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Abstract: In commerce, economics, engineering and the sciences, quantitative methods based on
statistical models for forecasting are very useful tools for prediction and decision. There is an
abundance of papers on forecasting for continuous-time series but relatively fewer papers for time
series of counts which require special consideration due to the integer nature of the data. A popular
method for modelling is the method of mixtures which is known for its flexibility and thus improved
prediction capability. This paper studies the coherent forecasting for a flexible stationary mixture
of Pegram and thinning (MPT) process, and develops the likelihood-based asymptotic distribution.
Score functions and the Fisher information matrix are presented. Numerical studies are used to assess
the performance of the forecasting methods. Also, a comparison is made with existing discrete-valued
time series models. Finally, the practical application is illustrated with two sets of real data. It is
shown that the mixture model provides good forecasting performance.

Keywords: asymptotic distribution; coherent forecasting; INAR(1); mixture; Pegram operator; bino-
mial thinning

MSC: 37M10

1. Introduction

Forecasting in Box–Jenkins models based on the conditional mean has been well
established in time series modelling. However, the forecasting method in continuous-
time series may not be applicable to handle integer-valued data as the conditional mean
usually yields non-integer forecasts. In discrete-time series modelling, coherent forecasting
replaces conventional forecasting to produce an integer forecast. Integer-valued time
series data have appeared in many contexts, for example, compensation claims, crime
data, unemployment count, and the number of cases of recent coronavirus outbreaks.
Hence, coherent forecasting, especially those based on the conditional median and mode,
is getting popular for integer forecasts. This tool is indispensable in commerce, economics,
and the sciences as it provides insights in prediction and decision making. This paper
presents the coherent forecasting for a mixture model, namely a mixture of Pegram and
thinning (MPT) process as introduced by [1] Mixture models provide a flexible approach
for modelling heterogeneity and multimodality in time series. There is much interest in this
mixture approach for time series modelling. Ref. [2] considered this MPT(1) model with
serially dependent innovation. By using this mixture of Pegram and binomial thinning
operators, Ref. [3] examined a bounded INAR(1) model which caters for equi-, under- and
over-dispersion. Recently, Ref. [4] examined a new bounded integer autoregressive process
model also based on this mixture method.

The development of integer-valued time series models began three decades ago
when [5] first introduced the discrete-time series models. Thereafter, generalizations
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and extensions, statistical inference and some other relevant investigations such as outlier
detection have been extensively discussed. There is limited study on coherent forecasting
for discrete time series. Ref. [6] considered four methods of coherent forecasting: k-step
ahead conditional mean, median, mode and distribution. If a time series has low counts,
point mass forecasting is employed where individual probabilities are assigned to the few
possible outcomes that the forecast value may take. Later, Ref. [7] examined coherent
forecasting issues related to the Poisson integer-valued autoregressive model of order
one (INAR(1)) and [8] extended this to INAR(p). Using a Bayesian approach, Ref. [9]
proposed a general method for producing coherent forecasts of low count data which are
based upon the k-step–ahead predictive probability mass function. Ref. [10] considered the
computer-intensive block-of-block bootstrap techniques for coherent forecasting. Ref. [11]
developed the coherent forecasting in Binomial AR(p) model. Ref. [12] studied the coherent
forecasting for zero-inflated Poisson fitted in INAR, specifically for the order-one process.
More generally, Ref. [13] extended the discussion to include the stationary integer-valued
ARMA models. Ref. [12] proposed the coherent forecasting for count data using Box–
Jenkins’s AR(p) model. Ref. [14] discussed the forecast for geometric-type INAR(1) models.
Recently, Ref. [15] investigated the forecast errors for the conditional linear autoregressive
model. Due to the flexibility of the mixture MPT model to cater for heterogeneity and
multimodality, and the practical importance of forecasting, we are motivated to examine
the performance of the MPT model in coherent forecasting.

The paper is arranged as follows. Section 2 provides a brief background for discrete-
time series models which serves as the framework for the models to be discussed in the
rest of the sections. Main properties for coherent forecasting are provided. Section 3
presents the Expectation-Maximization (EM) algorithm for parameter estimation of the
MPT model. The Fisher information matrix and score functions have been derived to
develop the asymptotic distribution. Section 4 provides the descriptive measures for the
forecasting performance. We applied the prediction root mean squared error (PRMSE),
prediction mean absolute deviation (PMAD) and percentage of true prediction to examine
the accuracy of the k-step-ahead prediction. The prediction is based on the mean, median
and mode produced by the k-step-ahead conditional probability function. A simulation
study is presented in Section 5 to study the forecasting behaviour of the models. Section 6
illustrates the application with two real data sets. A comparative study has been done with
current models in the literature. Section 7 concludes the paper.

2. Background on Integer-Valued Time Series Models

This section presents preliminaries for three integer-valued time series models, the
popular integer-valued autoregressive model (INAR), Pegram’s autoregressive (AR) model
and the mixture of Pegram and thinning (MPT) model. We consider first-order processes
with Poisson marginals.

2.1. First-Order Integer-Valued Autoregressive Model

The binomial thinning operator in the INAR model replaces the scalar multiplication
in Box–Jenkins’s models to cater for the integer-valued nature of the time series data. The
model was first introduced by [5] and the thinning operation relates it to self-decomposable
distributions. The thinning operation is defined by

α ◦ Xt−1 =
Xt−1

∑
i=1

Bi

where Bi are the Bernoulli random variables with the probability of success α.
The definition of the INAR(1) model is given as follows. For a Poisson sequence of

observations {Xt : t = 0, ±1, ±2, . . .}, the INAR(1) is given by

Xt = α ◦ Xt−1 + εt
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where α ◦ Xt−1 is a binomial random variable with the parameter (Xt−1, α) and εt is
the innovation term having mean µ and variance σ2. The model is integer-valued. The
conditional probability function is given by

pk(x|Xn) =
min(x,Xn)

∑
s=0

(
Xn
s

)(
αk
)s(

1− αk
)Xn−s 1

(x− s)!
exp

{
−λ

1− αk

1− α

}(
λ

1− αk

1− α

)x−s

(1)

The k-step-ahead conditional mean is

E[Xn+k|Xn] = αkXn +
1− αk

1− α
λ .

Taking limit with k→ ∞ , the unconditional mean is λ
1−α .

It is not difficult to obtain the properties of the INAR model. A comprehensive review
of the INAR models and their properties is given by [16].

2.2. Pegram’s First-Order Autoregressive Process (AR(1))

The Pegram’s operator gives an alternative method of constructing count time series
models [17]; see, for example, Ref. [18] for further discussion. Consider two independent
discrete random variables U and V, the Pegram’s operator * which is a mixture process
is defined by Z = (ϕ, U) ∗ (1− ϕ, V) with the marginal probability function P(Z = j) =
ϕP(U = j) + (1− ϕ)P(V = j), j = 0, 1, . . ., where ϕ ∈ (0, 1) is the mixing weight. The
first-order autoregressive model defined by Pegram’s operator is

Xt = (ϕ, I[Xt−1]) ∗ (1− ϕ, εt)

where the conditional probability function is given by

P(Xt = j|Xt−1) = ϕI[Xt−1 = j] + (1− ϕ)P(εt = j). (2)

The k-step-ahead conditional probability function for Poisson Pegram’s AR(1) process
has a simple expression given by

P(Xt+k = i|Xt = j) = ϕk I(j = i) +
(

1− ϕk
)

P(εt = i) (3)

and the k-step-ahead conditional expectation is E(Xt+k|Xt) = ϕkXt +
(

1− ϕk
)

µεt for k ≥ 1,
and i, j = 0, 1, . . ..

Due to the elegance in the expression and the easy interpretation of the model, it ap-
pears to be an attractive alternative tool in discrete-valued time series modelling, especially
in dealing with categorical data. A similar type of model developed through the mixing
operation is found in [19].

2.3. First-Order Mixture of Pegram and Thinning Autoregressive (MPT(1)) Process

The MPT(1) process is a first-order integer-valued autoregressive process constructed
by [1], which is the combination of the thinning and Pegram’s operators, to form a stationary
mixture of Pegram and Thinned (MPT) model. The MPT(1) process has a conditional linear
expectation and thus belongs to the family of first-order conditional linear autoregressive
(CLAR(1)) models discussed by [20]. The construction of this class of integer-valued model
yields simpler interpretation with several practical advantages. Various properties of the
model have been discussed by [1]. For ease of reference, we first define the MPT(1) model
and state some essential results.

Definition: For every t ∈ 0, ±1, ±2, . . . let X0, X1, . . . , Xn be a series of dependent
counts generated according to the model

Xt = (φ, α ◦ Xt−1) ∗ (1− φ, εt)
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where α ∈ [0, 1], φ ∈ (0, 1) and εt is the innovation term having mean µε and σ2
ε .

The parameter φ is the mixing weight of the mixture model, and it mixes the thinning
part and the innovation term in the proportion φ and 1− φ respectively.

The probability generating function (PGF) is given by

GXt(z) = φGXt−1(1− α + αz) + (1− φ)Gεt(z)

In this paper, we consider the Poisson marginal distribution. Let {Xt} be a stationary
process with Poisson marginals Poi(λ). Then the innovation process εt has pgf

Gε(z) =
1

1− φ

{
eλ(z−1) − φeλα(z−1)

}
.

The probability mass function (pmf) is

P(εt = i) =
1

1− φ

{
e−λλi

i!
− φ

e−λα(λα)i

i!

}
, i = 0, 1, . . .

The conditional distribution function is given by

P(Xt = i|Xt−1 = j) = φ

(
j
i

)
αi(1− α)j−i +

e−λλi

i!
− φ

e−λα(λα)i

i!
(4)

where α ∈ (0, 1) and φ ∈ (0, 1). The MPT(1) model is flexible enough to handle mul-
timodal data and can be adapted for any discrete marginals such as the binomial and
negative binomial distributions. This will be useful to incorporate heterogeneity into
the model. The k-step-ahead conditional probability function can be obtained via the
conditional probability generating function (PGF). The PGF of Xt+k given Xt is given by

GXt+k |Xt
(z) = φk

(
1− αk + αkz

)Xt
+ eλ(z−1) − φkeλαk(z−1)

which is used to derive the conditional probability function as follows:

PXt+k|Xt
(x) = φk

(
Xt
x

)(
αk
)x(

1− αk
)Xt−x

+
e−λλx

x!
− φk

e−λαk
(

λαk
)x

x!
(5)

and the conditional expectation is

E[Xt+k|Xt] = (φα)kXt + (1− (φα)k)µx

As k→ ∞ , the conditional probability function converges to e−λλx

x! and the conditional
mean converges to E[Xt]. See [1] for more discussion on the properties.

Next, we present the score functions and the Fisher information matrix which are
required to derive the asymptotic distribution.

3. Likelihood-Based Estimation

Since the MPT model is a mixture model, we applied the Expectation-Maximization
(EM) algorithm ([21,22]) in the maximum likelihood estimation of the parameters. The
EM algorithm for the Poisson MPT(1) model is first presented followed by the asymptotic
distribution of the estimators.
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3.1. Expectation-Maximization Algorithm

For the Poisson MPT(1) model, the probability density function is given by

g(xt|ϑ) = φ

(
xt−1

xt

)
αxt(1− α)xt−1−xt + (1− φ)P(εt = xt)

and

P(εt = xt) =
1

1− φ

{
e−λλxt

xt!
− φ

e−λα(λα)xt

xt!

}
.

where t = 1, 2, . . . , n and ϑ = (α, λ, φ)′.
In the EM algorithm, the Expectation (E-step) and the Maximization (M-step) are given

as follows:
E-step: With current estimates φold and mean value parameter µ

(
ϑold

)
calculate

wt =
g
(

xt

∣∣∣ϑold
)

g(xt)

M-step: Determine the new parameter estimates µ(ϑnew) and φnew from

µ(ϑnew) =
∑n

t=1 wtxi

∑n
t=1 wt

and φnew =
∑n

t=1 wt

n

The mean value parameter µ is simply the mean of the distribution which is λ. The
computation will be stopped once the tolerance of convergence with a margin of error of
0.001 is achieved.

3.2. Asymptotic Distribution

To determine the asymptotic distribution for the ML parameter estimators of the
Poisson MPT(1) process, the Fisher information matrix is now derived. Consider the
likelihood function

L(α, λ, ϕ) =
n

∏
t=1

P(Xt|Xt−1)

Let
.
`α,

.
`λ,

.
`φ be the first derivatives of the log-likelihood function with respect to the

parameters α, λ, φ. Hence, the score functions are given by

.
`α = ∂

∂α `(α, λ, φ; X0, X1, . . . , Xn) =
n
∑

t=1

∂
∂α P(Xt|Xt−1)

P(Xt |Xt−1)

.
`λ = ∂

∂λ `(α, λ, φ; X0, X1, . . . , Xn) =
n
∑

t=1

∂
∂λ P(Xt|Xt−1)

P(Xt |Xt−1)

.
`φ = ∂

∂φ `(α, λ, φ; X0, X1, . . . , Xn) =
n
∑

t=1

∂
∂φ P(Xt

∣∣∣Xt−1)

P(Xt |Xt−1)

The derivatives of the conditional probability are given in the following propositions.

Proposition 1. The derivatives of P(Xt|Xt−1) with respect to α, φ and λ are given by
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∂
∂αP(Xt = xt|Xt−1 = xt−1)

= φxt−1
1−α

((
xt−1 − 1

xt − 1

)
αxt−1(1− α)xt−1−xt −

(
xt−1

xt

)
αxt(1− α)xt−1−xt

)
−λφ

(
e−λα(λα)xt−1

(xt−1)! − e−λα(λα)xt

(xt)!

)
∂

∂φ P(Xt = xt|Xt−1 = xt−1) =

(
xt−1

xt

)
αxt(1− α)xt−1−xt − e−λα(λα)xt

xt!
.

∂
∂λ P(Xt = xt|Xt−1 = xt−1) =

e−λλxt−1

(xt−1)! −
e−λλxt

xt!
− φα

[
e−λα(λα)xt−1

(xt−1)! − e−λα(λα)xt

xt!

]
Since the value is invalid with i > j, the binomial marginal distribution is considered

zero under such circumstances.

Proposition 2. The score functions with respect to α, ϕ and λ are

.
`α =

n
∑

t=1

φxt−1
1−α

((
xt−1 − 1

xt − 1

)
αxt−1(1−α)xt−1−xt−

(
xt−1

xt

)
αxt (1−α)xt−1−xt

)
−λφ

(
e−λα(λα)xt−1

(xt−1)! − e−λα(λα)xt
(xt)!

)
P(Xt |Xt−1)

.
`φ =

n
∑

t=1

(
xt−1

xt

)
αxt (1−α)xt−1−xt− e−λα(λα)xt

xt !

P(Xt |Xt−1)

.
`λ =

n
∑

t=1

e−λλxt−1
(xt−1)! −

e−λλxt
xt ! −αφ

(
e−λα(λα)xt−1

(xt−1)! − e−λα(λα)xt
xt !

)
P(Xt |Xt−1)

Proposition 3. The second derivatives of the conditional probability are given by

∂2

∂α2 P(Xt = xt|Xt−1 = xt−1)

= φxt−1

(1−α)2

{
2(1− xt−1)

(
xt−1 − 1

xt − 1

)
αxt−1(1− α)xt−1−xt + (xt−1

−1)
((

xt−1 − 2
xt − 2

)
αxt−2(1− α)xt−1−xt−1 +

(
xt−1

xt

)
αxt(1− α)xt−1−xt

)}
−λ2φ

{
e−λα(λα)xt−2

(xt−2)! − 2 e−λα(λα)xt−1

(xt−1)! + e−λα(λα)xt

(xt)!

}
∂2

∂λ2 P(Xt = xt|Xt−1 = xt−1)

= e−λλxt−2

(xt−2)! − 2 e−λλxt−1

(xt−1)! + e−λλxt
(xt)!

− α2φ

{
e−λα(λα)xt−2

(xt−2)! − 2 e−λα(λα)xt−1

(xt−1)! + e−λα(λα)xt

(xt)!

}
∂2

∂α∂λ P(Xt = xt|Xt−1 = xt−1)

= −φ

{
e−λα(λα)xt−1

(xt−1)! − e−λα(λα)xt

(xt)!

}
− αλφ

{
e−λα(λα)xt−2

(xt−2)! − 2 e−λα(λα)xt−1

(xt−1)! + e−λα(λα)xt

(xt)!

}
∂2

∂α∂φ P(Xt = xt|Xt−1 = xt−1)

= xt−1
1−α

{(
xt−1 − 1

xt − 1

)
αxt−1(1− α)xt−1−xt −

(
xt−1

xt

)
αxt(1− α)xt−1−xt

}
−λ

{
e−λα(λα)xt−1

(xt−1)! − e−λα(λα)xt

(xt)!

}
∂2

∂φ∂λ
P(Xt = xt|Xt−1 = xt−1) = −α

{
e−λα(λα)xt−1

(xt − 1)!
− e−λα(λα)xt

(xt)!

}
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∂2

∂φ2 P(Xt|Xt−1) = 0

Proposition 4. Let
..
`αα,

..
`φφ,

..
`λλ,

..
`αλ,

..
`αφ,

..
`φλ denote the second derivatives of the log-likelihood

function with respect to α, ϕ and λ. The observed Fisher Information has the following elements:

..
`αα =

n

∑
t=1

P(Xt|Xt−1)
∂2

∂α2 P(Xt|Xt−1)−
(

∂
∂α P(Xt

∣∣∣Xt−1)
)2

P (Xt|Xt−1)
2

..
`φφ =

n

∑
t=1

P(Xt|Xt−1)
∂2

∂φ2 P(Xt|Xt−1)−
(

∂
∂φ P(Xt

∣∣∣Xt−1)
)2

P (Xt|Xt−1)
2

..
`λλ =

n

∑
t=1

P(Xt|Xt−1)
∂2

∂λ2 P(Xt|Xt−1)−
(

∂
∂λ P(Xt

∣∣∣Xt−1)
)2

P (Xt|Xt−1)
2

..
`αλ =

n

∑
t=1

P(Xt|Xt−1)
∂2

∂λ∂α P(Xt|Xt−1)− ∂
∂λ P(Xt

∣∣∣Xt−1)
∂

∂α P(Xt

∣∣∣Xt−1)

P (Xt|Xt−1)
2

..
`φα =

n

∑
t=1

P(Xt|Xt−1)
∂2

∂φ∂α P(Xt|Xt−1)− ∂
∂φ P(Xt

∣∣∣Xt−1)
∂

∂α P(Xt

∣∣∣Xt−1)

P (Xt|Xt−1)
2

..
`φλ =

n

∑
t=1

P(Xt|Xt−1)
∂2

∂φ∂λ P(Xt|Xt−1)− ∂
∂φ P(Xt

∣∣∣Xt−1)
∂

∂λ P(Xt

∣∣∣Xt−1)

P (Xt|Xt−1)
2

Consider the expectation of the observed Fisher information

E[·] =
n

∑
t=2

E[h(Xt, Xt−1)] =
n

∑
t=2

∑
all {xt ,xt−1}

h(xt, xt−1)P(Xt = xt, Xt−1 = xt−1)

Proposition 5. The elements in the Fisher information matrix are given by

E
[..
`αα

]
= (n− 1) ∑

all {xt ,xt−1}
P(Xt−1 = xt−1)

 ∂2

∂α2 P(Xt|Xt−1)−

(
∂

∂α P(Xt|Xt−1)
)2

P(Xt|Xt−1)



E
[..
`φφ

]
= (n− 1) ∑

all {xt ,xt−1}
P(Xt−1 = xt−1)

 ∂2

∂φ2 P(Xt|Xt−1)−

(
∂

∂φ P(Xt|Xt−1)
)2

P(Xt|Xt−1)



E
[..
`λλ

]
= (n− 1) ∑

all {xt ,xt−1}
P(Xt−1 = xt−1)

 ∂2

∂λ2 P(Xt|Xt−1)−

(
∂

∂λ P(Xt|Xt−1)
)2

P(Xt|Xt−1)


E
[..
`αλ

]
= (n− 1) ∑

all {xt ,xt−1}
P(Xt−1 = xt−1)

(
∂2

∂λ∂α
P(Xt|Xt−1)−

∂
∂λ P(Xt|Xt−1)

∂
∂α P(Xt|Xt−1)

P(Xt|Xt−1)

)

E
[..
`αφ

]
= (n− 1) ∑

all {xt ,xt−1}
P(Xt−1 = xt−1)

(
∂2

∂φ∂α
P(Xt|Xt−1)−

∂
∂φ P(Xt|Xt−1)

∂
∂α P(Xt|Xt−1)

P(Xt|Xt−1)

)
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E
[..
`φλ

]
= (n− 1) ∑

all {xt ,xt−1}
P(Xt−1 = xt−1)

(
∂2

∂φ∂λ
P(Xt|Xt−1)−

∂
∂φ P(Xt|Xt−1)

∂
∂λ P(Xt|Xt−1)

P(Xt|Xt−1)

)
The asymptotic distribution of the ML estimators is presented in the following result.

Theorem 1. Let the parameters be denoted by θ = (α, λ, φ)′. The estimator θ̂ is asymptotically
normally distributed, that is,

√
n
(
θ̂ − θ0

)
∼ N(0, v) where v, the variance-covariance matrix, is

given by the inverse Fisher Information matrix

v =

(
−E

[
∂2lnP(Xt

∣∣Xt−1)

∂θ∂θ′

])−1

with

∂2 ln P(Xt
∣∣Xt−1)

∂θ∂θ′
=


..
`αα

..
`αλ

..
`φα..

`αλ

..
`λλ

..
`φλ..

`φα

..
`φλ

..
`φφ

.

The mild regularities conditions in Section 4.1 of [6] are assumed to hold.

4. Coherent Forecasting
4.1. Descriptive Measures

Unlike the Box–Jenkins’ time series models which usually predict real values via
conditional mean, the aim of applying coherent forecasting is to obtain an integer forecast.
We applied three descriptive measures for coherent forecasting, that is, prediction root
mean squared error (PRMSE), prediction mean absolute deviation (PMAD), and percentage
of true prediction (PTP). Let Yt+k be the observation at time point t + k, and Ŷt+k be the
predicted observation, and m is the number of iterations. The descriptive measures are
calculated based on conditional mean and conditional median. The measures are as follows:

A. Prediction root-mean-squared error (PRMSE):

PRMSE =

√
1
m ∑m

k=1

(
Yt+k − Ŷt+k

)2

B. Prediction mean absolute deviation (PMAD):

PMAD =
1
m ∑m

k=1

∣∣Yt+k − Ŷt+k
∣∣

C. Percentage of true prediction (PTP):

PTP =
1
m ∑

k=1
I
(
Yt+k − Ŷt+k

)
× 100%

where I(·) is the indicator function.

4.2. Confidence Interval

We derive the 95% confidence interval for the k-step-ahead probability distribution
function for MPT(1) model based on the asymptotic normal distribution.

Theorem 2. Consider the k-step-ahead conditional probability pk(x
∣∣Xn; θ̂n) . For a sample size n

and fixed x, it has an asymptotically normal distribution with pk(x|Xn; θ0) and variance
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σk
2(x; α0, λ0, φ0) = n−1

[
να

(
∂pk
∂α

∣∣∣
α=α0, λ=λ0,φ=φ0

)2
+ νλ

(
∂pk
∂λ

∣∣∣
α=α0, λ=λ0,φ=φ0

)2

+νφ

(
∂pk
∂φ

∣∣∣
α=α0, λ=λ0,φ=φ0

)2
+2ναλ

∂pk
∂α

∂pk
∂λ

∣∣∣
α=α0, λ=λ0,φ=φ0

+2ναφ
∂pk
∂α

∂pk
∂φ

∣∣∣
α=α0, λ=λ0,φ=φ0

+ 2νλφ
∂pk
∂λ

∂pk
∂φ

∣∣∣
α=α0, λ=λ0,φ=φ0

]
where να, νλ and νφ are the diagonal elements and ναλ, ναφ and νλφ are respectively the
off-diagonal elements of v in Theorem 1. The elements of the partial derivatives are

∂
∂α pk(x|Xn) =

φkkαk−1Xn
1−αk

((
Xn − 1
x− 1

)(
αk
)x−1(

1− αk
)Xn−x

−
(

Xn
x

)(
αk
)x(

1− αk
)Xn−x

)
−λφkkαk−1

(
e−λαk

(λαk)
x−1

(x−1)! − e−λαk
(λαk)

x

x!

)
∂

∂λ pk(x|Xn) =
e−λ(λ)x−1

(x−1)! −
e−λ(λ)x

(x)! − (αφ)k
(

e−λαk
(λαk)

x−1

(x−1)! − e−λαk
(λαk)

x

x!

)
∂

∂φ pk(x|Xn) = kφk−1
[(

Xn
x

)(
αk
)x(

1− αk
)Xn−x

− e−λαk
(λαk)

x

x!

]
Thus, a 95% confidence interval for pk(x|Xn; α0, λ0, φ0) , based on its asymptotic

distribution, is given by

pk
(
x
∣∣Xn; α̂n, λ̂n, φ̂n

)
± 1.96σk(x; α0, λ0, φ0)

5. Simulation Study

A simulation study was conducted to compare the coherent forecasting performance
for all models presented in Section 2, that is, MPT(1), INAR(1) and Pegram’s AR(1) with
Poisson marginal. The data for this simulation study were generated from Pegram’s AR(1)
process with geometric marginal with parameters (0.5, 0.4) to represent low count series,
and (0.3, 0.8) to represent high count series. A sample size of 1000 for 10,000 Monte Carlo
samples was considered for the three models with Poisson marginal, that is, INAR(1),
Pegram’s AR(1) and MPT(1).

Given a (n + m) size of observed data {x1, x2, . . . , xn, xn+1, . . . xn+m}, the data were
partitioned into the training set {x1, x2, . . . , xn} and test set {xn+1, . . . xn+m}. The training
set was used to estimate the parameters whilst the test set was used to measure the
forecasting performance. We divided the simulated data into 70% for the training set and
30% for the test set. The simulation results with 10,000 Monte Carlo samples are reported in
Table 1. In the simulation study, the models were misspecified because data were generated
from Pegram’s AR(1) process with geometric marginal. It is known that multi-step ahead
forecasting is robust to model misspecification [23]. To check for robustness, the error
measures were computed for 50, 100 and 300 steps ahead of forecasting. It was seen that
there was little difference in the errors.
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Table 1. Estimated PRMSE, PMAD and PTP for Pegram’s AR(1), INAR(1) and MPT(1), with Poisson
process.

Model Parameters PRMSE PMAD PTP (%)

Pegram’s AR(1) (0.5,0.4) 0.0867 1.6135 22.3474

(0.3,0.8) 0.0335 0.4000 66.7706

INAR(1) (0.5,0.4) 0.9952 2.0921 14.8930

(0.3,0.8) 0.0341 0.3997 65.0158

MPT(1) (0.5,0.4) 0.1482 1.4890 23.6388

(0.3,0.8) 0.02446 0.4528 59.4330

First, we compared the forecasting accuracy of the model for different parameters.
Table 1 exhibits the simulation results of a 10,000 sample size for estimated PRMSE, PMAD
and PTP for the MPT(1) model. It was seen that the percentage of true prediction (PTP)
for high count series is much higher than low count series. The PMAD was recorded as
0.45 for high count series, which is much lower than 1.49 for low count series. Similarly, for
PRMSE, the error is 2% for high count series compared to a 14% error for low count series.

Next, we compared the forecasting accuracy across the time series models. For high
count series, it was highlighted that the PTP of MPT(1) outperformed the other two models,
and for low count series, MPT(1) model obtained about 24% of correct predictions which
was slightly better than Pegram’s AR(1) model, and performing much better than INAR(1)
model. A summary that can be drawn from the simulation study is that the MPT(1) model
is better equipped to handle low count series, whilst remaining competent for high count
series. We show some potential applications in the next section.

6. Real Applications

In this section, real data application is considered to illustrate the feasibility of the
model. Two real data sets are used in the analysis. Both data sets are equi-dispersed.
This section aims to study the forecasting performance of the MPT(1), INAR(1) and Pe-
gram’s AR(1) models for both sets of data. For all three models, we consider Poisson
marginal distribution.

6.1. Burn Claims Data

This data set was taken from the Workers Compensation Board (WCB) of British
Columbia in Canada. The data considered only the male workers, aged between 35 to 54,
in a logging company. The sample size was 120, and data were collected monthly from
January 1984 to December 1994. The frequency of the data is provided in Figure 1. The data
set contained high counts of zero, with 100 zeros out of 120 observations, and the maximum
is 2, which has only two counts. The mean of 0.34 is virtually equal to the variance of
0.33, suggesting that fitting with Poisson marginal is feasible. The model comparison was
carried out among MPT, Pegram’s AR(1) and INAR(1). In the comparison, the focus was
on forecasting accuracy.
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Figure 1. The histogram of the burn claims data.

For the data consisting of 120 observations, 110 observations were allocated to the
training set and the remaining 10 observations were used for the testing set. We estimated
the parameters from the training data set, and the forecasting accuracy was computed
based on the testing set. All the models provided similar results. It was reported that no
observations in the testing set were predicted correctly. The computation for PRMSE and
PMAD was 1.3784 and 1.3, respectively.

We performed a study to compare the forecasting performance with conditional mean
and conditional median. The results are tabulated in Table 2. It was reported that the
conditional mean (rounded up to the nearest integer) for MPT(1) model, outperformed
the other models, with lower PRMSE and PMAD. In addition, the PTP had a 50% of true
prediction. It is recommended that for MPT(1) model, the conditional mean can be a
viable tool for forecasting, with simpler expression and better accuracy compared to the
conditional median.

Table 2. Comparison of forecasting performance with conditional mean and conditional median.

Model Conditional Mean Conditional Median

MPT(1) PRMSE 0.5492 1.3784

PMAD 0.3152 1.3

PTP (%) 50 0

Pegram’s AR(1) PRMSE 1.0585 1.3784

PMAD 0.9511 1.3

PTP (%) 0 0

INAR(1) PRMSE 0.9037 1.3784

PMAD 0.7359 1.3

PTP (%) 0 0

Next, we were provided with some extra information on the asymptotic forecasting
distribution for all models. The parameter estimation of the Poisson MPT(1) process was
conducted with the EM algorithm for the computation of 95% confidence intervals. The
parameters and the standard errors (in brackets) for burn claims were estimated to be
α̂ = 0.9979(0.0245), φ̂ = 0.1789(0.0001) and λ̂ = 0.1792(0.0052). For coherent forecasting,
we applied k-step-ahead distributions of MPT(1) for the burn claims data, and the 95%
confidence intervals were computed. Figures 2–4 show the conditional probability for the
first six months.
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All the models performed well for low count data in coherent forecasting. Then,
10-step-ahead forecasting was run to observe the overall performance of the models. It was
noticed that the conditional distribution converged to the marginal distribution after six
steps. It was reported that the probability of zero claims in the first month was about 87%.
The computation also generated an average of 84% of no claims in the first five months.
Comparatively, it was highlighted that the standard error of the conditional probability
estimates by the MPT(1) process was 3.9% lower than Pegram’s AR(1), and was 2.5% lower
than INAR(1) models.
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6.2. Burglary Data

In this data set, the highest frequency of count is 3 and involved only one large
observation of 10. The burglary data were taken from the unique ID of the Beat 11 of
Pittsburgh city. The duration of the data was from the year 1990–2001. The mean of the data
was 2.8819 and the variance was 2.9652, which had an index of dispersion of 1.0289. The
sample PACF showed that lag 1 was possible, suggesting the fitting with Poisson MPT(1)
model. Figure 5 shows the frequency distribution of the data.
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The data were split into 132 counts for training purposes, and the remaining 12 counts
were kept for testing. For the Poisson MPT(1) model, it was observed that PRMSE was
1.6073, PMAD was 1.25 and PTP was 25%. Similar results were obtained for Pegram’s
AR(1) and INAR(1) with Poisson marginals.

7. Final Remarks

This paper examined coherent forecasting of Poisson MPT(1), a mixture model pro-
posed by [1]. The k-step-ahead conditional probability function and the relevant properties
were considered. Specifically, likelihood-based asymptotic distribution was developed
for the Poisson MPT(1) process. Three descriptive measures in forecasting based on the
conditional mean and conditional median were considered to measure the performance of
forecasting, that is, PRMSE, PMAD and PTP.
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A simulation study was conducted to evaluate the forecasting performance for MPT(1),
Pegram’s AR(1) and INAR(1) models with Poisson marginal. From the simulation study,
MPT(1) exhibited good forecasting performance. To exemplify the application, two real data
sets were used. For low count series, the conditional mean of the MPT(1) process provided
a more desirable forecast compared to the conditional median. An added computational
advantage was the simpler expression for the conditional mean.

The results highlighted that the k-step-ahead conditional probability function and
k-step-ahead conditional mean quickly converge to the probability function and the mean
after 4-step-ahead, respectively. The simulation study demonstrated that the multi-step
forecasting approach is robust to model misspecification. To conclude, Poisson MPT(1)
process is a flexible and viable integer-valued time series model with good coherent fore-
casting performance.
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