (26) as

f2(x1, . . . , xn, t) = rΦ2(x1, . . . , xn, t),

Φ2(x1, . . . , xn, t0) = 1.

So, function f2(x1, . . . , xn, t) will take the form

f2(x1, . . . , xn, t, ε) = Φ2(x1, . . . , xn, t)

[
r + jε

n

∑
i=1

xiaiSi(t)g

]
+ O(ε2). (27)

Substituting (27) into (26) we obtain

O(ε2) = Φ2(x1, . . . , xn, t)

[
rQ + jε

n

∑
i=1

xiaiSi(t)r[Λ− λI] + jε
n

∑
i=1

xiaiSi(t)gQ

]
= 0,

where g is some row vector that satisfies the following system:{
gQ = r(λI−Λ),

ge = 0.

We use the exponent expansion for functions in the form

G∗(εxi) =

∞∫
0

ejεxiydGi(y) =
∞∫

0

(
1 + jεxiy +

(jεxiy)2

2
+ O(ε3)

)
dGi(y) =

= 1 + jεxiai +
(jεxi)

2

2
di + O(ε3),

(28)

here di =
∞∫
0

y2dG(y).

Next, let ε→ 0. Taking into account (26), (27) takes the form

Φ2(x1, . . . , xn, t) = exp
{

λ
n

∑
i=1

j2x2
i

2
di

t∫
t0

Si(τ)dτ + κ
n

∑
i=1

j2x2
i a2

i

t∫
t0

S2
i (τ)dτ

}
,

Φ2(x1, . . . , xn, t0) = 1.



Mathematics 2022, 10, 2962 11 of 16

We assume that t0 = −∞, T = t = 0; then, function h(u1, . . . , un, 0) will have the form

h(u1, . . . , un, 0) = h2(u1, . . . , un, 0) exp
{

jNλ
n

∑
i=1

uiaibi

}
=

= r exp
{

jNλ
n

∑
i=1

uiaibi + λN
n

∑
i=1

j2u2
i

2
dibi + Nκ

n

∑
i=1

j2u2
i a2

i βi

}
.

(29)

Therefore, the second-order asymptotic of the characteristic function has the form

h(u1, . . . , un) = h(u1, . . . , un, 0)e = r exp
{

jNλ
n

∑
i=1

uiaibi +
j2

2
Nλ

n

∑
i=1

dibi + j2Nκ
n

∑
i=1

u2
i a2

i βi

}
. (30)

Step 2. For a system with renewal arrival process.
Let us make the following substitutions in (11)

ε =
1
N

, ui = εxi, i = 1, . . . , n, h(z, u1, . . . , un, t) = f1(z, x1, . . . , xn, t, ε). (31)

We obtain

ε
∂ f1(z, x1, . . . , xn, t, ε)

∂t
=

∂ f1(z, x1, . . . , xn, t, ε)

∂z
+

+
∂ f1(0, x1, . . . , xn, t, ε)

∂z

[
A(z)− 1 + A(z)

n

∑
i=1

Si(t)(G∗(εxi)− 1)

]
,

f1(z, x1, . . . , xn, t0, ε) = R(z),

(32)

To find the first-order asymptotic solution

f1(z, x1, . . . , xn, t) = lim
ε→0

f1(z, x1, . . . , xn, t, ε),

let ε→ 0 in (32):

∂ f1(z, x1, . . . , xn, t)
∂z

+
∂ f1(0, x1, . . . , xn, t)

∂z
[A(z)− 1] = 0.

We assume that

f1(z, x1, . . . , xn, t) = R(z)Φ1(x1, . . . , xn, t),

Φ1(x1, . . . , xn, t0) = 1,
(33)

where Φ1(x1, . . . , xn, t) is a scalar differentiable function.
Let z→ ∞ in (32):

ε
∂ f1(∞, x1, . . . , xn, t, ε)

∂t
=

∂ f1(0, x1, . . . , xn, t, ε)

∂z

n

∑
i=1

Si(t)(G∗(εxi)− 1). (34)

We use the exponent expansion for functions in the form of (20) and substitute (33)
into (34). Furthermore, we divide the resulting expression by ε and let ε→ 0

∂Φ1(x1, . . . , xn, t)
∂t

= Φ1(x1, . . . , xn, t)jλ
n

∑
i=1

xiaiSi(t). (35)

It is easy to see that the solution of Equation (35) is

Φ1(x1, . . . , xn, t) = exp
{

jλ
n

∑
i=1

xiai

t∫
t0

Si(τ)dτ

}
. (36)
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Furthermore, similarly to the earlier reasoning for the case with an incoming MMPP,
we obtain the form of the first-order asymptotic characteristic function h(z, u1, . . . , un, t)

h(z, u1, . . . , un, t) = R(z) exp
{

jNλ
n

∑
i=1

uiai

t∫
t0

Si(τ)dτ

}
. (37)

Let us proceed to the construction of the second-order asymptotic. We introduce
the function

h(z, u1, . . . , un, t) = h2(z, u1, . . . , un, t) exp
{

jNλ
n

∑
i=1

uiai

t∫
t0

Si(τ)dτ

}
. (38)

In (11), let us make substitutions

ε2 =
1
N

, ui = εxi, i = 1, . . . , n, h2(z, u1, . . . , un, t) = f2(z, x1, . . . , xn, t, ε) (39)

and, given (38), we obtain

ε2 ∂ f2(z, x1, . . . , xn, t, ε)

∂t
+ f2(z, x1, . . . , xn, t, ε)jελ

n

∑
i=1

xiaiSi(t) =
∂ f2(z, x1, . . . , xn, t, ε)

∂z
+

+
∂ f2(0, x1, . . . , xn, t, ε)

∂z

[
A(z)− 1 + A(z)

n

∑
i=1

Si(t)(G∗(εxi)− 1)

]
.

(40)

Let us find the asymptotic solution of Equation (40)

f2(z, x1, . . . , xn, t) = lim
ε→0

f2(z, x1, . . . , xn, t, ε). (41)

So,
∂ f2(z, x1, . . . , xn, t)

∂z
+

∂ f2(0, x1, . . . , xn, t, ε)

∂z
[A(z)− 1] = 0. (42)

We find the function f2(z, x1, . . . , xn, t) as follows:

f2(z, x1, . . . , xn, t) = R(z)Φ2(x1, . . . , xn, t),

Φ2(x1, . . . , xn, t0) = 1.
(43)

We write the function f2(z, x1, . . . , xn, t) as the power expansion

f2(z, x1, . . . , xn, t, ε) = Φ2(x1, . . . , xn, t)

[
R(z) + jελ f (z)

n

∑
i=1

xiaiSi(t) + O(ε2)

]
, (44)

where f (z) is some differentiable function.
We substitute (44) into (42) and derive a differential equation for the unknown function

f (z):

f (z) = f ′(0)
z∫

0

(1− A(x))dx +

z∫
0

(R(x)− A(x))dx.

In Equation (42), we make the transition to the limit z→ ∞. The function f2(z, x1, . . . , xn,
t, ε) is monotonically increasing and bounded above at z, then:

lim
z→∞

∂ f2(z, x1, . . . , xn, t, ε)

∂z
= 0.

In (40) we use the exponent expansion for functions in form of (28), then for z→ ∞,
we obtain
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ε2 ∂ f2(∞, x1, . . . , xn, t, ε)

∂t
+ f2(∞, x1, . . . , xn, t, ε)jελ

n

∑
i=1

xiaiSi(t) =
∂ f2(∞, x1, . . . , xn, t, ε)

∂z
+

+
∂ f2(0, x1, . . . , xn, t, ε)

∂z

n

∑
i=1

Si(t)
(

jεxiai +
(jεxi)

2

2
di

)
+ O(ε3).

(45)

By substituting (44) into the obtained expression, let us divide everything by ε2 (ε→ 0).
Then, taking into account the fact that κ = 2 f ′(0) − 2 f (∞), let f (∞) = const. Putting
f (∞) = 0, we can observe that κ = 2 f ′(0) and obtain the equation for Φ2(x1, . . . , xn, t):

∂Φ2(x1, . . . , xn, t)
∂t

= Φ2(x1, . . . , xn, t)

[
λ

n

∑
i=1

(jxi)
2

2
diSi(t) + κ

n

∑
i=1

n

∑
m=1

(jxi)(jxm)

2
aiamSi(t)Sm(t)

]
.

The solution of the differential equation is

Φ2(x1, . . . , xn, t) = exp

{
λ

n

∑
i=1

(jxi)
2

2
di

t∫
t0

S1(τ)dτ + κ
n

∑
i=1

n

∑
m=1

(jxi)(jxm)

2
aiam

t∫
t0

Si(τ)Sm(τ)dτ

}
. (46)

We substitute (46) in (43), then, following the reverse substitutions, we write the
approximate asymptotic equality regarding h(z, u1, . . . , un, t).

5. Simulation and Numerical Analysis

The aim of numerical and simulation experiments is to determine the limits of applica-
bility of the obtained Gaussian approximation of the distribution function.

Let us consider as an input an MMPP with the following parameters:

Λ =

0.5 0 0
0 1 0
0 0 1.5

, Q =

−0.8 0.4 0.4
0.3 −0.6 0.3
0.4 0.4 −0.8

.

For the renewal arrival process, the intervals between the arrivals have a uniform
distribution over the interval [0.5, 1.5].

The type of an incoming customer is defined as i-type with probabilities of p1 = 0.5,
p2 = 0.3, p3 = 0.2. Table 1 shows the distribution laws of the random variables which char-
acterize the amount of occupied resources and the time required to service the customers.

Table 1. The laws of parameter distributions for systems of various types.

Type of System Volume Service Time

First Geometric (0.2) Gamma (0.5, 0.5)
Second Poisson (3) Exponential (1)
Third Binomial (0.5, 12) Uniform (0.1, 0.9)

By means of a simulation, we obtained the marginal empirical probability distribution
functions for the total numbers of resources occupied by each type of customer. Our goal
was to compare the empirical and asymptotic distribution laws. To this end, we used the
Kolmogorov distance: ∆i = supx|Fem(x)− Fas(x)|, i = 1, . . . , 3, where the subscript “em”
denotes the empirical distribution function built on the simulation results and “as” denotes
the asymptotic distribution function based on the theorem.

Tables 2 and 3 show values of the Kolmogorov distances for the total volumes of the
occupied resources of each type. The accuracy of the approximation increases with an
increase in the mean of the system load, so, even with N = 30 for MMPP and N = 20 for
renewal arrival process, the value of ∆i, i = 1, 2, 3, does not exceed 0.05.
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Table 2. Kolmogorov distances, comparing simulation results and asymptotic values for the total
capacity of customers of different types for the QS MMPP(ν)|GI|∞. Bold format highlights results
that do not exceed the value of the acceptable approximation threshold.

N 5 10 20 30 60 100 200 300 500

∆1 0.163 0.088 0.048 0.036 0.025 0.019 0.013 0.011 0.008
∆2 0.185 0.091 0.047 0.034 0.022 0.017 0.012 0.010 0.007
∆3 0.326 0.121 0.054 0.037 0.022 0.017 0.013 0.010 0.007

Table 3. Kolmogorov distances, comparing simulation results and asymptotic values for the total
capacity of customers of different types for the QS GI(ν)|GI|∞. Bold format highlights results that
do not exceed the value of the acceptable approximation threshold.

N 5 10 20 30 60 100 200 300 500

∆1 0.148 0.079 0.044 0.034 0.024 0.018 0.013 0.011 0.008
∆2 0.158 0.077 0.039 0.029 0.019 0.015 0.011 0.009 0.007
∆3 0.296 0.101 0.042 0.029 0.018 0.014 0.010 0.008 0.007

We can use the results presented in Section 4 in the case of a system with limited
resources. For example, for the task of choosing the optimal values of resources provided
in each channel. These limit values should provide a given probability of losing requests
due to a lack of resources to service them. Denote by Vopt

k the optimal volume of the k-th
channel. The estimation of these values is based on the Gaussian distribution (Theorem 1)
and the method described in [40] and has the form:

Vopt
k = ak + r

√
Kkk. (47)

Here r is the so-called hyper-ellipsoid radius, which depends on ploss and which can
be evaluated using the method described in [40].

6. Conclusions

In this study, we considered the problem of analyzing the total amount of resources
allocated in queueing systems with different nodes for the processing of heterogeneous
data that require arbitrary resource capacities for their service. We applied the methods
of dynamic screening and the asymptotic analysis to obtain an approximation of the
stationary probability distribution of the total occupied resource amount. As a result of
this study, we can conclude that the total resource amounts of the occupied resources in
a heterogeneous queueing system with parameters dependent on the condition of a high
load have a multidimensional Gaussian distribution. Their parameters (mean vector and
covariance matrix) were also obtained. The comparison of the asymptotic results with the
simulation results showed that the accuracy of the presented approach was sufficiently
high. Furthermore, we have demonstrated how the results of the approximations can be
applied to estimating the optimal total resource amount for a system with a limited amount
of resources. The approach presented in this paper may be applied to the study of resource
queues with the splitting of requests, as well as systems with the arrival processes of other
types (e.g., a batch Markovian arrival process, a semi-Markov process, etc.).
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