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Abstract: In this paper, in order to solve systems of nonlinear equations, a new class of frozen Jacobian
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when compared with known algorithms taken from the literature.

Keywords: iterative method; frozen Jacobian multi-step iterative method; system of nonlinear
equations; high-order convergence

MSC: 65Hxx

1. Introduction

Approximating a locally unique solution α of the nonlinear system

F(x) = 0 (1)

has many applications in engineering and mathematics [1–4]. In (1), we have n equations
with n variables. In fact, F is a vector-valued function with n variables. Several problems
arising from the different areas in natural and applied sciences take the form of systems of
nonlinear Equation (1) that need to be solved, where F(x) = ( f1(x), f2(x), · · · , fn(x)) such
that for all k = 1, 2, · · · , n, fk is a scalar nonlinear function. Additionally, there are many
real life problems for which, in the process of finding their solutions, one needs to solve
a system of nonlinear equations, see for example [5–9]. It is known that finding an exact
solution αt = (α1, α2, · · · , αn) of the nonlinear system (1) is not an easy task, especially
when the equation contains terms consisting of logarithms, trigonometric and exponential
functions, or a combination of transcendental terms. Hence, in general, one cannot find
the solution of Equation (1) analytically, therefore, we have to use iterative methods. Any
iterative method starts from one approximation and constructs a sequence such that it
converges to the solution of the Equation (1) (for more details, see [10]).

The most commonly used iterative method to solve (1) is the classical Newton method,
given by

x(k+1) = x(k) − JF(x(k))−1F(x(k)),

where JF(x) (or F′(x)) is the Jacobian matrix of function F, and x(k) is the k-th approxima-
tion of the root of (1) with the initial guess x(0). It is well known that Newton’s method is
a quadratic convergence method with the efficiency index

√
2 [11]. The third and higher-

order methods such as the Halley and Chebyshev methods [12] have little practical value
because of the evaluation of the second Frechèt-derivative. However, third and higher-
order multi-step methods can be good substitutes because they require the evaluation of
the function and its first derivative at different points.

In the recent decades, many authors tried to design iterative procedures with better effi-
ciency and higher order of convergence than the Newton scheme, see, for example, ref. [13–24]
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and references therein. However, the accuracy of solutions is highly dependent on the
efficiency of the utilized algorithm. Furthermore, at each step of any iterative method,
we must find the exact solution of an obtained linear system which is expensive in actual
applications, especially when the system size n is very large. However, the proposed
higher-order iterative methods are futile unless they have high-order convergence. There-
fore, the important aim in developing any new algorithm is to achieve high convergence
order with requiring as small as possible the evaluations of functions, derivatives and
matrix inversions. Thus, here, we focus on the technique of the frozen Jacobian multi-step
iterative algorithms. It is shown that this idea is computationally attractive and economical
for constructing iterative solvers because the inversion of the Jacobian matrix (regarding
LU-decomposition) is performed once. Many researchers have reduced the computational
cost of these algorithms by frozen Jacobian multi-step iterative techniques [25–28].

In this work, we construct a new class of frozen Jacobian multi-step iterative methods
for solving the nonlinear systems of equations. This is a high-order convergent algorithm
with an excellent efficiency index. The theoretical analysis is presented completely. Further,
by solving some nonlinear systems, the ability of the methods is compared with some
known algorithms.

The rest of this paper is organized as follows. In the following section, we present
our new methods with obtaining of their order of convergence. Additionally, their com-
putational efficiency are discussed in general. Some numerical examples are considered
in Sections 3 and 4 to show the asymptotic behavior of these methods. Finally, a brief
concluding remark is presented in Section 5.

2. Constructing New Methods

In this section, two high-order frozen Jacobian multi-step iterative methods to solve
systems of nonlinear equations are presented. These come by increasing the convergence in
Newton’s method and simultaneously decreasing its computational costs. The framework
of these Frozen Jacobian multi-step iterative Algorithms (FJA) can be described as


No. of steps = m > 1,
Order of convergence = m + 1,
Function evaluations = m,
Jacobian evaluations = 1,
No. of LU decomposition = 1;

FJA :



y0 = initial guess
y1 = y0 − JF(y0)

−1F(y0)
for i = 1 : m− 1

Œi = JF(y0)
−1(F(yi) + F(yi−1))

yi+1 = yi−1 −Œi
end
y0 = ym.

(2)

In (2), for an m-step method (m > 1), one needs m function evaluations and only
one Jacobian evaluation. Further, the number of LU decompositions is one. The order
of convergence for such FJA method is m + 1. In the right-hand side column of (2), the
algorithm is briefy described.

In the following subsections, by choosing two different values for m, a third- and a
fourth-order frozen Jacobian multi-step iterative algorithm are presented.

2.1. The Third-Order FJA

First, we investigate case m = 2, that is,

y(k) = x(k) − JF(x(k))−1F(x(k)),

x(k+1) = x(k) − JF(x(k))−1(F(y(k)) + F(x(k))),
(3)

we denote this by M3.
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2.1.1. Convergence Analysis

In this part, we prove that the order of convergence of method (3) is three. First, we
need to definition of the Frechèt derivative.

Definition 1 ([29]). Let F be an operator which maps a Banach space X into a Banach space Y. If
there exists a bounded linear operator T from X into Y such that

lim
y→0

‖F(x + y)− F(x)− T(y)‖
‖y‖ = 0,

then F is said to be Frechèt differentiable and F′(x0) = T(x0).
For more details on the Frechèt differentiability and Frechèt derivative, we refer the interested

readers to a review article by Emmanuel [30] and references therein.

Theorem 1. Let F : I ⊆ Rn → Rn be a Frechèt differentiable function at each point of an open
convex neighborhood I of α, the solution of system F(x) = 0. Suppose that JF(x(k)) is continuous
and nonsingular in α, then, the sequence {x(k)}(k>0) obtained using the iterative method (3)
converges to α and its rate of convergence is three.

Proof. Suppose that En = x(n) − α, using Taylor’s expansion [31], we obtain

F(x(n)) = F(α) + F′(α)En +
1
2!

F′′(α)E2
n +

1
3!

F′′′(α)E3
n +

1
4!

F′′′′(α)E4
n + . . .

as α is the root of F so F(α) = 0. As a matter of fact, one may yield the following equations
of F(x(n)) and F′(x(n)) in a neighborhood of α by using Taylor’s series expansions [32],

F(x(n)) = F′(α)
[

En + C2E2
n + C3E3

n + C4E4
n + C5E5

n + O||E6
n||
]

, (4)

F′(x(n)) = F′(α)
[

I + 2C2En + 3C3E2
n + 4C4E3

n + 5C5E4
n + 6C6E5

n + O||E6
n||
]

, (5)

wherein Cn = [F′(α)]−1F(n)(α)
n! and I is the identity matrix whose order is the same as the

order of the Jacobian matrix. Note that iCiEi−1
n ∈ L(Rn). Using (4) and (5) we obtain

F′(x(n))−1F(x(n)) = En − C2E2
n + (2C2

2 − 2C3)E3
n + (−4C3

2 + 7C2C3 − 3C4)E4
n

+(−32C5
2 + 8C4

2 − 20C2
2C3 + 10C2C4 + 6C2

3 − 4C5)E5
n + O||E6

n||.

Since y(n) = x(n) − F′(x(n))−1F(x(n)), we find

y(n) = α + C2E2
n + (−2C2

2 + 2C3)E3
n + (4C3

2 − 7C2C3 + 3C4)E4
n

+(32C5
2 − 8C4

2 + 20C2
2C3 − 10C2C4 − 6C2

3 + 4C5)E5
n + O||E6

n||.
(6)

By the definition of error term En, the error term of y(n) as an approximation of α,
that is, y(n) − α is obtained from the second term of the right-hand side of Equation (6).
Similarly, the Taylor’s expansion of the function F(y(n)) is

F(y(n)) = F′(α)
[

C2E2
n + (−2C2

2 + 2C3)E3
n + (5C3

2 − 7C2C3 + 3C4)E4
n+

(32C5
2 − 12C4

2 + 24C2
2 − 10C2C4 − 6C2

3 + 4C5)E5
n + O||E6

n||
]

.
(7)
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From (4) and (7), we obtain

(F(x(n)) + F(y(n))) = F′(α)
[

En + 2C2E2
n + (−2C2

2 + 3C3)E3
n + (5C3

2 − 7C2C3+

4C4)E4
n + (32C5

2 − 12C4
2 + 24C2

2 − 10C2C4 − 6C2
3 + 6C5)E5

n] + O||E6
n||
]

.

Thus,

F′(x(n))−1(F(x(n)) + F(y(n))) = En − (2C2
2)E3

n + (9C3
2 − 7C2C3)E4

n

+(−30C4
2 + 44C2

2C3 − 10C2C4 − 6C2
3 + C5)E5

n + O||E6
n||.

Finally, since

x(n+1) = x(n) − JF(x(n))−1(F(x(n)) + F(y(n))),

we have

x(n+1) = α− (2C2
2)E3

n − (9C3
2 − 7C2C3)E4

n − (−30C4
2 + 44C2

2C3 − 10C2C4+

· · · − 6C2
3 + C5)E5

n + O||E6
n||.

(8)

Clearly, the error Equation (8) shows that the order of convergence of the frozen
Jacobian multi-step iterative method (3) is three. This completes the proof.

2.1.2. The Computational Efficiency

In this section, we compare the computational efficiency of our third-order scheme (3),
denoted as M3, with some existing third-order methods. We will assess the efficiency
index of our new frozen Jacobian multi-step iterative method in contrast with the existing
methods for systems of nonlinear equations, using two famous efficiency indices. The first
one is the classical efficiency index [33] as

IE = p
1
c

where p is the rate of convergence and c stands for the total computational cost per iteration
in terms of the number of functional evaluations, such that c = (rn + mn2) where r refers
to the number of function evaluations needed per iteration and m is the number of Jacobian
matrix evaluations needed per iteration.

It is well known that the computation of LU factorization by any of the existing
methods in the literature normally needs 2n3/3 flops in floating point operations, while
the floating point operations to solve two triangular systems needs 2n2 flops.

The second criterion is the flops-like efficiency index (FLEI) which was defined by
Montazeri et al. [34] as

FLEI = p
1
c

where p is the order of convergence of the method, c denotes the total computational
cost per loop in terms of the number of functional evaluations, as well as the cost of LU
factorization for solving two triangular systems (based on the flops).

As the first comparison, we compare M3 with the third-order method given by
Darvishi [35], which is denoted as M3,1

y(k) = x(k) − JF(x(k))−1F(x(k)),
x(k+1) = x(k) − 2(JF(x(k)) + JF(y(k)))−1F(x(k)).
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The second iterative method shown by M3,2 is the following third-order method
introduced by Hernández [36]

y(k) = x(k) − 1
2 JF(x(k))−1F(x(k)),

x(k+1) = x(k) + JF(x(k))−1(JF(y(k))− 2JF(x(k)))× JF(x(k))−1F(x(k)).

Another method is the following third-order iterative method given by Babajee
et al. [37], M3,3,

y(k) = x(k) − JF(x(k))−1F(x(k)),
x(k+1) = x(k) + 1

2 JF(x(k))−1(JF(y(k))− 3JF(x(k)))× JF(x(k))−1F(x(k)).

Finally, the following third-order iterative method, M3,4, ref. [38] is considered

y(k) = x(k) − 2
3 JF(x(k))−1F(x(k)),

x(k+1) = x(k) − 4(JF(x(k)) + 3JF(y(k)))−1F(x(k)).

The computational efficiency of our third-order method revealed that our method, M3,
is the best one in respect with methods M3,1, M3,2, M3,3 and M3,4, as presented in Table 1,
and Figures 1 and 2.

Table 1. Comparison of efficiency indices between M3 and other third-order methods.

Methods M3 M3,1 M3,2 M3,3 M3,4

No. of steps 2 2 2 2 2
Order of convergence 3 3 3 3 3
Functional evaluations 2n + n2 n + 2n2 n + 2n2 n + 2n2 n + 2n2

The classical efficiency index (IE) 31/(2n+n2) 31/(n+2n2) 31/(n+2n2) 31/(n+2n2) 31/(n+2n2)

No. of LU decompositions 1 2 1 1 2
Cost of LU decompositions 2n3

3
4n3

3
2n3

3
2n3

3
4n3

3
Cost of linear systems (based on flops) 2n3

3 + 4n2 4n3

3 + 4n2 5n3

3 + 2n2 5n3

3 + 2n2 4n3

3 + 4n2

Flops-like efficiency index (FLEI) 31/( 2n3
3 +5n2+2n) 31/( 4n3

3 +6n2+n) 31/( 5n3
3 +4n2+n) 31/( 5n3

3 +4n2+n) 31/( 4n3
3 +6n2+n)

Figure 1. The classical efficiency index for methods M3, M3,1, M3,2, M3,3 and M3,4.
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Figure 2. The flops-like efficiency index for methods M3, M3,1, M3,2, M3,3 and M3,4.

2.2. The Fourth-Order FJA

By setting m = 3 in FJA, the following three-step algorithm is deduced

y(k) = x(k) − JF(x(k))−1F(x(k)),
z(k) = x(k) − JF(x(k))−1(F(y(k)) + F(x(k))),
x(k+1) = y(k) − JF(x(k))−1(F(z(k)) + F(y(k))).

(9)

In the following subsections, the order of convergence and efficiency indices are
obtained for the method described in (9).

2.2.1. Convergence Analysis

The frozen Jacobian three-step iterative process (9) has the rate of convergence order
four by using three evaluations of function F and one first-order Frechèt derivative F per
full iterations. To avoid any repetition, we take a sketch of proof on this subject. Similar to
the proof of Theorem 1, by setting z(k) = x(k+1) in (8) we obtain

F(z(k)) = F′(α)[2C2
2 E3

n + (−9C3
2 + 7C2C3)E4

n + (30C4
2 − 44C2

2C3+

. . . + 10C2C4 − C5)E5
n + O||E6

n||].

Hence,

(F(z(k)) + F(y(k))) = F′(α)
[

C2E2
n + 2C3E3

n + (−4C3
2 + 3C4)E4

n

+(32C5
2 + 18C4

2 − 20C2
2C3 + 3C5)E5

n + O||E6
n||
]

.
(10)

Therefore, from (5) and (10), we find

F′(x(k))
−1

(F(z(k)) + F(y(k))) =

[
C2E2

n + (−2C2
2 + 2C3)E3

n + (−7C2C3 + . . .

+3C4)E4
n + (18C4

2 − 10C2C4 − 6C2
3 + 3C5)E5

n + O||E6
n||
]

.
(11)
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Since we have x(k+1) = y(k) − JF(x(k)))−1(F(z(k)) + F(y(k))) from (6) and (11), the
following result is obtained

x(k+1) = α + (4C3
2)E4

n + (32C5
2 − 26C4

2 + 20C2
2C3 + C5)E5

n + O||E6
n||. (12)

This completes the proof, since error Equation (12) shows that the order of convergence
of the frozen Jacobian multi-step iterative method (9) is four.

2.2.2. The Computational of Efficiency

Now, we compare the computational efficiency of our fourth-order scheme (9), called
by M4, with some existing fourth-order methods. The considered methods are: the third-
order method M4,1 given by Sharma et al. [39],

y(k) = 2
3 x(k) − JF(x(k))−1F(x(k)),

x(k+1) = x(k) − 1
2

[
− I + 9

4 JF(y(k))−1 JF(x(k)) + 3
4 JF(x(k))−1 JF(y(k))

]
× JF(x(k))−1F(x(k)),

the fourth-order iterative method M4,2 given by Darvishi and Barati [40],

y(k) = x(k) − JF(x(k))−1F(x(k)),

z(k) = x(k) − JF(x(k))−1
(

F(y(k)) + F(x(k))
)

,

x(k+1) = x(k) −
[

1
6 JF(x(k)) + 2

3 JF(
(x(k)+z(k))

2 ) + 1
6 JF(z(k))

]−1

F(x(k)),

the fourth-order iterative method M4,3 given by Soleymani et al. [34,41],

y(k) = 2
3 x(k) − JF(x(k))−1F(x(k)),

x(k+1) = x(k) −
[

I − 3
8

(
I −

(
JF(y(k))−1 JF(x(k))

)2
)]

JF(x(k))−1F(x(k)),

and the following Jarratt fourth-order method M4,4 [42],

y(k) = 2
3 x(k) − JF(x(k))−1F(x(k)),

x(k+1) = x(k) − 1
2
(
3JF(y(k))− JF(x(k))

)−1(3JF(y(k)) + JF(x(k))
)

× JF(x(k))−1F(x(k)).

The computational efficiency of our fourth-order method showed that our method M4
is better than methods M4,1, M4,2, M4,3 and M4,4 as the comparison results are presented in
Table 2, and Figures 3 and 4. As we can see from Table 2, the indices of our method M4 are
better than similar ones in methods M4,1, M4,2, M4,3 and M4,4. Furthermore, Figures 3 and 4
show the superiority of our method in respect with the another schemes.

Table 2. Comparison of efficiency indices between M4 and other fourth-order methods.

Methods M4 M4,1 M4,2 M4,3 M4,4

No. of steps 3 2 3 2 2
Order of convergence 4 4 4 4 4
Functional evaluations 3n + n2 n + 2n2 2n + 3n2 n + 2n2 n + 2n2

The classical efficiency index (IE) 41/(3n+n2) 41/(n+2n2) 41/(2n+3n2) 41/(n+2n2) 41/(n+2n2)

No. of LU decompositions 1 2 2 2 2
Cost of LU decompositions 2n3

3
4n3

3
4n3

3
4n3

3
4n3

3
Cost of linear systems (based on flops) 2n3

3 + 6n2 10n3

3 + 2n2 4n3

3 + 6n2 7n3

3 + 2n2 7 n3

3 + 2n2

Flops-like efficiency index (FLEI) 41/( 2n3
3 +7n2+3n) 41/( 10n3

3 +4n2+n) 41/( 4n3
3 +9n2+2n) 41/( 7n3

3 +4n2+n) 41/( 7n3
3 +4n2+n)
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Figure 3. The classical efficiency index for methods M4, M4,1, M4,2, M4,3 and M4,4.

Figure 4. The Flops-like efficiency index for methods M4, M4,1, M4,2, M4,3 and M4,4.

3. Numerical Results

In order to check the validity and efficiency of our proposed frozen Jacobian multi-
step iterative methods, three test problems are considered to illustrate convergence and
computation behaviors such as efficiency index and some another indices of the frozen
Jacobian multi-step iterative methods. Numerical computations have been performed using
variable precision arithmetic that uses floating point representation of 100 decimal digits of
mantissa in MATLAB. The computer specifications are: Intel(R) Core(TM) i7-1065G7 CPU
1.30 GHz with 16.00 GB of RAM on Windows 10 pro.

Experiment 1. We begin with the following nonlinear system of n equations [43],

fi(x) = cos(xi)− 1, i = 1, 2, . . . , n. (13)

The exact zero of F(x) = ( f1(x), f2(x), . . . , fn(x))t = 0 is (0, 0, . . . , 0)t. To solve (13),
we set the initial guess as (0.78, 0.78, . . . , 0.78)t. The stopping criterion is selected as
|| f (x(k))|| ≤ 10−3.
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Experiment 2. The next test problem is the following system of nonlinear equations [44],

fi(x) = (1− xi
2) + xi(1 + xixn−2xn−1xn)− 2, i = 1, 2, . . . , n. (14)

The exact root of F(x) = 0 is (1, 1, . . . , 1)t. To solve (14), the initial guess is taken as
(2, 2, . . . , 2)t. The stopping criterion is selected as || f (x(k))|| ≤ 10−8.

Experiment 3. The last test problem is the following nonlinear system [9],

fi(x) = xi
2xi+1 − 1, i = 1, 2, . . . , n− 1,

fn(x) = xn
2x1 − 1,

(15)

with the exact solution (1, 1, . . . , 1)t. To solve (15), the initial guess and the stopping criterion
are respectively considered as (3, 3, . . . , 3)t and || f (x(k))|| ≤ 10−8.

Table 3 shows the comparison results between our third-order frozen Jacobian two-
step iterative method M3 and some third-order frozen Jacobian iterative methods, namely,
M3,1, M3,2, M3,3 and M3,4. For all test problems, two different values for n are considered,
namely, n = 50, 100. As this table shows, in all cases, our method works better than the
others. Similarly, in Table 4, CPU time and number of iterations are presented for our
fourth-order method, namely, M4 and methods M4,1, M4,2, M4,3 and M4,4. Similar to M3,
the CPU time for M4 is less than the CPU time for the other methods. These tables show
superiority of our methods in respect with the other ones. In Tables 3 and 4, it shows the
number of iterations.

Table 3. Comparison results between M3 and other third-order methods.

Methods
Experiment 1 Experiment 2 Experiment 3

n it cpu n it cpu n it cpu

M3 50 4 7.7344 50 5 10.6250 50 5 10.4844
100 5 59.6406 100 5 59.8594 100 5 60.0313

M3,1 50 4 11.0625 50 5 13.8125 50 5 14.1406
100 4 69.4219 100 5 87.3594 100 5 87.4063

M3,2 50 4 18.7188 50 5 24.9375 50 5 21.5469
100 5 157.2344 100 5 143.7344 100 5 146.2656

M3,3 50 4 20.7031 50 5 23.1563 50 5 24.2969
100 5 153.1719 100 5 143.2969 100 5 145.4063

M3,4 50 4 13.1719 50 5 13.2500 50 4 11.0156
100 4 73.2500 100 5 88.2031 100 4 70.2500

Table 4. Comparison results between M4 and other fourth-order methods.

Methods
Experiment 1 Experiment 2 Experiment 3

n it cpu n it cpu n it cpu

M4 50 4 12.2463 50 4 13.3218 50 4 11.5781
100 4 78.1563 100 5 94.9063 100 4 74.2969

M4,1 50 4 23.6875 50 4 21.9531 50 4 21.7969
100 4 151.9844 100 4 144.7656 100 4 140.8438

M4,2 50 3 15.3906 50 4 18.9531 50 4 18.6875
100 4 121.6563 100 4 122.7344 100 4 118.5781

M4,3 50 3 12.2188 50 4 17.8750 50 4 15.2656
100 4 97.5469 100 4 99.0469 100 4 97.1250

M4,4 50 3 16.4688 50 4 21.7344 50 4 20.7188
100 3 109.1719 100 4 152.0156 100 4 140.2969
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4. Another Comparison

In the previous parts, we presented some comparison results between our methods
M3 and M4 with some another frozen Jacobian multi-step iterative methods from third- and
fourth-order methods. In this section, we compare our presented methods with three other
methods which are fourth- and fifth-order ones. As Tables 5 and 6 and Figures 5 and 6
show, our methods are also better than these methods.

First. The fourth-order method given by Qasim et al. [25], MA,

JF(x(k))θ1 = F(x(k)),
y(k) = x(k) − θ1,
JF(x(k))θ2 = F(y(k)),
JF(x(k))θ3 = JF(y(k))θ2,
x(k+1) = y(k) − 2θ2 + θ3.

Second. The fourth-order Newton-like method by Amat et al. [26], MB,

y(k) = x(k) − JF(x(k))−1F(x(k)),
z(k) = y(k) − JF(x(k))−1F(y(k)),
x(k+1) = z(k) − JF(x(k))−1F(z(k)).

Third. The fifth-order iterative method by Ahmad et al. [28], MC,

JF(x(k))θ1 = F(x(k)),
y(k) = x(k) − θ1,
JF(x(k))θ2 = F(y(k)),
z(k) = y(k) − 3θ2,
JF(x(k))θ3 = JF(z(k))θ2,
JF(x(k))θ4 = JF(z(k))θ3,
x(k+1) = y(k) − 7

4 θ2 +
1
2 θ3 +

1
4 θ4.

Figure 5. The classical efficiency index for M3, M4, MA, MB and MC.



Mathematics 2022, 10, 2952 11 of 13

Figure 6. The Flops-like efficiency index for M3, M4, MA, MB and MC.

Table 5. Numerical results for comparing of M3 and M4 with MA, MB and MC.

Methods M3 M4 MA MB MC

No. of steps 2 3 2 3 3
Order of convergence 3 4 4 4 5
Functional evaluations 2n + n2 3n + n2 2n + 2n2 3n + n2 2n + 2n2

The classical efficiency index (IE) 31/(2n+n2) 41/(3n+n2) 41/(2n+2n2) 41/(3n+n2) 51/(2n+2n2)

No. of LU decompositions 1 1 1 1 1
Cost of LU decompositions 2n3

3
2n3

3
2n3

3
2n3

3
2n3

3
Cost of linear systems (based on flops) 2n3

3 + 4n2 2n3

3 + 6n2 5n3

3 + 4n2 2n3

3 + 6n2 5n3

3 + 4n2

Flops-like efficiency index (FLEI) 31/( 2n3
3 +5n2+2n) 41/( 2n3

3 +7n2+3n) 41/( 5n3
3 +6n2+2n) 41/( 2n3

3 +7n2+3n) 51/( 5n3
3 +6n2+2n)

The comparison results of computational efficiency between our methods M3 and
M4 with selected methods MA, MB and MC are presented in Table 5. Additionally,
Figures 5 and 6 show the graphical comparisons between these methods. Finally, Table 6
shows CPU time and number of iterations to solve our test problems by methods M3,
M4, MA, MB and MC. These numerical and graphical reports show the quality of our
algorithms.

Table 6. Comparison results between M3, M4, MA, MB and MC.

Methods
Experiment 1 Experiment 2 Experiment 3

n it CPU n it CPU n it CPU

M3 50 4 7.7344 50 5 10.6250 50 5 10.4844
100 5 59.6406 100 5 59.8594 100 5 60.0313

M4 50 4 12.2463 50 4 13.3218 50 4 11.5781
100 4 78.1563 100 5 94.9063 100 4 74.2969

MA 50 6 23.1875 50 7 25.0625 50 6 25.4063
100 6 139.5625 100 7 173.8125 100 6 150.8594

MB 50 4 15.2509 50 4 12.1563 50 4 12.9219
100 4 76.1406 100 5 91.1719 100 4 71.6406

MC 50 4 23.4688 50 4 23.4854 50 4 22.1531
100 4 139.9844 100 4 185.1406 100 4 138.4063
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5. Conclusions

In this article, two new frozen Jacobian two- and three-step iterative methods to solve
systems of nonlinear equations are presented. For the first method, we proved that the order
of convergence is three, while for the second one, a fourth-order convergence is proved.
By solving three different examples, one may see our methods work as well. Further, the
CPU time of our methods is less than some selected frozen Jacobian multi-step iterative
methods in the literature. Moreover, other indices of our methods such as number of steps,
functional evaluations, the classical efficiency index, and so on, are better than these indices
for other methods. This class of the frozen Jacobian multi-step iterative methods can be a
pattern for new research on the frozen Jacobian iterative algorithms.
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