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Abstract: The aim of this study was to explore the specialized knowledge of five mathematics teachers
who participated in a continuing training project. Teachers were asked to formulate conjectures about
the type of mathematical work that students enrolled in a calculus course would develop when
approaching the graphical representation of functions as an introductory activity to the calculation of
the volume of solids of revolution. The data collected was analyzed using the categories of the MTSK
(Mathematics Teacher’s Specialized Knowledge) model. The results report how knowledge of topics
and the knowledge of features of learning mathematics, particularly in relation to the knowledge of
strengths and difficulties, served as fundamental pillars for the formulation of the conjectures about
students’ mathematical behavior.
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1. Introduction

In recent years, there have been discussions in different forums and various studies
have been carried out to understand the elements that enable the development of pro-
fessional competences in mathematics teachers [1,2]. Among the range of professional
competences that mathematics teachers should master [3], this study focuses on teachers’
competence to predict how students would complete a mathematical task. This competence
is crucial when it comes to making didactically powerful planning [4,5].

Some previous studies were interested in predicting students’ academic achievement
based on different variables such as their socio-economic, demographic, or cultural condi-
tions, among others [6,7]. In a more epistemological-cognitive version but with the same
interests in anticipating students’ learning outcomes, constructs aiming to establish how
students build their mathematical knowledge emerged. On the one hand, [8] presented
a series of pedagogical implications due to the use of genetic decompositions, defined as
a mapping done by the student when confronts a mathematical concept for the first time.
Among the implications described in such study, it is important to remark the possibility of
establishing links between the knowledge that students are expected to acquire and the
knowledge that they genuinely have, highlighting that a person’s mathematical view of a
new concept is not always the same and, even so, it is possible to anticipate actions that
lead learning achievement. These authors [8] concluded that such decompositions start
from a complex system of preceding structures and require standardization in order to
introduce the required concept.

On the other hand, Ref. [9] presented a model, called the Mathematics Teaching Cycle,
which considers that instruction is adjusted to students’ performance from a constructivist
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approach and, at the same time, it retains the traditional planning based on pre-established
objectives. Within this cycle, the Hypothetical Learning Trajectories (HLT) emerge, consti-
tuted by three elements: the learning objectives for the students, the mathematical activities
that will generate learning, and the conjectures or hypotheses about students’ learning.
Although the elements of the HLT are well defined, over the years some authors have
interpreted and applied this idea differently, leading to the need to discuss, clarify points,
and search for shared meanings [10]. Despite the potential of the HLT, Ref. [11] reported
that these trajectories by themselves do not establish how to formulate conjectures. Thus,
the formulation of conjectures is a deeper process of reflection, in which it is necessary
to discuss the possible errors, the typical ways of solving an activity, the necessary prior
knowledge, the difficulties related to the concepts involved in the resolution of the task, the
strengths that the students may have, the mathematical characteristics of the concepts or
processes, among others. Considering these ideas from the teachers’ professional devel-
opment perspective, this research addresses the following question: What knowledge do
mathematics teachers need to predict the possible mathematical behavior of students when
solving a mathematical task?

To answer this question, the Mathematics Teacher’s Specialized Knowledge (MTSK)
model, developed by [12], was used to analyze the knowledge evidenced by five mathe-
matics teachers when discussing an activity to introduce the calculation of the volume of
solids of revolution through the graphing of functions.

2. Theoretical Background

This research builds on a conceptual framework covering three elements. On the one
hand, we will describe the most relevant elements of the Mexican curriculum at the high
school level to facilitate the understanding of the teachers’ conjectures. Secondly, we briefly
describe the domains, subdomains, and categories of the MTSK model used to carry out
the analysis. On the other hand, we present the main difficulties that students have related
to the concept of solid of revolution, as well as forms of students’ interaction with this
content, which allowed us to have theoretical sensitivity when interpreting the conjectures
made by the teachers.

2.1. Mexican Curriculum Framework for the High School Level

In Mexico, high school corresponds to grades 10 to 12, i.e., students are fifteen or older,
except in special cases. According to [13], the high schools can have general (without spe-
cialization area) or technological (with specialization areas) orientation, and are organized
in five disciplinary fields (mathematics, communication, social sciences, humanities, and
experimental sciences). The teachers and students involved in this study belonged to the
technological high school system in the disciplinary field of mathematics, so, in this paper,
we focus on the most relevant elements of this field.

The three years of the program are divided into six semesters, in which Algebra;
Geometry and Trigonometry; Analytical Geometry; Differential Calculus; Integral Calculus;
and Probability and Statistics are studied, respectively. Therefore, the Integral Calculus
course is preceded by courses of Algebra, from which it takes up the algebraic treatments
of simplification of expressions, as well as the graphing of functions from tabulation;
Geometry and Trigonometry, from which it takes up definitions and synthetic properties of
the circumference and its notable lines; Analytic Geometry, which includes the definition
and graphing of functions, taking into account the components of these views as geometric
places; and Differential Calculus, which includes the notion of limit and function from a
formal point of view, as well as the concepts of differential and infinitesimal and various
mathematical artifices to find the derivative of a variety of functions.

Within the Integral Calculus course, the study of solids of revolution is one of the
suggested applications and is located at the end of the course. It is preceded by the definition
of antiderivatives, their analytical treatment, the definite integral and the calculation of
area under the curve and between two curves [13].
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2.2. The MTSK Model

The MTSK model integrates, according to [14], the core professional knowledge of a
mathematics teacher. It is composed of three domains: the Mathematical Knowledge (MK),
the Pedagogical Content Knowledge (PCK), and teacher’s beliefs on mathematics and
mathematics teaching and learning. The two first knowledge domains have, in turn, three
subdomains each, as shown in Figure 1. According to [12], the divisions between domains
and subdomains represent an effort to facilitate analytical studies, being the limits with
the central domain represented with dashed lines to recognize the influence that beliefs
have on knowledge. Notwithstanding, the continuity reflected in the other segments does
not intend to represent the lack of relationship between subdomains, as some analytical
studies have shown [15].

Figure 1. The MTSK model. Adapted with permission from Ref. [12] Copyright 2018.

The elements that constitute the MTSK model only apply to mathematics teachers [14].
In summary, the MK domain covers the knowledge of topics, how they are interrelated and
the mathematical practices, referring to the ways in which a person proceeds and produces
in mathematics. The PCK domain considers mathematical contents as objects of teaching,
learning, as well as their curricular background.

To facilitate the analysis, the subdomains of the MTSK model were split into categories,
which were described by [12] and are listed in Table 1 (MK subdomains) and Table 2
(PCK subdomains).

In this paper we focus on the MK and PCK domains, leaving for an upcoming study
the implications between teachers’ predictions and the domain of beliefs on mathematics
and mathematics teaching and learning.

2.3. Students’ Difficulties with Solids of Revolution

Although solids of revolution are present in different educational levels, in this paper
we focus on the calculation of their volume using integral calculus methods. Ref. [17]
mentioned that one difficulty in working with solids of revolution resides in the curricular
sequencing of this topic. By studying first the calculation of areas between curves as an
application of integrals and, subsequently, calculating the volumes as another application,
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students may think that it is the area what is rotated to obtain the solid. This error is also
reproduced in some textbooks [17].

Table 1. Categories of the MK subdomains.

Subdomain Code Category 1

KoT1 Procedures
Knowledge of Topics (KoT) KoT2 Definitions, properties and foundations

KoT3 Registers of representation
KoT4 Phenomenology and applications
KSM1 Connections based on increased complexity

Knowledge of the Structure
of Mathematics (KSM) KSM2 Connections based on simplification

KSM3 Transverse connections
KSM4 Auxiliary connections
KPM1 Demonstrations

Knowledge of Practices in
Mathematics (KPM) KPM2 Definitions

KPM3 Exemplification
KPM4 Use of heuristics

1 Note: All the categories were established in [12], except those relating to Knowledge of Practices in Mathematics,
which correspond to the proposal made by [16], in view of improving the characterization of this subdomain.

Table 2. Categories of the PCK subdomains.

Subdomain Code Category 1

KMT1 Theories of mathematics teaching
Knowledge of Mathematics

Teaching (KMT) KMT2 Teaching resources (physical and digital)

KMT3 Strategies, techniques, tasks, and examples
KFLM1 Theories of mathematical learning

Knowledge of Features of
Learning Mathematics (KFLM) KFLM2 Strengths and weaknesses in

learning mathematics

KFLM3 Ways students interact with
mathematical content

KFLM4 Emotional aspects of learning mathematics
KMLS1 Demonstrations

Knowledge of Mathematics
Learning Standards (KMLS) KMLS2 Definitions

KMLS3 Exemplification
KMLS4 Use of heuristics

1 Note: All the categories were established in [12].

Another difficulty, found by [18], refers to the meaning that students attribute to f (x),
as it is not unambiguous. Instead, students must distinguish between three simultaneous
meanings for f (x): as the function to be integrated, as the image of the function and as
the radius of the circles that form cylinders of height dx. These authors [18] explained that
switching between registers of representation, especially between algebraic and graphical
registers, represents another difficulty for students.

Other authors [19] mentioned that the main difficulties linked to the learning of the
volume of solids of revolution are related to the visualization of rotations, the interpretation
of the definite integral, and the integration of the concepts involved (drawing graphs,
indicating and rotating the representative function, and indicating the correct formula for
calculating the volume of the solid generated). In particular, these authors reported that, in
tasks related to the calculation of the volume of solids of revolution, students have difficul-
ties in drawing graphs, moving between 2D and 3D representations, understanding how a
2D object can rotate and become a 3D object, and using techniques to calculate integrals.



Mathematics 2022, 10, 2933 5 of 13

3. Methodology

This research used a qualitative approach and represents what [20] calls an instrumen-
tal case study. Five mathematics teachers who regularly teach Integral Calculus in high
schools in Mexico agreed to participate in the research study. Their teaching experience
ranged from 15 to 32 years. Data collection was carried out in a 120-min session through
video recordings and two researchers acted as observers [21]. During this session, partici-
pants were asked to predict students’ mathematical behavior when graphing the functions
shown in Figure 2, which was part of a didactic sequence designed by the two researchers
to deal with the topic of the volume of solids of revolution.

Figure 2. Graphing activity. Note: The activity was delivered to teachers in Spanish.

In order to formulate conjectures, teachers were first asked to solve the activity in
pairs as if they were students. In order to be able to explore a variety of conjectures,
each participant was randomly and anonymously assigned a student profile with specific
characteristics of three different performance levels (low, medium or high). All participants
solved and discussed the activity, first assuming the assigned role and then with their
own arguments, i.e., without considering the role. This discussion generated a series
of five conjectures about students’ mathematical behavior regarding the aforementioned
task. Next, in order to obtain more detailed explanations of their conjectures, participants
watched in video format how the activity had been carried out with a group of high
school students. This was followed by a new discussion oriented to check whether their
conjectures matched students’ mathematical behaviors.

Data analysis was performed under a mixed Bottom-Up and Top-Down approach [22].
On the one hand, the Bottom-Up analysis was used to group teachers’ contributions to
generate a set of five conjectures about students’ mathematical behavior when facing the
task. On the other hand, the Top-Down analysis was used to assign the categories of
knowledge that supported the contributions that generated such conjectures.

4. Results

Five conjectures of students’ mathematical behavior emerged during the discussion.
In this section, evidence of mathematics teachers’ knowledge that led to these predictions
is analyzed. To organize the presentation of the results, teachers are named as T1, T2, T3,
T4, and T5. The interventions of the researchers (named as R1 and R2) are also included,
but their knowledge is not analyzed as this has never been the intention of this study.
It is important to mention that some teachers’ predictions were made under the specific
assigned role, while others were made when participants were asked not to assume such
role. To distinguish between both, an * is placed next to the participant’s name when the
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teacher was under the role. Note that T1 and T2 were in the low performance role, T3 and
T4 in the high performance role and T5 in the medium performance role.

Conjecture 1. The majority of students will choose tabulation as their preferred tool for graphing.

When discussing how to carry out the activity under the assigned role, T3 wanted to
use analytical tools, while T2 pointed out that he did not remember the meaning of the
concepts being mentioned.

T3 * The second function is a straight line passing through the origin and whose slope is 2.
Then it would look like this [he makes a gesture with his hand reflecting an increasing
straight line].

T2 * I remember having seen these topics in Analytic Geometry, but I have forgotten what the
slope refers to. I do remember about the origin.

T3 * All you have to do is to stand at the origin and move, for each unit on the x-axis [abscissa
axis], two units on the y-axis [ordinate axis].

T2 * But wouldn’t it be easier to give values for x in the function and get values for y?
T3 * In this case it is easier, but not in all cases.

In this extract, T3 reflects knowledge of the meaning of the elements of a straight line
(KoT2) and of how such elements change due to transformations both in the analytical and
graphical registers (KoT3).

After this conversation, both teachers made the remaining graphs using tabulation.
Later, R2 questioned this decision.

R2 I heard from some of you that some parameters of the functions were being used to graph
their behavior. However, I saw that many of you graphed using the tabulation. T3, you
had proposed using the slope, right?

T3 What T2 and I discussed is that it is easier for students to tabulate. But I think that, if they
have already learned other techniques, we should force them to use them.

T5 I don’t think it should be forced, but that each student should use what he/she feels more
comfortable with. They should be familiar with various graphing techniques, but then it’s
up to the individual to decide which one to use.

T3 But if you plot a parabola like this, you will not get a good drawing, you will get a peak or
a horizontal part depending on the values you consider.

R1 And what do you think the students would do in this part of the activity?
T2 I believe they would tabulate.

All teachers agreed that tabulation is the form of graphing mainly chosen by students,
although they considered that some students with a greater knowledge of topics might use
other methods, as later shown regarding Conjecture 3. Besides, T3 shows knowledge of the
sequencing of topics by saying which procedures students should know from a curricular
point of view (KMLS3). T2 and T3 also mentioned that students have developed a strength
in using tabulation as a tool for graphing and, implicitly, T5 agreed with them (KFLM2).
However, such procedure has some limitations, which were expressed by T3, showing
knowledge of this way of proceeding (KoT1).

Next, participants were shown several images that corroborated their conjecture and
were asked to discuss the production shown in Figure 3, in which some students tabulated
the constant function and then graphed it.

T4 I think here [in the previous discussion] we all assumed that the constant function
would not be a problem. In fact, we didn’t even discuss it. But, on further reflection, I
think this function is very complex for the students, because it doesn’t have the
independent variable written down and that can cause confusion

T3 I think it has to do with the examples we use to present functions. We almost always use
expressions where x is involved and we make them as complex as we want, because we
are interested in this idea that the function is a machine that transforms, but here [in the
constant function] nothing is being transformed. It may be that our own discourse
leaves these reflections hidden from the students.
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Figure 3. Student’s production: graph of the function y = 3 using tabulation. Note: On the right-hand
side of the image, the reader can see a table in which values are assigned for the independent variable
and the value of 3 is replicated in the dependent variable.

The discussion about this student production allowed the teachers to discuss the origin
of this error and, rather than focusing on a distraction, they expressed the complexity of the
exercise with respect to the definition and exemplification that is usually used to introduce
the topic of functions. Therefore, teachers used knowledge of examples and their potential
for teaching this topic (KMT3).

Conjecture 2. Tabulation will make students ignore the graphing interval proposed in the activity.

When assuming the assigned role, T1 made the graph of the function representing a
parabola based on the tabulation in the interval [−3, 3]. T5 did not detect the change in this
interval with respect to the interval [−2, 5] requested in the activity. When they showed
what they had done to the whole group, this error was discussed.

T1 * In this last function, we got a solid of revolution with this shape [the teacher shows the
solid generated when rotating the function y = x2 + 1 around the x-axis and within the
interval between −3 and 3, both included].

T4 * It looks very similar to ours, but not so symmetrical. It must have more on the right side
and less on the left side [the teacher refers to the solid generated when rotating the
function y = x2 + 1 around the x-axis and within the internal between −2 and 5,
both included].

T1 In fact, I drew it this way because I considered that our students, at least mine, when they
tabulate, they always consider whole numbers and numbers between −3 and 3.

T2 It’s something they have learned. My students also do tabulation like that.

This dialogue reveals teachers’ deep knowledge of how students interact with the
tabulation (KFLM3), not only anticipating its use, but also how it will be used (considering
only integers) and the spectrum it will cover (the interval [−3, 3]). This was corroborated
by the work done by various students in almost all the graphical representations (see,
for example, Figure 4), but the discussion did not provide new information about the
knowledge that the teachers employed to elaborate this conjecture.

Conjecture 3. High-achieving students will transform functions into known conics.

All functions were selected to be drawn based on the recognition of the parameters
and their translation into graphical language. In particular, the third function was discussed
based on the work of T4.
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T4 * I observed that, if I cleared this root [by squaring both sides of the equality] and passed
this x2 to this side [by adding x2 on both sides of the equality], I got the equation of a
circle. So, by limiting it to the interval, I only drew a quarter of a circle.

R1 Let’s pause here. T4, would your students work on this function in this way?
T4 Yes, not all of them, but those with high performance levels would
R1 What do you think, T3, would any of your students do it.
T3 Yes, my students would understand that this is a circle of radius 6.
T2 I think the question is different. My students would also understand that the new

expression is a circle. But I think that what we are presenting is whether students would
genuinely proceed in this way. I say no.

T5 I don’t think they would proceed like that either. Even those with high performance levels
would determine the domain, the range and plot it. I don’t think they would notice that it
is a perfect circle.

Figure 4. Student’s production: tabulation without respecting the proposed interval. Note: The
activity requested the graphical representation to be limited to the interval [0, 3]. In the upper-left
part of the image, the reader can see that the interval [−3, 3] was tabulated considering only integers.

In this discussion, knowledge of the equation of the circumference, the meaning
of its elements (KoT2) and its transformation to a graphical register (KoT3) is evident.
Furthermore, based on the previous dialogues, exhibited in Conjectures 1 and 2, teachers
knew that students have worked with the equation of the circumference (KMLS3) and
that this procedure would, in some cases, be adopted by students with high performance
levels (KFLM3).

Regarding the activity carried out with students, it is possible to observe that the
teacher was influenced by this behavior because she asked in open discussion what the
function represented. One student mentioned that it was a circle with center at the origin
and radius 6. Figure 5 shows a graph drawn based on tabulation and justified with the
values mentioned by the student. For this reason, the fulfilment of the conjecture was not
discussed among the participating teachers.
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Figure 5. Student production: graph of the function representing a quarter of a circle. Note: At
the bottom of the figure, we read height = 6, which corresponds to the cut with the ordinate axis,
radius = 6 and diameter = 12, which we assume was used to draw the solid of revolution shown
between the graph of the function and the legend.

Conjecture 4. Students could draw circumferences without perspective on the cuts of the solids
of revolution.

From the second instruction in the activity, T2, who was playing the role of a low
performance level student, questioned the drawing made by T3, pointing out that he could
not see any circumference in his line. It should be noted that in the activities done by
the students prior to this one, it had already been discussed with tangible material that
circumferences could be observed in the cross-sections of the solids of revolution. This
issue was addressed in the group discussion.

T2 I would like to focus on one aspect that I discussed with T3. The activity asks to measure
the radius of the circles that would be generated at different cuts in the solid. I understand
that the intention is that we observe that this radius coincides with the image of the
function at that point. However, it strikes me that, when working with a drawing in two
dimensions, the circles will not appear or will deform the image of the solid.

R1 Could you expand a little more on your idea?
T2 Solids are three-dimensional. To represent them on our sheet, we have to give them

perspective. Circles will not comply with the definition that the distance from the center
to any point is the same. That’s what I mean when I say that the circles are not going to be
drawn. Although I also think that some students will intentionally draw them even
though the drawing no longer looks like a solid of revolution, because they read that there
must be circles.

R1 What do you [the other teachers] think about this?
T1 I think this activity, without the context of the previous ones, might seem poorly written

in terms of circles. I think students may have problems with the tracing of
three-dimensional figures. I have seen this in other topics. They lack perspective in their
drawings. Perhaps this part of the activity could be transferred to GeoGebra here, as it has
a 3D tool that allows you to see the figure from different angles.

T2 explains possible difficulties that students may have when contrasting the notion
that they have so far of a solid of revolution and its properties with the drawing they make
of solids in two dimensions and with the meaning of circumference (KFLM2). Although
T1 does not fully cover the elements that make up the exposed difficulty, he shows his
knowledge of a software that would allow the visualization of the solid of revolution
without the problem of perspective (KMT2).
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Although this conjecture did not have a decisive impact on the development of
the activity, during the implementation it could be observed that several students had
difficulties in representing the solids of revolution. During the discussion with the teachers,
the graph shown in Figure 6 was considered.

T2 This is what I was referring to. In the graph you can see that it joins the ends of the
segments with a straight line, but it does not allow you to see a circumference.

T5 I think it’s a problem of the size of the drawing. In fact, if we observe, on the right he [the
student] drew an arc, but he didn’t put his symmetrical one, but maybe it’s because he felt
that the drawing was overlapping.

T3 I see that the arc drawn on the right does not correspond to the perspective of a
well-drawn cone, but I dare to say that they [the students] understood that there is a
circumference there.

T1 I was surprised by the fact that he took the drawing out of the Cartesian plane to draw it
properly. It reminds me of an idea I read some time ago about students who don’t
recognize that the square is a rhombus because it is not rotated. I feel that in this graph
they felt the need to put the cone as they have always drawn it, with its vertical axis, to
convince themselves about the drawing.

Figure 6. Student production: drawing of a solid of revolution from the graph of a segment. Note:
Legend says: “Axis of rotation at x, function y = 2x ”.

With this interpretation, T1 connects, in an informal way, the notion of prototypical
schemas with the drawing made by the students in Figure 6. Although the evidence is not
strong enough to categorize it as KFLM1, it allows us to see the influence that concrete
research results have on teachers’ knowledge. In this case, we consider that this influence
falls on the knowledge of a typical way of relating to solids (KFML3).

Conjecture 5. To identify the value of the radius of the circumferences in the cross sections, students
will measure or approximate by counting.

One discussion that emerge from the dialogue that led to Conjecture 4 focused on how
determining the radius of circumferences would be approached.
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T2 One thing that is not solved by using GeoGebra is the determination of the radius.
GeoGebra can give us that value, but more than being interested in the value, we want the
students to know what that number means.

T3 I was also thinking about how to continue the activity without using GeoGebra. The
students could use millimeter sheets. This would allow them to count because the graphs
would have a scale given by the sheet itself.

T1 They could also use the ruler to measure. If they use properly the scale, the data should
be accurate.

T2 In straight lines yes, but curved lines will have differences.
R2 Differences between them?
T2 No. Well, yes, also, but I was referring to the difference between the data obtained and the

value of the function at that point.
T1 But I think that’s the discussion that the teacher could provoke. At this point in the

activity, what the students would be able to do is to measure, either by counting or with a
ruler. Then you [the teacher] must get them to know that the most accurate way to obtain
the data is to evaluate the point on the function. The part where you need to be more
careful about is to ensure that they measure towards the function and not towards the
sides, where the perspective gives a smaller measurement.

At the beginning and at the end of this dialogue, T2 and T1 complement their knowl-
edge of the task that is being discussed (KMT3). They determine the intentionality of
the activity and, in the case of T3 and T1, they show knowledge of ways in which they
think students would interact with this part of the activity (KFLM3). The role of Ge-
oGebra is relegated, not because it is not useful from a technical point of view to solve
the activity, but because its inclusion would affect the construction of the notion being
worked on, i.e., determining the formula to obtain the volume of solids of revolution using
integrals. This determination that limits the use of a virtual material based on its didactic-
mathematical characteristics shows the kind of knowledge of this software required by the
MTSK model (KMT2).

5. Conclusions

This research aimed at understanding the knowledge that allows teachers to anticipate
students’ mathematical behavior in an introductory activity on calculating the volume
of solids of revolution. Using the MTSK model [12] to analyze such knowledge was
useful considering its focus on mathematics. The dialogues presented in the results section
show a predominance of teachers’ KoT, KMT, and KFLM. In particular, to elaborate their
conjectures, teachers used their knowledge of students’ difficulties and of the way students
interact with mathematical content. It was natural that these two categories of knowledge
emerged regularly because, according to [23], moments of difficulty draw teachers’ attention
when analyzing (in our case predicting) students’ performance in an activity.

It is interesting to note that tabulation was the graphical representation most chosen
by the students. This procedure presents some limitations that in the future may lead to
difficulties in other mathematical aspects. Regarding the difficulties associated with visual-
ization, it has been conjectured that some students will draw circles without perspective in
the cuts of the solids of revolution as they will not comply with the definition that the dis-
tance from the center to any point is the same, in addition to the difficulties associated with
2D and 3D representations mentioned by [19]. In short, the different comments expressed
by the teachers are closely linked to the mathematical practices developed when working
on graphing functions with students.

Regarding the limitations of the study, the authors are aware of two. Firstly, it is the
analysis itself with the MTSK model and the opacity that may be involved in segmenting the
specialized knowledge of the mathematics teacher which makes it impossible to state that
these results can be re-evidenced in the different subdomains of knowledge. Secondly, we
are dealing precisely with evidence of knowledge and not with clues. On some occasions,
the researchers’ own interpretation of the teachers’ comments has been what has determined
which subdomain of knowledge could be implied in the conjecture (see for instance the
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reference to KFLM1 in the fourth conjecture). Although the evidence is not conclusive, we
believe that not specifying it would be detrimental to the analysis and understanding of
the case study.

Conjectures made by the teachers, being influenced by their experience (both from
the point of view of students and from the point of view of teachers), can be limited to
the Mexican context as well as to those whose curricular framework is similar to that of
this country. Although we do not know what kind of conjectures might arise in curricular
frameworks of a different nature, we consider that the knowledge required by the teacher
to elaborate such conjectures will not differ from that found in this study, since such
knowledge coincides with that found in the review by [24] for the general knowledge
required in calculus courses.

The emphasis on KoT, KFLM and KMT allows us to establish two implications. On
the one hand, this provides us with information on the practical potential of developing
such knowledge in teachers. This is not intended to detract from the importance of the
other knowledge that, from the point of view of the MTSK, makes up the specialized
knowledge of the mathematics teacher, since other professional competences may require
it. On the other hand, the emphasis on these subdomains denotes the absence of evidence
of knowledge about the structure of mathematics and about mathematical practices, which
may be a product of the methodological decisions of this research but may also be due to an
impossibility on the part of teachers to make use of this type of knowledge in professional
activities, which would be interesting to explore in a future research study.

Being able to determine the knowledge required by teachers to conjecture students’
mathematical behavior influences other professional competences, for example, teachers’
competence to interpret students’ mathematical productions [25].

This research study has clear theoretical and practical implications. For instance, the
results presented here could be used in training processes both at initial and ongoing stages.
This idea addresses the needs claimed by various authors regarding the determination
of useful knowledge, both for the design of training experiences [26], and for discussing
teacher educators’ knowledge [27].
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