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Abstract: Alternating Direction Method of Multipliers (ADMM) is a widely used machine learning
tool in distributed environments. In the paper, we propose an ADMM-based differential privacy
learning algorithm (FDP-ADMM) on penalized quantile regression for distributed functional data.
The FDP-ADMM algorithm can resist adversary attacks to avoid the possible privacy leakage in
distributed networks, which is designed by functional principal analysis, an approximate augmented
Lagrange function, ADMM algorithm, and privacy policy via Gaussian mechanism with time-varying
variance. It is also a noise-resilient, convergent, and computationally effective distributed learning
algorithm, even if for high privacy protection. The theoretical analysis on privacy and convergence
guarantees is derived and offers a privacy–utility trade-off: a weaker privacy guarantee would result
in better utility. The evaluations on simulation-distributed functional datasets have demonstrated the
effectiveness of the FDP-ADMM algorithm even if under high privacy guarantee.

Keywords: distributed machine learning; ADMM; quantile regression; functional principal compo-
nent analysis; differential privacy
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1. Introduction

Machine learning is becoming more and more common in statistical modeling and data
analysis, along with the increasing concerns about the privacy disclosure of data. Therefore,
we urgently need to develop algorithms which can provide privacy protection for personal
data. In turn, the demand for data privacy protection has stimulated the establishment
of formal standards on data privacy and the development of privacy framework. Among
them, differential privacy (DP) [1,2] is the most widely discussed and developed technique
in theory [3–6], and the feasibility of adopting these theories is shown among others
by [7–9]. The framework of DP makes it convenient for us to construct privacy protection
algorithms. However, these privacy protection algorithms may also need to pay a price of
sacrificing the rate of convergence in statistical accuracy. Therefore, we need to develop
differential privacy distributed learning algorithms that do not sacrifice statistical accuracy
as much as possible for large-scale distributed data.

Distributed machine learning can disassemble the original huge training task into
multiple sub-tasks, that is, transforming large-scale learning that one machine can not
afford during collaborative learning with multiple machines. Recently, ref. [10] gave a
sparse distributed learning solution for high-dimensional problems; ref. [11] proposed a
distributed learning algorithm which segments features in a high-dimensional sparse addi-
tive model and proved the consistency of the sparse patterns for each additive component;
ref. [12] provided a more flexible framework using the communication-efficient surrogate
likelihood (CSL) procedure, which can solve different settings such as M-estimation for
low- and high-dimensional problems and Bayesian inference. Ref. [13] extended the CSL
method to distributed quantile regression and then established some statistical properties
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under quantile loss, which does not satisfy the smoothness condition of CSL method. In
distributed learning, each sub-task is executed separately on an independent machine. It
allows each machine to complete a collective learning objective, which is usually a stan-
dardized empirical risk minimization problem. The individual data that do not need to be
disclosed will be calculated in a local iterative algorithm, and the parameters will be trans-
ferred between the central machine and each local machine. At present, the widely used
algorithms for the decentralized distributed learning problems mainly include subgradient-
based algorithms [14,15], alternating direction method of multipliers(ADMM) [16–19], and
the combination algorithms of these methods [20]. Ref. [21] proved that ADMM-based
algorithms converge at the rate of O(1/L), while subgradient-based algorithms usually
converge at the rate of O(1/

√
L), where L is the number of iterations. Therefore, in this

paper, we adopt an ADMM-based distributed learning algorithm against privacy disclosure
and keep a statistical guarantee.

We know that sensitive individual information may be leaked in optimization algo-
rithms as a result of sharing information such as parameters and/or gradients of the model
between machines, as presented in [22,23]. The same problem exists in our ADMM-based
distributed algorithm: how to avoid privacy leakage. So, we need to protect privacy via a
DP mechanism while maintaining statistical accuracy in our distributed learning. Ref. [24]
studied a class of regularized empirical risk minimization machine learning problems via
ADMM and proposed the dual variable perturbation and the primal variable perturbation
methods for dynamic differential privacy. Ref. [25] proposed a privacy-preserving coop-
erative learning scheme, where users are allowed to train independently using their own
data and only share some updated model parameters. They used an asynchronous ADMM
approach to accelerate learning. In addition, their algorithm integrates secure computing
and distributed noise generation to ensure the confidentiality of shared parameters during
the asynchronous ADMM algorithm process. Ref. [26] applied a new privacy-preserving
distributed machine learning (PS-ADMM) algorithm based on stochastic ADMM, which
provides a privacy guarantee by perturbing the gradient and has a low computational cost.
In the paper, we focus on a functional linear regression model for functional data analysis
via ADMM-based distributing learning to keep DP and statistical efficiency.

Functional data are natural generalizations of multivariate data from finite dimensional
to infinite dimensional which are obtained by observing a number of subjects over time,
space, and other continua. In practice, functional data are frequently recorded by an
instrument, which involves a large number of repeated measurements per subject. They
can be curves, surfaces, images, or other complex objects; see some real data sets in the
monographs [27–29]. All in all, a functional datum is not a single observation but rather
a set of measurements along a continuum; taken together, they are regarded as a single
entity, curve, or image. In recent decades, functional data analysis has drawn considerable
attention because advanced technology makes functional data easier to collect in applied
fields such as medical studies, speech recognition, biological growth, climatology, online
auctions, and so on. Time series data are treated as multivariate data because they are given
as a finite discrete time series. In addition, longitudinal data, which are often observed
in biomedical follow-up studies, are strongly linked with functional data; however, their
use often involves several (few) measurements per subject taken intermittently at different
time points for different subjects. Therefore, functional data and longitudinal data are also
intrinsically different. In addition, some classic multivariate data analysis tools, applied to
time series and longitudinal data analysis, cannot be directly applied to functional data
analysis because they ignore the fact that the underlying object of the measurements of a
subject is a function such as curve or surface. We know that functional data are intrinsically
infinite dimensional, and our analysis methods cannot be based on the assumption that
the values observed at different times for a single subject are independent because of the
intra-observation dependence. The high intrinsic dimensionality and the intra-observation
dependence of functional data pose challenges both for theory and computation.



Mathematics 2022, 10, 2954 3 of 28

Recently, various approaches and statistical models for the analysis of functional data
have been developed. For an introduction and summary, see [27–30]. Ref. [31] firstly
proposed a linear regression model and analyzed the effects of functional independent vari-
ables on the scalar response variables through the inner product of functional independent
variables and unknown nonparametric coefficient function. Ref. [32] gave a functional
linear semiparametric quantile regression model, which has been used to analyze ADHD-
200 patients data. Ref. [33] studied the estimation problem of a functional partial quantile
regression model, and proved the asymptotic normality of the finite dimensional parameter
estimation. The conventional method of functional data analysis is principal component
analysis (PCA), such as [34,35]. Ref. [35] gave the optimal convergence rates of PCA. We
will consider functional principal components analysis (FPCA) for our functional linear
regression model and investigate the distributed learning with privacy.

In this paper, we propose a new ADMM-based distributed learning algorithm with
differential privacy to handle large amounts of functional data. We call it the FDP-ADMM
algorithm. Our proposed FDP-ADMM algorithm has good properties such as a faster
rate of convergence, lower communication and computation costs, and better utility–
privacy tradeoffs. In the FDP-ADMM algorithm, we consider a more robust quantile
loss function, combine an approximate augmented Lagrange function, and integrate time-
varying Gaussian noise into local learning on each machine. These techniques allow the
FDP-ADMM algorithm to be adversarial while protecting privacy.

The main contributions of this paper are summarized as follows:

• We propose a distributed learning algorithm (FDP-ADMM) that can process large-
scale distributed functional data and protect privacy. For the large-scale functional
data, we adopt functional principal component analysis to reduce the dimensions
of the data, improve the quality of data information, and promote the efficiency of
functional data analysis using distributed learning.

• We introduce a quantile loss function for functional linear model such that our models
are adaptive to heavy-tail data or outliers. Thus, our ADMM-based distributed
learning algorithm is more robust compared with ordinary least square procedure.

• The privacy and theoretical convergence guarantees of the FDP-ADMM algorithm are
derived, and a privacy–utility trade-off is demonstrated: a weaker privacy guarantee
would result in better utility.

• We conduct numerical experiments to illustrate the effectiveness of FDP-ADMM in
the framework of distributed learning. The results of experiments are consistent with
our theoretical analysis.

The rest of this paper, is organized as follows. In Section 2, we state our problem
formulation by introducing the functional linear regression model, the penalized quantile
regression, the ADMM algorithm, and DP. In Section 3, we propose an ADMM-based
distributed learning algorithm with privacy protection for distributed functional data
analysis. In Section 4, we present the utility analysis of our algorithm, FDP-ADMM,
including the convergence and privacy guarantee. In Section 5, we give some numerical
experiments to verify our theoretical results. Some conclusions are given in Section 6. The
proofs of the main results are collected in Appendix A.

Notations

For any positive integer n, we define [n] := {1, 2, . . . , n}. ‖ · ‖, ‖ · ‖2 and ‖ · ‖∞ are
denoted as the Euclidean norm, `2-norm, and `∞-norm, respectively. ρτ(u) = u(τ − I{u ≤
0}) is the quantile loss function for a scalar u ∈ R. and I{·} denotes the indicator function.
For a vector u = (u1, · · · , un)T , we define ρτ(u) = ∑n

i=1 ρτ(ui). Throughout this paper, the
constant C denotes positive constant whose value may change from line to line. For any
function f and a positive function φ, f � φ means aφ < f < bφ for some positive constants
a and b.
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2. Problem Formulation

In this section, we present the functional data model, quantile regression, ADMM
algorithm, and difference privacy mechanisms to be studied.

2.1. Functional Data Analysis

Functional data consist of functions that are basically smooth but are usually corrupted
with noise, such as curves, images, and so on. For simplicity, we assume the functional
predictor X(t) on the finite time interval I = [0, T]. Let {xi(t) : t ∈ I}1≤i≤n be observation
variables; that is, for each t ∈ I, there exists an observed value xi(t) ∈ R. A typical
functional data set is: {

xi
(
tj,i
)
∈ R : tj,i ∈ I, 1 ≤ i ≤ n, 1 ≤ j ≤ Ji

}
,

where Ji is the observation number, and n is the number of individuals. If Ji is small,
then the data are called sparse; otherwise they are called dense. FDA pays attention to
the shape of the potential function or curve of the data via some statistical models and
estimation procedures.

Functional linear regression is a standard method in functional data analysis for
incorporating functional predictors, which focuses on modeling the relationship between a
functional or continuous response Y and a functional predictor X(t), in which t varies in a
compact set I. It usually has the form:

Y = β0 +
∫

I
β(t)X(t)dt + ε,

where β0 is a intercept term, ε is the random noise independent of X(t), and β(t) is
an unknown function of interest. Without loss of generality, we assume E(Y) = 0 and
E(X(t)) = 0. Based on data {(Xi(t), Yi), i = 1, · · · , n}, the model becomes:

Yi =
∫

I
β(t)Xi(t)dt + ε. (1)

FPCA is commonly used for analyzing such models (1) with the purpose of dimension
reduction. The main idea is to summarize the data variation and information via some
dimensional loadings. Dimension reduction in FPCA is performed through an expansion
of basis, which consists of the eigenfunctions formed by the covariance operator Σ(·, ·) of
the process X(t) : t ∈ I. By Mercer’s theorem, the spectral decomposition is

Σ(s, t) = Cov(X(s), X(t)) =
∞

∑
k=1

λkφk(s)φk(t),

where s, t ∈ I, λk are the ordered eigenvalues such that λ1 ≥ λ2 ≥ . . ., and the function φk
forms the orthogonal basis corresponding to λk, k = 1, 2, · · · .

By Karhunen and Loève [36], in the classical functional principal component analysis,
the ith random curve X(t) and functional coefficient β(t) can be expressed as:

Xi(t) =
∞

∑
k=1

Aikφk(t), β(t) =
∞

∑
k=1

wkφk(t),

where the coefficients Aik =
∫

I Xi(t)φk(t)dt and wk =
∫

I β(t)φk(t)dt are the functional
principal components. In addition, E(Aik) = 0 and var (Aik) = λk for k = 1, 2, · · · . We
have the top K of λk and taking their corresponding φk(t), we have an approximation to
Xi(t) truncated as:

XK
i (t) =

K

∑
k=1

Aikφk(t).
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Then we consider the functional principal component regression into the functional
linear model:

Yi =
∫

I
Xi(t)β(t)dt + εi ≈

K

∑
k=1

Aikwk + ε, f or i = 1, · · · , n, (2)

We regard wk (k = 1, · · · , K) as unknown parameters. We can select a proper K FPCA
basis to represent the functional data Xi(t); that is, the most important information of data
can be refined by FPCA.

2.2. Quantile Regression with Penalties

We have i.i.d observations (Ai, yi), i = 1, 2, · · · , n, with Ai = (Ai1, · · · , AiK). Let
Qyi |Ai

(τ) = Aiwτ be the conditional quantile of yi on Ai ∈ RK, for a give the quantile

level τth, τ ∈(0,1). Let wτ = (w1,τ , · · · , wK,τ)
T . The quantile regression estimate of wτ is

defined as:

ŵτ = arg min
w∈RK

ρτ(y− Aw), (3)

where A = [A1, . . . An]
T ∈ Rn×K is a matrix, ρτ(u) = u(τ − I{u ≤ 0}) is the quantile loss

function for a scalar u ∈ R and I{·} denotes the indicator function.
Penalized quantile regression (PQR) is formulated as

min
w

ρτ(y− Aw) + Pλ(w), (4)

where Pλ(·) is a penalty, such as lasso penalty [37],

Pλ(w) = λ‖w‖1; (5)

or elastic net [38],
Pλ(w) = λ

(
λ2‖w‖2

2 + λ1‖w‖1

)
, λ1, λ2 ≥ 0. (6)

Penalized QR, such as (5) and (6), leads to biased estimators. To obtain an unbiased
estimator, refs. [39,40] proposed a non-convex penalty, for instance, the MCP penalty [39],
or the SCAD penalty [40].

Our learning empirical loss is:

L̂(w) :=
1
n

n

∑
i=1

ρτ(yi − Aiw) (7)

based on all data coming from all machines. As the data are distributed on local machines,
it is difficult to collect all data into one machine, and additionally, there are privacy issues.
Therefore, we apply the technique of distributed learning via the ADMM algorithm for the
following distributed empirical loss (11). ADMM is a computational framework to solving
optimization problems.

2.3. ADMM Algorithm

ADMM algorithm was first proposed by [41,42] in 1975 and 1976, respectively. Then,
ADMM was reviewed and proven to be suitable for large-scale distributed optimization
by [16]. In this section, we give the basic ADMM formulation.

Assume that our optimization problem is expressed as:

min
x,z
{ f (x) + g(z)} s.t. Bx + Cz = d (8)

where x ∈ Rn, z ∈ Rs, matrices B ∈ Rm×n and C ∈ Rm×s, vector d ∈ Rm, and functions
f : Rn → R and g : Rs → R. x and z are the variables needing to be optimized. The
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optimization problem (8) consists of two parts: f (x) related to variable x and g(z) related
to variable z. This structure can easily be dealt with via ADMM as follows: First, we have
the augmented Lagrangian function:

Lρ((x, z), u) := f (x) + g(z) + uT(Bx + Cz− d) +
ρ

2
‖Bx + Cz− d‖2

2, (9)

where u is the dual variable (or called the Lagrange multiplier), and ρ > 0 is a penalty
parameter. The name ‘augmented’ in the Lρ refers to the quadratic penalty term ρ

2‖Bx +
Cz− d‖2

2, which is added for better convergence properties of algorithm. Then, the ADMM
iterative solution of the optimization problem (9) is:

xl+1 := arg min
x

Lρ

(
x, zl , ul

)
,

zl+1 := arg min
z

Lρ

(
xl+1, z, ul

)
,

ul+1 := ul + ρ
(

Bxl+1 + Czl+1 − d
)

.

(10)

The ‘multiplier method’ in ADMM refers to a dual ascent using augmented Lagrange
function (with quadratic penalty term), and the ‘alternating direction’ refers to variables
x and z be updated alternately. For more theories and applications about ADMM, refer
to [16].

2.4. Differential Privacy

Differential privacy technology was originally designed to confront differential attacks
problem. The traditional protecting method is to anonymize or encrypt to the datasets.
However, some individual information can still be recovered from these anonymous data,
based on certain algorithms, such as the recommendation algorithm. Therefore, Ref. [3]
proposed the mechanism of differential privacy to protect privacy, which adds a designed
noise in the algorithm so that attackers can not recover data information. Moreover, it has
been proven that as long as the noise satisfies the differential privacy mechanism, no matter
how much prior information the attacker has, the anonymous data cannot be reconstructed.

This paper mainly studies differential privacy for ADMM against adversarial attacks.
Intuitively speaking, if an adversary can not tell whether a individual datum x belongs to
the special data set X or not, when we output results from algorithmM(X ). We call that
DP. Now, we give the definition of the (ε, δ)-differential privacy from Dwork’s work [2].

Definition 1 ((ε, δ)-Differential Privacy). A randomized algorithm M : X n → R is (ε, δ)-
differential private if for any two adjacent datasets (differing in only one tuple) X, X′ ∈ X n , and
for any measurable output subset S ⊆ range(M):

P[M(X) ∈ S ] ≤ eε · P
[
M
(
X′
)
∈ S

]
+ δ,

where probability measure P, which is bounded, only depends on the randomness of algorithmM.

In Definition 1, δ and ε measure the protection strength of the privacy. It implies
that a smaller δ or a smaller ε gives better privacy protection. The Laplace and Gaussian
mechanisms are two typical methods that are widely used in (ε, δ)-differential privacy.
They offer calibrated noise sampled from Laplace or Gaussian distribution, and add this
noise into the algorithm. Now we consider a class of deferentially private algorithms
via compositions, termed ‘k-fold adaptive composition’ in the literature. The advanced
composition stated below, where the auxiliary inputs of the k-th algorithm are the outputs
of all previous algorithms, shows how privacy parameters degrade as private algorithms
are composited.
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Lemma 1 (Theorem 4 in [43] (Advanced Composition)). Let ε, δ ≥ 0. The class of (ε, δ)-
differentially private algorithms satisfies (ε′, δ)-differential privacy under k-fold adaptive composi-
tion, where ε′ = c0

√
kε for some constant c0.

3. Distributed Learning with DP for Functional Data via ADMM

In this section, we propose the ADMM-based distributed learning algorithm with DP
for functional data, which is called FDP-ADMM. We will transfer the functional regression
model (1) into a linear regression model (2) by using FPCA. Because quantile regression
has better performance in estimation and prediction for non-Gaussian distribution er-
ror, such as heavy-tailed distribution or outliers, we consider quantile regression for the
models (1) and (2). First, based on data {(Xi(t), yi), i = 1, · · · , n}, the functional quantile
linear regression model we consider is

yi =
∫

I
βτ(t)Xi(t)dt + ετ,i,

where τ ∈ (0, 1) is a given quantile level, and ετ,i are random errors. Without loss of
generality, we assume that the τth quantile of ετ,i is equal to zero. The model can be written
as Qyi |Xi

(τ) =
∫

I βτ(t)Xi(t)dt. Our goal is to learn the functional coefficient βτ(t) by

min
βτ(t)

n

∑
i=1

ρτ

(
yi −

∫
I

βτ(t)Xi(t)dt
)

.

The problem is difficult because of the term
∫

I βτ(t)Xi(t)dt. By the FPCA introduced
in Section 2.1, we have the model (2):

yi =
∫

I
Xi(t)βτ(t)dt + ετ,i ≈

K

∑
k=1

Aikwτ,k + ετ,i, f or i = 1, · · · , n.

That is, functional quantile linear regression is transformed as an ordinary quantile linear
regression. We suppress the dependency of wτ,k on τ for simplicity. Then, for the quantile
linear regression, we propose penalized quantile regression learning, which is formulated as

min
w

ρτ(y− Aw) + Pλ(w).

It has been introduced in Section 2.2.
However, our dataset {(Xi(t), yi), i = 1, · · · , n} cannot be collected on one

machine, but distributed over M machines. That is, we have the distributed data
{(Xi,j(t), yi,j), i = 1, · · · , M, j = 1, · · · , mi}, where M is the number of worker machines,
and mi is the size of sample on the ith machine. Thus, based on FPCA, {(Xi,j(t), yi,j), i =
1, · · · , M, j = 1, · · · , mi} is transformed as {(yij, Ai,j), i = 1, · · · , M, j = 1, · · · , mi}, where
Ai,j = (Ai,j1, · · · , Ai,jK) is the score of the jth sample on the ith worker machine. So, based
on the distributed data {(yij, Ai,j), i = 1, · · · , M, j = 1, · · · , mi} and the model (2), we have
the following QR estimation in the distributed framework:

ŵτ = argmin
M

∑
i=1

(
mi

∑
j=1

1
mi

ρτ

(
yij − Ai,jw

))
, (11)

where ρτ(·) is the loss function of quantile regression, and w is the unknown coefficient.
Furthermore, we modify QR as penalized QR estimator for achieving faster shrinking,
that is:

ŵτ = argmin
M

∑
i=1

(
mi

∑
j=1

1
mi

ρτ

(
yij − Ai,jw

))
+ Pλ(w). (12)
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Note that in (12), there exist two type of tuning parameters, K and λ, where K controls
the number of scores to characterize the decomposition level of FPCA and λ controls the
fitness of the model.

When facing big data, that is, when n is very large, it is hard for one machine to
learn w in (12). So, it is necessary to distributed storage and learning. Next, we will
demonstrate the ADMM-based distributed learning for penalized QR. We provide a sketch
of our FDP-ADMM algorithm based on the distributed data.

3.1. ADMM-Based Distributed Learning Algorithm

Assume we have M machines, and the ith machine has mi local data samples. Apply-
ing the ADMM algorithm, we re-formulate the problem (12) as:

min
{wi}i∈[M]

M

∑
i=1

(
mi

∑
j=1

1
mi

ρτ

(
yij − Ai,jwi

)
+

λ

M
P(wi)

)
,

s.t. wi = w, i = 1, . . . , M,

(13)

where wi ∈ RK is the local model parameters, and w ∈ RK is the global ones. Then, the
augmented Lagrangian function for the ith machine is:

Lρ,i(wi, w, γi) =
mi

∑
j=1

1
mi

ρτ

(
yij − Ai,jwi

)
+

λ

M
P(wi)− 〈γi, wi −w〉+ ρ

2
‖wi −w‖2 (14)

s.t. wi = w, i = 1, 2, . . . , M. (15)

The objective (14) is decoupled and each worker only needs to minimize the sub-
problem based on its local data set. Constraints (15) enforce all the local models to consensus.
It results in the following iteration:

wl
i = argmin

wi

L̂ρ,i

(
wi, wl−1, γl−1

i

)
, (16)

wl =
1
M

M

∑
i=1

wl
i −

1
M

M

∑
i=1

γl−1
i /ρ, (17)

γl
i = γl−1

i − ρ
(

wl
i −wl

)
. (18)

Note that each machine transfers its
(

wl
i , γl

i

)
to a central machine. The central machine

gathers them to update wl and then broadcasts it to each machine. Details for the algorithm
are present in Algorithm 1. Based on output wL, we obtain:

β̂N−DP(t) =
K

∑
k=1

wL
k φk(t).
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Algorithm 1: ADMM for PQR of Functional Data (F-ADMM)

Input: Initialize: w0, {w0
i }i∈[M], {γ0

i }i∈[M] and number of iteration L

for l = 1, 2, · · · , L do
Inherit parameters from the previous iteration

for Worker machine i = 1, 2, · · · , M do
Compute wl

i using Equation (16);

Deliver (wl
i , γl−1

i ) to central machine.
end

Central machine computes wl by Equation (17), then broadcasts it to all machines.

for Worker machine i = 1, 2, · · · , M do
Compute γl

i using Equation (18).

end
end

Output: wL.

3.2. ADMM-Based Distributed Learning with DP

For achieving faster optimization, we make use of the first-order approximation to the
penalized objective function. Then, Lρ,i(wi, w, γi) in (14) becomes:

L̂ρ,i

(
wi, w̃l−1

i , w, γi

)
=

mi

∑
j=1

1
mi

ρτ

(
yij − Ai,jw̃l−1

i

)
+

λ

M
P
(

w̃l−1
i

)

+

〈
mi

∑
j=1

1
mi

ρ′τ

(
yij − Ai,jw̃l−1

i

)
+

λ

M
P′
(

w̃l−1
i

)
, wi − w̃l−1

i

〉

−〈γi, wi −w〉+ ρ

2
‖wi −w‖2 +

∥∥∥wi − w̃l−1
i

∥∥∥2

2ηl
i

, (19)

where ηl
i ∈ R is the time-varying step size which decreases as the iteration l grows, ρ′τ is

the subgradient of the quantile loss function, and P′ is the subgradient of the penalty. So,
we have the following optimization problem:

min
wi

M

∑
i=1
L̂ρ,i

(
wi, w̃l−1

i , w, γi

)
s.t. wi = w, i = 1, 2, . . . , M. (20)

Here, we give the ADMM-based distributed learning algorithm with DF (FDP-ADMM)
as follows:

wl
i = argmin

wi

L̂ρ,i

(
wi, w̃l−1

i , wl−1, γl−1
i

)
, (21)

w̃l
i = wl

i + ξ l
i , (22)

wl =
1
M

M

∑
i=1

w̃l
i −

1
M

M

∑
i=1

γl−1
i /ρ, (23)

γl
i = γl−1

i − ρ
(

w̃l
i −wl

)
, (24)
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where ξ l
i in (22) are sampled from N

(
0, σ2

i,lIK

)
, and wl in (23) is computed on the central

machine. The rest are processed at each local machine. Details on FDP-ADMM algorithm
are presented in Algorithm 2. Based on output wL of Algorithm 2, we obtain:

β̂DP(t) =
K

∑
k=1

wL
k φk(t).

Note that the central machine initializes the global w0, while each worker machine
initializes their own variables: the noisy primal variables

{
w̃0

i
}

and the dual variables{
γ0

i
}

for i ∈ [M]. ξ l
i is Gaussian noise with zero-mean and variance σ2

i,l , where σ2
i,l is

obtained based on the Gaussian mechanism of DP, which is given in Theorem 1. Each
worker machine updates its noisy primal variable w̃l

i based on (22). Then, the central

machine receives all noisy primal variables
{

w̃l
i

}
i∈[M]

and the dual variables
{

γl
i

}
i∈[M]

from the worker machine, and updates a global variable wl . In addition, wl on central
machine broadcasts to every worker machine to update the final dual variables

{
γl

i

}
i∈[M]

using (24). It is an iterative cycle.

We set the variance σi,l =
2c1
√

2 ln(1.25/δ)

miε(ρ+1/ηl
i )

for obtaining the (δ, ε)-DP of the FDP-ADMM

algorithm, which is set based on the Gaussian mechanism of DP. σ2
i,l is time-varying; that is,

it decreases as iteration l increases. The motivation of using time-varying variance in the
Gaussian mechanism is to reduce the negative impact of noise and ensure the convergence
of the algorithm. We find that the negative impact will be mitigated by the method of
decreasing noise and can achieve a stable solution.

For the communication and computation costs of our algorithms 1 and 2, here are some
remarks. We know that it is unrealistic to send the estimator of β(t), t ∈ [0, 1] on a worker
machine to the central machine because it is infinite dimensional. In Algorithms 1 and 2, we
only transmit the K-dimensional w in each round of communication, so the communication
complexity is only O(K). In practice of functional data analysis, K is usually a small number
such as 5, 10, etc. Therefore, our algorithms are communication-efficient because of the low
communication costs. In addition, in each round of learning, each worker machine learns
its own low-dimensional parameter w based on its local data, then the central machine
is responsible for summarizing these parameters from worker machines. This working
mechanism greatly reduces the computational costs.
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Algorithm 2: ADMM-based distributed learning with DP for PQR of Functional
Data (FDP-ADMM)

Input: Initialize: w0, γ0, w̃0
i and number of iteration L

for l = 1, 2, · · · , L do
Inherit parameters from the previous iteration

for Worker machine i = 1, 2, · · · , M do
Compute wl

i using Equation (21);

Sample ξ l
i ∼ N (0, σ2

i,lIK), where σ2
i,l is given in Therorem 1;

Compute w̃l
i using Equation (22);

Deliver (w̃l
i , γl−1

i ) to central machine.
end

Central machine computes wl using Equation (23) , then broadcasts it to all

machine.

for Worker machine i = 1, 2, · · · , M do
Compute γl

i using Equation (24).

end
end

Output: wL.

4. Utility Analysis
4.1. Privacy Guarantee

In the section, we will analyze the privacy guarantee of the proposed FDP-ADMM
algorithm. During traditional parameter transmission, the shared information

{
wl

i

}
l∈[L]

can divulge the sensitive messages of original data. So, it is necessary to show outputs{
w̃l

i

}
l∈[L]

with differential privacy.

Denote the two neighboring datasets Ai and A′i. So, the wl
i,Ai

and wl
i,A′i

are the primal
variables obtained from every local worker machine. From the FDP-ADMM algorithm,
we add noise to wl

i by Gaussian mechanism. A fundamental tool used in DP is sensitivity.
We use l2-norm sensitivity. Due to the application of first-order approximation in the
augmented Lagrange function, the proposed algorithm does not require the smoothness
and strong convexity assumptions to the objective function for proving the sensitivity.

First, we give a lemma, which gives an l2-norm sensitivity of wl
i under the sub-gradient

`′ of loss function `, bounded.

Lemma 2. Assume that ‖`′(·)‖2 ≤ c1. The l2-norm sensitivity of the local primal variable wl
i

update function is given by:

max
A1,A′1

∥∥∥wl
i,Ai
−wl

i,A′i

∥∥∥ =
2c1

m2
i
(
ρ + 1/ηl

i
) .

Its proof is given in Appendix A. Lemma 2 shows that the l2 sensitivity of wl
i is affected

by the time-varying ηl
i . We set ηl

i as a decreasing function of l, so the l2 sensitivity decreases
with increasing l. That is, if ε and δ is fixed, the added noise in the proposed algorithm will
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become smaller as the l increases. Therefore, the algorithm will be stably convergent in spite
of adding the noise. Then, we show that Algorithm 2 guarantees (ε, δ)-differential privacy.

Theorem 1. Assume that ‖Aij‖2 ≤ c1, i = 1, · · · , M and j = 1, · · · , mi in the model (11).
Let ε ∈ (0, 1] be arbitrary and ξk

i be the noise sampled from Gaussian mechanism with variance
σ2

i,k, where

σi,k =
2c1
√

2 ln(1.25/δ)

miε
(
ρ + 1/ηk

i
) .

The FDP-ADMM guarantees (ε, δ)-differential privacy. Specifically, for any neighboring datasets
Ai and A′i, for any output w̃k

i , the following inequality always holds:

Pr
[
w̃k

i | Ai

]
≤ eε · Pr

[
w̃k

i | A′i
]
+ δ.

Its proof is given in Appendix A.

4.2. Convergence of the FDP-ADMM Algorithm

The convergence of ADMM for convex problems has been widely studied in recent
years. Under the requirement of high precision, the convergence of ADMM goes very
slowly. However, under the requirement of medium precision, the convergence speed
of ADMM is acceptable, and the global solution can be achieved by dozens of iterations.
Furthermore, Ref. [44] showed that ADMM could attain a global linear convergence
on strict convexity and Lipschitz gradient, especially when matrix B and C in (8) are full
column rank. The ADMM framework is suitable for large-scale statistical learning problems.
More convergence analysis of ADMM under convexity were studied by [45–52], and so
on. Ref. [53] proposed an approximate ADMM algorithm to make it converge to the stable
point with a large enough penalty parameter. Ref. [54] gave the convergence of quantile
regression using ADMM for convex and non-convex penalties. We refer to [54] for the
convergence of our FDP-ADMM algorithm.

We define w∗ as the optimal solution of (13) and cw = ‖w∗‖2. The convergence of the
algorithm is based on the fact that the quantile loss function is convex and non-smooth.
For simplicity of analysis, we define some notations as follows:

fi(wi) =
mi

∑
j=1

1
mi

ρτ

(
yij − Ai,jwi

)
+

λ

M
P(wi),

wL =
1
L

L

∑
l=1

wl , γ̄L
i =

1
L

L

∑
l=1

γl
i , wl

i =
1
L

L−1

∑
l=0

w̃l
i ,

ul
i =

 w̃l
i

wl

γl
i

, ui =

 wi
w
γi

, F
(

ul
i

)
=

 −γl
i

γl
i

w̃l
i −wl

.

We analyze the convergence of our proposed algorithm in terms of both the objective
value and the constraint violation as [55]:

M

∑
i=1

(
fi

(
wL

i

)
− fi(w∗) + g

∥∥∥wL
i −wL

∥∥∥),

where ∑M
i=1
(

fi
(
wL

i
)
− fi(w∗)

)
is used to measure the distance between the current objective

value and the optimal value, and ∑M
i=1 g

∥∥wL
i −wL

∥∥ depicts the difference between the local
model and the global one. If the training result of our FDP-ADMM algorithm achieves
optimal and local models, it obtains consensus.
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Lemma 3 ([55], lemma 2). Assume ρτ(·) and P(·) are convex. For any l ≥ 1, we have:

M

∑
i=1

(
fi

(
w̃l−1

i

)
− fi(wi) +

(
ul

i − ui

)>
F
(

ul
i

))

≤
M

∑
i=1

(
ηl

i
2

∥∥∥ f ′i
(

w̃l−1
i

)
−
(

ρ + 1/ηl
i

)
ξ l

i

∥∥∥2
− ρ

2

∥∥∥wi −wl
∥∥∥2

+
ρ

2

∥∥∥wi −wl−1
∥∥∥2

−
(

ρ + 1/ηl
i

)〈
ξ l

i , wi − w̃l−1
i

〉
+

1
2ηl

i

∥∥∥wi − w̃l−1
i

∥∥∥2
− 1

2ηl
i

∥∥∥wi − w̃l
i

∥∥∥2

+
1

2ρ

∥∥∥γi − γl−1
i

∥∥∥2
− 1

2ρ

∥∥∥γi − γl
i

∥∥∥2
)

.

Based on Lemma 3, we have:

Theorem 2. Assume that ‖Aij‖2 ≤ c1, i = 1, · · · , M, and j = 1, · · · , mi in the model (11); P(·)
are convex; and ‖P′(·)‖ ≤ c2. The domain of the dual variable is bounded, namely, ‖γi‖ ≤ g. We
set the learning rate as:

ηl
i =

cw√
2l

(
(c1 + λc2/M)2 +

8Kc2
1 ln(1.25/δ)

m2
i ε2

)− 1
2

.

For any L ≥ 1 and g, we have:

E
[

M

∑
i=1

(
fi

(
wL

i

)
− fi(w∗i ) + g

∥∥∥wL
i −wL

∥∥∥
≤

M

∑
i=1

cw√
L

√
2(c1 + λc2/M)2 +

16Kc2
1 ln(1.25/δ)

m2
i ε2

+
M
(
ρc2

w + g2/ρ
)

2L
.

Its proof is given in Appendix A. Theorem 2 shows our approach achieves the rate of
convergence at O(1/

√
L), and gives an explicit utility-privacy trade-off of our FDP-ADMM

algorithm. For the larger ε or δ, our algorithm has better utility. Note that the larger ε or δ
means the weaker privacy-preserving ability.

5. Simulation Study

In this section, we illustrate the performance of the proposed privacy-protection
FDP-ADMM algorithm using a simulated study.

The simulation design is described as follows:

yi =
∫

I
β(t)Xi(t)dt + ετi, i = 1, · · · , n,

where n is the sample size on all worker machines;

β(t) =
50

∑
k=1

wkφk(t),

with w1 = 0.3, wk = 4(−1)k+1k−2 for k ≥ 2, φ1(t) ≡ 1 and φk(t) = 21/2 cos((k− 1)πt) for
k ≥ 2;

Xi(t) =
50

∑
k=1

Aikφk(t),
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where Aik’s are independent and normal N(0, k−2); and the errors

ετi = εi − F−1
ε (τ),

where Fε is the distribution function of εi, take ε ∼ t(3). Note that F−1
ε is subtracted from

εi to make the τth quantile of ετi zero for identifiability. The datasets (yi, Xi(t))n
i=1 are

distributed on M worker machines, and each machine has the same sample size m. So,
n = Mm.

In the simulation, we set n = 100,000 samples, and randomly split the dataset into
M = 10, 20, and 50 groups to simulate the distributed learning condition. We take the
penalty parameter ρ = 0.1, and the regularized parameter λ = 0.05. We set the level of quan-
tile τ = {0.1, 0.25, 0.5, 0.75, 0.9}, and set privacy budget per iteration ε = {0.01, 0.05, 0.1, 0.2}
and δ =

{
10−3, 10−4, 10−5, 10−6}. For each scenario, we run the algorithm 100 times. We

consider our FDP-ADMM algorithm with typical l1-norm and l2-norm penalties and then
assess it in terms of convergence and accuracy.

First, we report the mean integrated squared error (MISE) of the estimator β̂DP(t)
computed on a grid of 100 equally spaced points on I = [0, 1], that is:

MISE = E
(∫ 1

0
(β̂DP(t)− β(t))T(β̂DP(t)− β(t))dt

)
.

Second, based on w̄l
i and w̄l , we evaluate the convergence properties of the FDP-

ADMM algorithm with respect to the augmented objective value, which measures the loss
as well as the constraint penalty and is defined as:

M

∑
i=1

(
fi

(
wl

i

)
+ ρ
∥∥∥wl

i −wl
∥∥∥).

Third, we evaluate the accuracy by empirical loss:

1
M

M

∑
i=1

mi

∑
j=1

1
mi

ρτ

(
yij − Aijw̃k

i

)
.

5.1. L1-Regularized Quantile Regression

We obtain the FDP-ADMM steps for the l1-norm quantile regression by:

wl
i =

(
1

mi

mi

∑
j=1

AT
i,j(τ − I{yi,j−Ai,jw̃

l−1
i ≤0})−

λ

M
sgn
(

w̃l−1
i

)
+γl−1

i + ρwl−1 + w̃l−1
i /ηl

i

)(
ρ + 1/ηl

i

)−1
,

w̃l
i = wl

i +N
(

0, σ2
i,lIK

)
,

wl =
1
M

M

∑
i=1

w̃l
i −

1
M

M

∑
i=1

γl−1
i /ρ,

γl
i = γl−1

i − ρ
(

w̃l
i −wl

)
,

where sgn(·) is the sign function. Since the objective function is convex but non-smooth,
we use Theorem 2 to set ηl

i and apply Theorem 1 to set σi,l .
First, we list MISEs for the number of local machines, M = 10, 20, 50, in Tables 1–3,

respectively. From Tables 1–3, we observe that (i) Our approach with larger ε and larger
δ has better convergence for all quantile levels because their MISEs are smaller, which
also implies weaker privacy protection. When ε = 0.8 and δ = 0.001, the MISEs of our
FDP-ADMM algorithm with privacy policy are comparable to the ones of non-DP algorithm
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(δ = ∞), that is, our FDP-ADMM algorithm does not sacrifice the estimation accuracy
under weak privacy protection. (ii) For strong privacy protection, such as ε = 0.1, the
accuracy of our training model decreases as the number of machines increases. Because the
size of the local dataset is smaller for a larger number of working machines, more noise
should be added into the FDP-ADMM algorithm to obtain a higher privacy guarantee. For
the large number of machines, a high estimation accuracy can be achieved by reducing
privacy protection, for example, M = 50. (iii) Our FDP-ADMM algorithm has a trade
off between privacy and accuracy, i.e., the stronger the privacy protection, the lower the
estimation accuracy. (iv) When τ = 0.5, this FDP-ADMM is a robust distributed learning
algorithm for all parameters of privacy and number of machines we set. Because τ is farther
from 0.5, its MISE is worse.

Table 1. MISEs of FDP-ADMM algorithm for l1-regularized quantile regression when M = 10.

M = 10

ε δ τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

0.1 10−6 1.10935 1.08272 1.08042 1.06772 1.15352
10−5 1.01472 0.88899 0.63939 0.72965 0.81495
10−4 1.00092 0.50874 0.61940 0.42669 1.20186
10−3 0.76701 0.51994 0.43749 0.45714 0.83579

0.2 10−6 0.88293 0.49352 0.37903 0.48573 1.13445
10−5 0.86012 0.49398 0.35214 0.43233 0.93748
10−4 0.85513 0.47709 0.40259 0.45489 0.89320
10−3 0.97630 0.45829 0.36365 0.42839 0.95078

0.3 10−6 0.75955 0.40747 0.37103 0.43872 0.99364
10−5 0.80688 0.40563 0.38785 0.43834 1.16647
10−4 0.82462 0.43617 0.37086 0.42679 1.08880
10−3 0.88212 0.43003 0.36211 0.43141 0.88249

0.5 10−6 0.94682 0.46687 0.37158 0.42812 0.96098
10−5 0.92709 0.44007 0.38863 0.42447 0.89955
10−4 0.93776 0.43648 0.36595 0.44708 0.89621
10−3 0.95611 0.42511 0.37481 0.45199 0.98540

0.8 10−6 0.87232 0.44024 0.38308 0.44378 0.96025
10−5 0.90369 0.44478 0.37863 0.44728 0.99718
10−4 0.91670 0.43855 0.37769 0.45473 0.92953
10−3 0.93121 0.43090 0.37537 0.43751 0.94244

∞ 1 0.92588 0.43536 0.38291 0.44820 0.98044

Table 2. MISEs of FDP-ADMM algorithm for l1-regularized quantile regression when M = 20.

M = 20

ε δ τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

0.1 10−6 9.14206 7.57861 8.63208 5.99993 7.25853
10−5 4.91313 3.39025 3.84567 4.72525 2.98801
10−4 4.07548 1.99489 2.15743 1.73728 3.75287
10−3 1.19830 0.92899 0.89924 1.38734 1.72083

0.2 10−6 1.27889 1.07583 0.91118 1.38400 1.39675
10−5 1.12262 0.64832 0.68967 0.60605 0.97722
10−4 0.79600 0.48621 0.40788 0.32599 0.59192
10−3 0.58956 0.35490 0.28023 0.36716 0.79028

0.3 10−6 0.67998 0.48955 0.39535 0.42677 0.69698
10−5 0.62656 0.34088 0.31510 0.36501 0.82977
10−4 0.64047 0.35214 0.23091 0.42389 0.52364
10−3 0.64256 0.33683 0.31104 0.37006 0.65798

0.5 10−6 0.48045 0.37946 0.28304 0.38171 0.60391
10−5 0.58620 0.35572 0.32657 0.35470 0.53452
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Table 2. Cont.

M = 20

ε δ τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

10−4 0.60473 0.32019 0.29540 0.35935 0.61225
10−3 0.55453 0.35411 0.31989 0.36962 0.61693

0.8 10−6 0.62139 0.34965 0.28970 0.36232 0.61739
10−5 0.56993 0.33311 0.32059 0.35161 0.52785
10−4 0.59024 0.36645 0.31904 0.34726 0.60428
10−3 0.54107 0.35753 0.32211 0.35959 0.61891

∞ 1 0.57159 0.36387 0.34485 0.36757 0.60352

Table 3. MISEs of FDP-ADMM algorithm for l1-regularized quantile regression when M = 50.

M = 50

ε δ τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

0.1 10−6 32.69092 45.61741 18.57951 42.89526 26.78259
10−5 19.54404 18.28042 24.98649 14.56024 23.62843
10−4 9.25744 15.35268 14.21395 16.51154 15.62429
10−3 8.48043 8.02662 9.36117 8.54005 10.24176

0.2 10−6 7.30838 10.65070 6.65439 8.11806 8.28644
10−5 3.28129 7.68274 5.46142 5.37228 6.88005
10−4 3.69134 3.30237 2.53601 2.68905 4.13535
10−3 1.23577 1.46382 0.89365 1.12239 1.55549

0.3 10−6 2.77899 2.96351 2.07031 2.92310 2.93987
10−5 2.79987 2.22634 1.83420 1.72759 1.82370
10−4 1.21077 0.99900 1.30057 0.93872 1.55615
10−3 0.78847 0.53879 0.45738 0.51968 0.78215

0.5 10−6 0.95185 0.79408 0.94353 0.85746 1.39231
10−5 0.91010 0.90503 0.54837 0.61216 0.83725
10−4 0.69861 0.37440 0.44130 0.41332 0.55033
10−3 0.47677 0.29099 0.26389 0.28654 0.50744

0.8 10−6 0.43862 0.42597 0.28514 0.41843 0.57740
10−5 0.69838 0.32106 0.24453 0.33619 0.55950
10−4 0.51937 0.39685 0.22664 0.28052 0.42013
10−3 0.46601 0.26187 0.20617 0.24769 0.38190

∞ 1 0.43715 0.30922 0.229919 0.29383 0.45229

Second, we study the training performance (empirical loss) v.s. different number of
distributed data sources under different levels of privacy protection when τ = 0.5. See
Figure 1. Figure 1 shows that the accuracy of our training model will be reduced if more
local machines are used. Since the number of agents is larger the smaller the size of the
local dataset is, more noise should be added to guarantee the same level of differential
privacy. Thus, it results in reducing the performance of the trained model. This is consistent
with Theorem 1 that the standard deviation of noises is scaled by 1/mi. From another
perspective, when more local machines participate, a weaker privacy protection can obtain
a higher estimation accuracy.

Third, we illustrate the convergence of the FDP-ADMM algorithm by demonstrating
how the augmented objective value converges for different values of ε and δ. See Figure 2.
Figure 2 shows our algorithm with larger ε and δ (which implies the weaker privacy
protection) has better convergence. This result is consistent with Theorem 2.
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(a) ε = 0.01, δ = 10−3 (b) ε = 0.05, δ = 10−3

(c) ε = 0.1, δ = 10−3 (d) ε = 0.2, δ = 10−3

(e) ε = 0.3, δ = 10−3 (f) ε = 0.5, δ = 10−3

(g) ε = 0.8, δ = 10−3

Figure 1. Impact of the number of distributed data sources on FDP-ADMM for l1-regularized
quantile regression.

Finally, we evaluate the performance of FDP-ADMM by empirical loss for different
levels of privacy protection. See Figure 3. Figure 3 shows our approach has fast convergence
property for all privacy policies. In addition, all results we obtained show the privacy–utility
trade-off of our FDP-ADMM: better utility is achieved when privacy leakage increases.
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(a) δ = 0.001 (b) δ = 0.0001

(c) δ = 0.00001 (d) δ = 0.000001

Figure 2. Convergence properties of FDP-ADMM via augmented objective value for l1-regularized
quantile regression with τ = 0.5.

(a) δ = 0.001 (b) δ = 0.0001

(c) δ = 0.00001 (d) δ = 0.000001

Figure 3. Convergence properties of FDP-ADMM via empirical loss for l1-regularized quantile
regression τ = 0.5.

5.2. L2-Regularized Quantile Regression

We obtain the FDP-ADMM steps for l2-norm quantile regression as follows:
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wl
i =

(
1

mi

mi

∑
j=1

AT
i,j(τ − I{yi,j−Ai,jw̃

l−1
i ≤0})−

λ

M
w̃l−1

i +

γl−1
i + ρwl−1 + w̃l−1

i /ηl
i

)(
ρ + 1/ηl

i

)−1
,

w̃l
i = wl

i +N
(

0, σ2
i,lIK

)
,

wl =
1
M

M

∑
i=1

w̃l
i −

1
M

M

∑
i=1

γl−1
i /ρ,

γl
i = γl−1

i − ρ
(

w̃l
i −wl

)
.

Similar to the setting of Section 5.1, we present results in Tables 4–6 and Figures 4–6.
We also obtain the same conclusion as in Section 5.1.

Table 4. MISEs of FDP-ADMM algorithm for l2-regularized quantile regression when M = 10.

M = 10

ε δ τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

0.1 10−6 2.89210 2.75353 2.46941 2.54780 3.81696
10−5 2.92584 2.27235 2.09434 2.27390 2.86815
10−4 1.37434 1.52857 1.63519 1.01153 1.76823
10−3 0.99495 0.95007 0.90349 1.12417 1.11879

0.2 10−6 1.14263 1.07720 0.69340 1.03047 1.25381
10−5 0.89339 0.60944 0.76508 0.70292 1.22899
10−4 0.76141 0.60331 0.43044 0.56315 0.87222
10−3 0.61730 0.58038 0.38235 0.42983 0.67101

0.3 10−6 0.89291 0.52495 0.53238 0.50471 0.90524
10−5 0.82594 0.52562 0.34734 0.48837 0.83485
10−4 0.61622 0.43849 0.34253 0.47389 0.52728
10−3 0.50265 0.34256 0.24852 0.36576 0.58658

0.5 10−6 0.50657 0.35774 0.33148 0.36034 0.61492
10−5 0.62303 0.31707 0.25926 0.33131 0.56412
10−4 0.44178 0.32944 0.27809 0.27520 0.56905
10−3 0.55427 0.31399 0.22924 0.27581 0.53565

0.8 10−6 0.48112 0.30366 0.26190 0.29383 0.54639
10−5 0.52303 0.31519 0.21492 0.30934 0.49795
10−4 0.51200 0.29494 0.25546 0.26651 0.51737
10−3 0.49710 0.32842 0.21990 0.26114 0.49119

∞ 1 0.47430 0.27901 0.20853 0.26926 0.49421

Table 5. MISEs of FDP-ADMM algorithm for l2-regularized quantile regression when M = 20.

M = 20

ε δ τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

0.1 10−6 12.09882 7.53753 8.99489 9.28500 10.41200
10−5 6.36908 4.83324 9.44384 5.38515 7.07413
10−4 5.40212 3.78114 2.92258 5.80128 3.78069
10−3 3.56865 1.67093 2.02714 3.12041 2.73505

0.2 10−6 2.35128 2.40928 2.47491 3.13811 2.81266
10−5 2.44151 1.86417 2.14190 1.79286 1.69856
10−4 1.25333 1.12828 1.06031 1.29433 1.47163
10−3 1.00380 0.67944 0.75994 0.89221 1.20207

0.3 10−6 1.44773 1.21530 1.82965 1.16274 1.67580
10−5 0.92305 0.84215 0.98673 0.87402 0.83162
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Table 5. Cont.

M = 20

ε δ τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

10−4 0.61151 0.50056 0.62719 0.75269 1.11462
10−3 0.79422 0.43239 0.46819 0.43958 0.65150

0.5 10−6 0.65224 0.49834 0.69298 0.50219 0.72637
10−5 0.52623 0.48679 0.39195 0.41469 0.81617
10−4 0.45604 0.44620 0.39356 0.35684 0.54628
10−3 0.48589 0.35496 0.26164 0.28309 0.44583

0.8 10−6 0.58554 0.36776 0.36210 0.35751 0.44102
10−5 0.56310 0.37512 0.24621 0.38069 0.41426
10−4 0.46934 0.30216 0.22564 0.27554 0.43864
10−3 0.39110 0.22099 0.22896 0.22580 0.42480

∞ 1 0.37468 0.21974 0.16201 0.20135 0.38618

Table 6. MISEs of FDP-ADMM algorithm for l2-regularized quantile regression when M = 50.

M = 50

ε δ τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

0.1 10−6 28.61208 40.72216 29.56713 19.82800 22.75443
10−5 24.29355 10.61405 23.48655 25.28936 16.24641
10−4 18.61518 10.56809 15.63120 18.87195 14.77067
10−3 8.23236 11.80948 6.46954 8.75901 7.39285

0.2 10−6 9.21639 7.30661 10.83166 6.50947 6.74332
10−5 5.33237 7.20520 6.48928 4.99331 6.98322
10−4 3.69557 4.25720 5.23905 4.25916 4.26556
10−3 2.64944 3.40341 2.10149 1.80372 2.19432

0.3 10−6 3.72135 5.26765 4.62668 2.82433 2.56538
10−5 3.52995 3.49432 3.82902 2.46528 2.24935
10−4 2.10102 2.30679 1.91362 2.48765 2.40823
10−3 1.34345 1.65347 1.23016 1.02293 1.63715

0.5 10−6 1.76621 1.91785 1.38861 1.41912 2.15178
10−5 1.14848 0.91837 1.25444 1.12365 0.96906
10−4 0.82513 1.11108 0.79060 0.87009 1.03410
10−3 0.63068 0.47302 0.41747 0.48054 0.59396

0.8 10−6 0.75022 0.86022 0.72234 0.83085 0.91919
10−5 0.88104 0.91287 0.59528 0.52652 0.47342
10−4 0.52061 0.44782 0.33773 0.43406 0.61304
10−3 0.39031 0.37708 0.26519 0.28573 0.42317

∞ 1 0.31062 0.18729 0.13762 0.16653 0.31931

(a) ε = 0.01, δ = 10−3 (b) ε = 0.05, δ = 10−3

Figure 4. Cont.
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(c) ε = 0.1, δ = 10−3 (d) ε = 0.2, δ = 10−3

(e) ε = 0.3, δ = 10−3 (f) ε = 0.5, δ = 10−3

(g) ε = 0.8, δ = 10−3

Figure 4. Impact of the number of distributed data sources on FDP-ADMM for l2-regularized
quantile regression.

(a) δ = 0.001 (b) δ = 0.0001

(c) δ = 0.00001 (d) δ = 0.000001

Figure 5. Convergence properties of FDP-ADMM via augmented objective value for l2-regularized
quantile regression with τ = 0.5.
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(a) δ = 0.001 (b) δ = 0.0001

(c) δ = 0.00001 (d) δ = 0.000001

Figure 6. Convergence properties of FDP-ADMM via empirical loss for l2-regularized quantile
regression τ = 0.5.

6. Conclusions

In the paper, we proposed an ADMM-based differential privacy learning algorithm
on penalized quantile regression for functional data: FDP-ADMM. We first transform func-
tional quantile regression into an ordinary linear regression model by functional principal
analysis, and then design the FDP-ADMM algorithm by an approximate augmented La-
grange function, ADMM algorithm, and Gaussian mechanism with time-varying variance.
The FDP-ADMM is a noise-resilient, convergent, and computationally effective distributed
learning algorithm, even if for high privacy guarantee. Lastly, we obtain the estimation of
coefficient function with privacy protection for functional quantile regression distributed
model by the Karhunen and Loève expression. We also derived the privacy guarantee and
theoretical convergence by the objective value and the constraint violation. The evaluations
on simulation datasets have demonstrated the effectiveness of the FDP-ADMM algorithm,
even if under high privacy protection, and have shown its privacy–utility trade-off: larger
ε and larger δ, indicating weaker privacy guarantee, results in better utility.
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Appendix A

In the Appendix, we give the proofs of Lemma 2 and Theorems 1 and 2.
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Appendix A.1. Proof of Lemma 2

Proof. First, we have that L̂ρ,i

(
wi, w̃l−1

i , wl−1, γl−1
i

)
is convex because it is a quadratic

function of wi. Thus, we have a closed-form solution:

wl
i,Ai

=
(

ρ + 1/ηl
i

)−1
(
−

mi

∑
j=1

1
mi

`′
(

w̃l−1
i ,Ai

)
− λ

M
P′
(

w̃l−1
i

)
+γl−1

i + ρwl−1 +
w̃l−1

i

ηl
i

)
,

wl
i,A′i

=
(

ρ + 1/ηl
i

)−1
(
−

mi

∑
j=1

1
mi

`′i

(
w̃l−1

i ,A′i
)
− λ

M
P′
(

w̃l−1
i

)
+γl−1

i + ρwl−1 +
w̃l−1

i

ηl
i

)
.

Then, the l2-norm sensitivity of primal variable wl
i is:

max
Ai ,A′i

∥∥∥wl
i,Ai
−wl

i,A′i

∥∥∥
2
= max
Ai ,A′i

∥∥∥`′(w̃l−1
i ,Ai

)
− `′

(
w̃l−1

i ,A′i
)∥∥∥

mi
(
ρ + 1/ηl

i
)

≤ 2‖`′(·)‖2

mi
(
ρ + 1/ηl

i
) .

So, Lemma 2 holds.

Appendix A.2. Proof of Theorem 1

Proof. In our quantile loss, we have a subgradient of ρτ(u), ρ′τ(u) = τ − I{u≤0}, which is
bounded. Based on ‖Aij‖2, uniformly bounded, we have the subgradient of ρτ(yij − Aijw)

with regard to w, bounded. The privacy loss from w̃l
i is calculated as:

∣∣∣∣∣∣ln
Pr
[
w̃l

i | Ai

]
Pr
[
w̃l

i | A′i
]
∣∣∣∣∣∣ =

∣∣∣∣∣∣ln
Pr
[
w̃l(h)

i | Ai

]
Pr
[
w̃l(h)

i | A′i
]
∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣ln
Pr
[
ξ l(h)

i

]
Pr
[

ξ
l,′(h)]
i

]
∣∣∣∣∣∣∣∣,

where ξ l(h)
i and ξ l′(h)

i are the h-entry of ξl
i and ξl,′

i and are sampled from N
(

0, σ2
i,l

)
. The

numerator in the ratio above describes the probability of seeing w̃l
i when the database isAi,

the denominator corresponds the probability of seeing this same value when the database
is A′i. This leads to: ∣∣∣∣∣∣ln

Pr
[
w̃l

i | Ai

]
Pr
[
w̃l

i | A′i
]
∣∣∣∣∣∣ =

∣∣∣∣∣ 1
2σ2

i,l

(∥∥∥ξ l(h)
i

∥∥∥2
−
∥∥∥ξ l,′(h)

i

∥∥∥2
)∣∣∣∣∣

=

∣∣∣∣∣ 1
2σ2

i,l

(∥∥∥ξ l(h)
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∥∥∥2
−
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i +
(

wl(h)
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− wl(h)

i,A′i

)∥∥∥2
)∣∣∣∣∣

=
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(
2ξ l(h)
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∥∥∥wl(h)
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− wl(h)
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∥∥∥+ ∥∥∥wl(h)
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− wl(h)

i,A′i

∥∥∥2
)∣∣∣∣∣.

Since ‖`′(·)‖ ≤ c1, according to Lemma 2, we have:

‖wl(h)
i,Ai
− wl(h)

i,A′i
‖ < ‖wl

i,Ai
−wl

i,A′i
‖ ≤ 2c1/

(
mi

(
ρ + 1/ηl

i

))
.

Thus, by letting σi,l = 2c1
√

2 ln(1.25/δ)/
(

miε
(

ρ + 1/ηl
i

))
, we have:

∣∣∣∣∣∣ln
Pr
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]
Pr
[
w̃l

i | A′i
]
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i mi

(
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i

)
+ c1

4 ln(1.25/δ)c1/ε2

∣∣∣∣∣∣.
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When
∣∣∣ξ l(h)

i

∣∣∣ ≤ (4 ln(1.25/δ)c1/ε− c1)/
(

εmi

(
ρ + 1/ηl

i

))
,
∣∣∣ln(Pr

[
w̃l

i | Ai

]
/ Pr

[
w̃l

i | A′i
])∣∣∣

is bounded by ε. Next, we need to prove that

Pr
[∣∣∣ξ l(h)

i

∣∣∣ > (4 ln(1.25/δ)c1/ε− c1)/
(

εmi

(
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))]
≤ δ,

which requires Pr
[
ξ l(h)

i > (4 ln(1.25/δ)c1/ε− c1)/
(

εmi

(
ρ + 1/ηl

i

))]
≤ δ/2. According

to the tail bound of normal distribution N
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i,l

)
, we have

Pr
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i > r
]
≤

σi,l

r
√

2π
e−r2/2σ2

i,l .

By letting r = (4 ln(1.25/δ)c1/ε− c1)/
(

εmi

(
ρ + 1/ηl

i

))
in the above inequality,

we have:

Pr

[
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mi
(
ρ + 1/ηl

i
) ]

≤ 2
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(
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)
.

When δ is small (≤ 0.01) and ε ≤ 1, we have:

2
√

2 ln(1.25/δ)

(4 ln(1.25/δ)− ε)
√

2π
<

1√
2π

and

− (4 ln(1.25/δ)− ε)2
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(√
2π

δ
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)
.

As a result, we have:

Pr

[
ξ l(h)

i >
4 ln(1.25/δ)c1/ε− c1

mi
(
ρ + 1/ηl

i
) ]

<
δ

2
.

So far, we have proved that Pr
[
ξ l(h)

i > (4 ln(1.25/δ)c1/ε− c1)/
(

εmi

(
ρ + 1/ηl

i

))]
≤

δ/2; thus, we can prove that Pr
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≤ δ.

Define:
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.

Therefore, we obtain:

Pr
[
w̃l

i | Ai

]
=Pr

[
wl(h)

i,Ai
+ ξ l(h)

i : ξ l(h)
i ∈ D1

]
+ Pr

[
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<eε · Pr

[
w̃l

i | A′i
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+ δ,

which proves that each iteration of DP-ADMM guarantees (ε, δ)-differential privacy.
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Appendix A.3. Proof of Theorem 2

Proof. According to the convexity of fi(·), the monotonicity of the operator F(·), and
applying Lemma 3, we have:
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Let (wi, w) be the optimal solution
(
w∗i , w∗

)
in the above inequality. We obtain:
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The above inequality holds for all γi; thus, it also holds for γi ∈ {γi : ‖γi‖ ≤ g}.
By letting γi be the optimal solution, we have the maximum of the left side of the
above inequality:
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In addition, we also obtain the maximum of the right side as:
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(A1)

Since ‖`′(·)‖ ≤ c1 and ‖R′(·)‖ ≤ c2, we have:
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ξ l

i

∥∥∥2
]
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(

m2
i ε2
)

.

With E
[〈

ξl
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i

〉]
= 0 and ηl

i = cw

(
2l(c1 +λc2/M)2 + 16lpc2

1 ln(1.25/δ)/
(
m2

i ε2))− 1
2 ,

by taking expectation of the previous inequality (A1), we obtain:
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which leads to
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Thus, we complete the proof of Theorem 2.
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