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Abstract: A process for solving an algebraic equation was presented by Newton in 1669 and later
by Raphson in 1690. This technique is called Newton’s method or Newton–Raphson method and is
even today a popular technique for solving nonlinear equations in abstract spaces. The objective of
this article is to update developments in the convergence of this method. In particular, it is shown
that the Kantorovich theory for solving nonlinear equations using Newton’s method can be replaced
by a finer one with no additional and even weaker conditions. Moreover, the convergence order two
is proven under these conditions. Furthermore, the new ratio of convergence is at least as small. The
same methodology can be used to extend the applicability of other numerical methods. Numerical
experiments complement this study.
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1. Introduction

Given Banach spaces U ,V . Let L(U ,V) stand for the space of all continuous linear oper-
ators mapping U into V . Consider differentiable as per Fréchet operator
L : D ⊆ U −→ V and its corresponding nonlinear equation

L(x) = 0, (1)

with D denoting a nonempty open set. The task of determining a solution x∗ ∈ D is very
challenging but important, since applications from numerous computational disciplines are
brought in form (1) [1,2]. The analytic form of x∗ is rarely attainable. That is why mainly
numerical methods are used generating approximations to solution x∗. Most of them are
based on Newton’s method [3–7]. Moreover, authors developed efficient high-order and
multi-step algorithms with derivative [8–13] and divided differences [14–18].

Among these processes the most widely used is Newton’s and its variants. In particu-
lar, Newton’s Method (NM) is developed as

x0 ∈ D, xn+1 = xn −L′(xn)
−1L(xn) ∀ n = 0, 1, 2, . . . . (2)

There exists a plethora of results related to the study of NM [3,5–7,19–21]. These
papers are based on the theory inaugurated by Kantorovich and its variants [21]. Basically,
the conditions (K) are used in non-affine or affine invariant form. Suppose (K1) ∃ point
x0 ∈ D and parameter s ≥ 0 : L′(x0)

−1 ∈ L(V ,U ), and

Mathematics 2022, 10, 2931. https://doi.org/10.3390/math10162931 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10162931
https://doi.org/10.3390/math10162931
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9189-9298
https://orcid.org/0000-0003-0035-1022
https://orcid.org/0000-0002-3845-6260
https://orcid.org/0000-0002-8986-2509
https://doi.org/10.3390/math10162931
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10162931?type=check_update&version=2


Mathematics 2022, 10, 2931 2 of 16

‖L′(x0)
−1L(x0)‖ ≤ s,

(K2) ∃ parameter M1 > 0 : Lipschitz condition

‖L′(x0)
−1(L′(w1)−L′(w2))‖ ≤ M1‖w1 − w2‖

holds ∀w1 ∈ D and w2 ∈ D,
(K3)

s ≤ 1
2M1

and
(K4) B[x0, ρ] ⊂ D, where parameter ρ > 0 is given later.

Denote B[x0, r] := {x ∈ D : ‖x− x0‖ ≤ r} for r > 0. Set ρ = r1 =
1−
√

1− 2M1s
M1

.

There are many variants of Kantorovich’s convergence result for NM. One of these
results follows [4,7,20].

Theorem 1. Under conditions (K) for ρ = r1; NM is contained in B(x0, r1), convergent to a
solution x∗ ∈ B[x0, r1] of Equation (1), and

‖xn+1 − xn‖ ≤ un+1 − un.

Moreover, the convergence is linear if s =
1

2M1
and quadratic if s <

1
2M1

. Further-

more, the solution is unique B[x0, r1] in the first case and in B(x0, r2) in the second case where

r2 =
1 +
√

1− 2M1s
M1

and scalar sequence {un} is given as

u0 = 0, u1 = s, un+1 = un +
M1(un − un−1)

2

2(1−M1un)
.

A plethora of studies have used conditions (K) [3–5,19,21–23].

Example 1. Consider the cubic polynomial

c(x) = x3 − a

for D = B(x0, 1− a) and parameter a ∈ (0,
1
2
). Select initial point x0 = 1. Conditions (K) give

s =
1− a

3
and M1 = 2(2− a). It follows that estimate

1− a
3

>
1

4(2− a)

holds ∀a ∈ (0,
1
2
). That is condition (K3) is not satisfied. Therefore convergence is not assured by

this theorem. However, NM may converge. Hence, clearly, there is a need to improve the results
based on the conditions K.

By looking at the crucial sufficient condition (K3) for the convergence, (K4) and the
majorizing sequence given by Kantorovich in the preceding Theorem 1 one sees that if
the Lipschitz constants M1 is replaced by a smaller one, say L > 0, than the convergence
domain will be extended, the error distances ‖xn+1 − xn‖, ‖xn − x∗‖ will be tighter and the
location of the solution more accurate. This replacement will also lead to fewer Newton
iterates to reach a certain predecided accuracy (see the numerical Section). That is why with
the new methodology, a new domain is obtained inside D that also contains the Newton



Mathematics 2022, 10, 2931 3 of 16

iterates. However, then, L can replace M1 in Theorem 1 to obtain the aforementioned
extensions and benefits.

In this paper several avenues are presented for achieving this goal. The idea is to
replace Lipschitz parameter M1 by smaller ones.
(K5) Consider the center Lipschitz condition

‖L′(x0)
−1(L′(w1)−L′(x0))‖ ≤ M0‖w1 − x0‖ ∀w1 ∈ D,

the set D0 = B[x0,
1

M0
] ∩ D and the Lipschitz-2 condition

(K6)

‖L′(x0)
−1(L′(w1)−L′(w2))‖ ≤ M‖w1 − w2‖ ∀w1, w2 ∈ D0.

These Lipschitz parameters are related as

M0 ≤ M1, (3)

M ≤ M1 (4)

since
D0 ⊂ D. (5)

Notice also since parameters M0 and M are specializations of parameter M1, M1 = M1(D),
M0 = M0(D), but M = M(D0). Therefore, no additional work is required to find M0 and

M (see also [22,23]). Moreover the ratio
M0

M
can be very small (arbitrarily). Indeed,

Example 2. Define scalar function

F(t) = b0t + b1 + b2 sin eb3t,

for t0 = 0, where bj, j = 0, 1, 2, 3 are real parameters. It follows by this definition that for b3

sufficiently large and b2 sufficiently small,
M0

M1
can be small (arbitrarily), i.e.,

M0

M1
−→ 0.

Then, clearly there can be a significant extension if parameters M1 and M0 or M and
M0 can be replace M1 in condition (K3). Looking at this direction the following replace-
ments are presented in a series of papers [19,22,23], respectively

(N2): s ≤ 1
q2

,

(N3): s ≤ 1
q3

,

and
(N4): s ≤ 1

q4
,

where q1 = 2M1, q2 = M1 + M0, q3 =
1
4
(4M0 + M1 +

√
M2

1 + 8M1M0) and

q4 =
1
4
(4M0 +

√
M2

1 + 8M0M1 +
√

M1M0). These items are related as follows:

q4 ≤ q3 ≤ q2 ≤ q1,

(N2)⇒ (N3)⇒ (N4),

and as relation
M0

M1
−→ 0,

q2

q1
−→ 1

2
,

q3

q2
−→ 1

4
,

q4

q3
−→ 0

and
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q4

q2
−→ 0.

Preceding items indicate the times (at most) one is improving the other. These are the
extensions given in this aforementioned references. However, it turns out that parameter L
can replace M1 in these papers (see Section 3). Denote by Ñ, q̃ the corresponding items. It
follows

q̃1

q1
=

M
M1
−→ 0,

q̃2

q2
−→ 0,

q̃3

q3
−→ 0

for
M0

M1
−→ 0 and

M
M1
−→ 0. Hence, the new results also extend the ones in the afore-

mentioned references. Other extensions involve tighter majorizing sequences for NM (see
Section 2) and improved uniqueness report for solution x∗ (Section 3). The applications
appear in Section 4 followed by conclusions in Section 5.

2. Majorizations

Let K0, M0, K, M be given positive parameters and s be a positive variable. The real

sequence {tn} defined for t0 = 0, t1 = s, t2 = t1 +
K(t1 − t0)

2

2(1− K0t1)
and ∀n = 0, 1, 2, . . . by

tn+2 = tn+1 +
M(tn+1 − tn)2

2(1−M0tn+1)
(6)

plays an important role in the study of NM, we adopted the notation tn(s) = tn
∀n = 1, 2, . . . . That is why some convergence results for it are listed in what follows
next in this study.

Lemma 1. Suppose conditions

K0t1 < 1 and tn+1 <
1

M0
(7)

hold ∀ n = 1, 2, . . . . Then, the following assertions hold

tn < tn+1 <
1

M0
(8)

and ∃ t∗ ∈ [s,
1

M0
] such that lim

n→∞
tn = t∗.

Proof. The definition of sequence {tn} and the condition (7) implies (8). Moreover, increas-

ing sequence {tn} has
1

M0
as an upper bound. Hence, it is convergent to its (unique) least

upper bound t∗.

Next, stronger convergence criteria are presented. However, these criteria are easier to
verify than conditions of Lemma 1. Define parameter δ by

δ =
2M

M +
√

M2 + 8M0M
. (9)

This parameter plays a role in the following results.
Case: K0 = M0 and K = M.

Part (i) of the next auxiliary result relates to the Lemma in [19].

Lemma 2. Suppose condition

s ≤ 1
2M2

(10)
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holds, where

M2 =
1
4
(M + 4M0 +

√
M2 + 8M0M). (11)

Then, the following assertions hold

(i) Estimates

tn+1 − tn ≤ δ(tn − tn−1) (12)

tn <
1− δn+1

1− δ
s <

s
1− δ

(13)

hold. Moreover, conclusions of Lemma 1 are true for sequence {tn}. The sequence, {tn} converges
linearly to t∗ ∈ (0,

s
1− δ

]. Furthermore, if for some µ > 0

s <
µ

(1 + µ)M2
. (14)

Then, the following assertions hold

(ii)

tn+1 − tn ≤
M
2
(1 + µ)(tn − tn−1)

2 (15)

and
tn+1 − tn ≤

1
α
(αs)2n

, (16)

where α =
M
2
(1 + µ) and the conclusions of Lemma 1 for sequence {tn} are true. The sequence,

{tn} converges quadratically to t∗.

Proof. (i) It is given in [19].
(ii) Notice that condition (14) implies (11) by the choice of parameter µ. Assertion (15)

holds if estimate

0 <
M

2(1−M0tn+1)
≤ M

2
(1 + µ) (17)

is true. This estimate is true for n = 1, since it is equivalent to M0s ≤ µ

1 + µ
. But this is

true by M0 ≤ 2M2, condition (11) and inequality
µM0

(1 + µ)2M2
≤ µ

1 + µ
. Then, in view of

estimate (13), estimate (17) certainly holds provided that

(1 + µ)M0(1 + δ + . . . + δn+1)s− µ ≤ 0. (18)

This estimate motivates the introduction of recurrent polynomials pn which are defined
by

pn(t) = (1 + µ)M0(1 + t + . . . + tn+1)s− µ, (19)

∀t ∈ [0, 1). In view of polynomial pn assertion (18) holds if

pn(t) ≤ 0 at t = δ. (20)

The polynomials pn are connected:

pn+1(t)− pn(t) = (1 + µ)M0tn+2s > 0,

so
pn(t) < pn+1(t) ∀ t ∈ [0, 1). (21)
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Define function p∞ : [0, 1) −→ R by

p∞(t) = lim
n−→∞

pn(t). (22)

It follows by definitions (19) and (20) that

p∞(t) =
(1 + µ)M0s

1− t
− µ. (23)

Hence, assertion (20) holds if

p∞(t) ≤ 0 at t = δ, (24)

or equivalently

M0s ≤ µ

1 + µ

√
M2 + 8M0M−M√
M2 + 8M0M + M

,

which can be rewritten as condition (14). Therefore, the induction for assertion (17) is
completed. That is assertion (15) holds by the definition of sequence {tn} and estimate (15).
It follows that

α(tn+1 − tn) ≤ α2(tn − tn−1) = (α(tn − tn−1))
2,

≤ α2(α(tn−1 − tn−2))
2

≤ α2α2(tn−1 − tn−2)
22

≤ α2α2α2(tn−2 − tn−3)
23

...

so

tn+1 − tn ≤ α1+2+22+...+2n−1
s2n

=
1
α
(αs)2n

.

Notice also that Mµ < 4M2, then
µ

(1 + µ)M1
<

2
M(1 + µ)

, so αs < µ.

Remark 1. (1) The technique of recurrent polynomials in part (i) is used: to produce convergence
condition (11) and a closed form upper bound on sequence {tn} (see estimate (13)) other

than
1

M0
and t∗ (which is not given in closed form). This way we also established the linear

convergence of sequence {tn}. By considering condition (14) but being able to use estimate
(13) we establish the quadratic convergence of sequence {tn} in part (ii) of Lemma 2.

(2) If µ = 1, then (14) is the strict version of condition (10).
(3) Sequence {tn} is tighter than the Kantorovich sequence {un} since M0 ≤ M1 and M ≤ M1.

Concerning the ration of convergence αs this is also smaller than r =
2M1s

(1−
√

1− 2M1s)2

given in the Kantorovich Theorem [19]. Indeed, by these definitions αs < r provided that

µ ∈ (0, µ1), where µ1 =
4M1

M(1 +
√

1− 2M1s)2 − 1. Notice that

(1 +
√

1− 2M1s)2 < (1 + 1)2 = 4 ≤ 4M1

M
,

so µ1 > 0.
Part (i) of the next auxiliary result relates to a Lemma in [19]. The case M0 = M has been

studied in the introduction. So, in the next Lemma we assume M0 6= M in part (ii).
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Lemma 3. Suppose condition

s ≤ 1
2M3

(25)

holds, where

M3 =
1
8
(4M0 +

√
M0M + 8M2

0 +
√

M0M).

Then, the following assertions hold

(i)

tn+1 − tn ≤ δ(tn − tn−1) ≤
δn−1M0s2

2(1−M0s)
(26)

and

tn+2 ≤ s +
1− δn+1

1− δ
(t2 − t1) < t∗∗ = s +

t2 − t1

1− δ
s, ∀n = 1, 2, . . . . (27)

Moreover, conclusions of Lemma 1 are true for sequence {tn}. The sequence {tn} converges
linearly to t∗ ∈ (0, t∗∗]. Define parameters h0 by

h0 =
2(
√

M0M + 8M2
0 +
√

M0M)

M(
√

M0M + 8M2
0 +
√

M0M + 4M0)
, M̄3 =

h0

2
,

γ = 1 + µ, β =
µ

1 + µ
, d = 2(1− δ)

and

µ =
M0

2M3 −M0
.

(ii) Suppose

M0 < M ≤ M0

θ
(28)

and (25) hold, where θ ≈ 0.6478 is the smallest solution of scalar equation 2z4 + z− 1 = 0.
Then, the conclusions of Lemma 2 also hold for sequence {tn}. The sequence converges
quadratically to t∗ ∈ (0, t∗∗].

(iii) Suppose

M ≥ 1
θ

M0 and s <
1

2M̄3
(29)

hold. Then, the conclusions of Lemma 2 are true for sequence {tn}. The sequence {tn} con-
verges quadratically to t∗ ∈ (0, t∗∗].

(iv) M0 > M and (25) hold. Then, M̄3 ≤ M3 and the conclusions of Lemma 2 are true for
sequence {tn}. The sequence {tn} converges quadratically to t∗ ∈ (0, t∗∗].

Proof. (i) It is given in Lemma 2.1 in [23].
(ii) As in Lemma 2 but using estimate (27) instead of (13) to show

M
2(1−M0tn+1)

≤ Mγ

2
.

It suffices

γM0

(
s +

1− δn

1− δ
(t2 − t1)

)
+ 1− γ ≤ 0
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or

pn(t) ≤ 0 at t = δ, (30)

where

pn(t) = γM0(1 + t + . . . + tn−1)(t2 − t1) + γM0s + 1− γ.

Notice that

pn+1(t)− pn(t) = γM0tn(t2 − t1) > 0.

Define function p∞ : [0, 1) −→ R by

p∞(t) = lim
n−→∞

pn(t).

It follows that

p∞(t) =
γM0(t2 − t1)

1− t
+ γM0s + 1− γ.

So, (30) holds provided that

p∞(t) ≤ 0 at t = δ. (31)

By the definition of parameters γ, d, β and for M0s = x, (31) holds if

x2

2(1− x)(1− δ)
+ x ≤ β

or

(d− 1)x2 + (1 + β)x− β ≤ 0

or

x ≤ 1 + β−
√
(1− β)2 + 4βd

2(1− d)
or

s ≤ 1 + β−
√
(1− β)2 + 4βd

2(1− d)
. (32)

Claim. The right hand side of assertion (31) equals
1

M2
. Indeed, this is true if

1 + β−
√
(1− β)2 + 4βd =

2M0(1− d)
M2

or

1 + β− 2M0(1− d)
2M3

=
√
(1− β)2 + 4βd

or by squaring both sides

1 + β2 +
4M2

0(1− d)2

4M2
3

+ 2β− 4M0(1− d)
2M3

− 4βM0(1− d)
2M3

= 1 + β2 − 2β + 4βd

or

β
(

1− M0(1− d)
2M3

− d
)
=

M0(1− d)
2M3

(
1− M0

2M3

)
or
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β
(

1− M0

2M3

)
(1− d) =

(
1− M0

2M3

)
(1− d)

M0

2M3

or

β =
M0

2M3

or

µ

1 + µ
=

M0

2M3

or

µ =
M0

2M3 −M0
,

which is true. Notice also that

2M3 −M0 =
1
4
(4M0 +

√
M0M +

√
M0M + 8M2

0)

=
1
4
(
√

M0M +
√

M0M + 8M2
0) > 0

and 2M3 − 2M0 > 0, since 2M3 −M0 =

√
M0M +

√
M0M + 8M2

0 − 4M0

4
, M0 <

√
M0M

and 3M0 <
√

M0M + 8M2
0 (by condition (25)). Thus, µ ∈ (0, 1). It remains to show

α =
M
2
(1 + µ)s < 1

or by the choice of µ and M2

M2

2

(
1 +

M0

2M3 −M0

)
s < 1

or
s <

1
2M̄3

. (33)

Claim. M̄3 ≤ M3. By the definition of parameters M2 and M̄3 it must be shown that

M(
√

M0M +
√

M0M + 8M2
0 + 4M0

2(
√

M0M +
√

M0M + 8M2
0)

≤
√

M0M +
√

M0M + 8M2
0 + 4M0

4

or if for y =
M0

M

2−√y ≤
√

y + 8y2. (34)

By (28) 2−√y > 0, so estimate (34) holds if 2y2 +
√

y− 1 ≥ 0 or

2z4 + z− 1 ≥ 0 for z =
√

y.

However, the last inequality holds by (28). The claimed is justified. So, estimate (33)
holds by (25) and this claim.

(iii) It follows from the proof in part (ii). However, this time M2 ≤ M̄2 follows from (29).
Notice also that according to part (ii) condition (25) implies (29). Moreover, according
to part (iii) condition (29) implies (25).
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(iv) As in case (ii) estimate (34) must be satisfied. If M0 ≥ 4M, then the estimate (34)
holds, since 2−√y ≤ 0. If M < M0 < 4M then again M0 > θM, so estimate (34) or
equivalently 2z2 + z− 1 > 0 holds.

Comments similar to Remark 1 can follow for Lemma 3.

Case. Parameters K0 and K are not equal to M0. Comments similar to Remark 1 can
follow for Lemma 3.

It is convenient to define parameter δ0 by

δ0 =
K(t2 − t1)

2(1− K0t2)

and the quadratic polynomial ϕ by

ϕ(t) = (MK + 2δM0(K− 2K0))t2 + 4δ(M0 + K0)t− 4δ.

The discriminant4 of polynomial q can be written as

4 = 16δ(δ(M0 − K0))
2 + (M + 2δM0)K > 0.

It follows that the root
1
h1

given by the quadratic formula can be written as

1
2h1

=
2

δ(M0 + K0) +
√
(δ(M0 + K0))2 + δ(MK + 2δM0)(K− 2K0)

.

Denote by
1
h2

the unique positive zero of equation

M0(K− 2K0)t2 + 2M0t− 1 = 0.

This root can be written as

1
2h2

=
1

M0 +
√

M2 + M0(K− 2K0)
.

Define parameter M4 by

1
M4

= min
{

1
h1

,
1
h2

}
. (35)

Part (i) of the next auxiliary result relates to Lemma 2.1 in [22].

Lemma 4. Suppose

s ≤ 1
2M4

(36)

holds, where parameter M4 is given by Formula (35). Then, the following assertions hold

(i) Estimates

tn+2 − tn+1 ≤ δ0δn−1 Ks2

2(1− K0s)
,

and

tn+2 ≤ s +
(

1 + δ0
1− δn

1− δ

)
(t2 − t1) ≤ t̄ = s +

(
1 +

δ0

1− δ

)
(t2 − t1).

Moreover, conclusions of Lemma 2 are true for sequence {tn}. The sequence {tn} converges
linearly to t∗ ∈ (0, t̄].
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(ii) Suppose

M0

(
δ0(t2 − t1)

1− δ
+ s
)
≤ β, (37)

s <
2

(1 + µ)M
(38)

and (36) hold for some µ > 0. Then, the conclusions of Lemma 3 are true for sequence {tn}.
The sequence {tn} converges quadratically to t∗ ∈ (0, t̄].

Proof. (i) It is given in Lemma 2.1 in [22].
(ii) Define polynomial pn by

pn(t) = γM0δ0(1 + t + . . . + tn−1)(t2 − t− 1) + γM0s + 1− γ.

By this definition it follows

pn+1(t)− pn(t) = γM0δ0(t2 − t1)tn > 0.

As in the proof of Lemma 3 (ii), estimate

M
2(1−M0tn+1)

≤ M
2

γ

holds provided that

pn(t) ≤ 0 at t = δ. (39)

Define function p∞ : [0, 1) −→ R by

p∞(t) = lim
n−→∞

pn(t).

It follows by the definition of function p∞ and polynomial pn that

p∞(t) =
γM0δ0(t2 − t1)

1− t
+ γM0s− γ.

Hence, estimate (39) holds provided that

p∞(t) ≤ 0 at t = δ.

However, this assertion holds, since µ ∈ (0, 1). Moreover, the definition of α and
condition (38) of the Lemma 4 imply

αs =
M
2
(1 + µ).

Hence, the sequence {tn} converges quadratically to t∗.

Remark 2. Conditions (36)–(38) can be condensed and a specific choice for µ can be given as

follows: Define function f :
[
0,

1
K0

)
−→ R by

f (t) = 1−M0

(
δ0(t)(t2(t)− t1(t))

1− δ
+ t
)

.

It follows by this definition

f (0) = 1 > 0, f (t) −→ −∞ as t −→ 1
K0

−
.
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Denote by µ2 the smallest solution of equation f (t) = 0 in
(

0,
1

K0

)
. Then, by choosing

µ = µ2 conditions (37) holds as equality. Then, if follows that if we solve the first condition in (37)
for “s", then conditions (36)–(38) can be condensed as

s ≤ s1 min
{

1
M4

,
2

(2 + µ2)M

}
. (40)

If s1 =
2

(2 + µ2)M
, then condition (40) should hold as a strict inequality to show quadratic

convergence.

3. Semi-Local Convergence

Sequence {tn} given by (6) was shown to be majorizing for {xn} and tighter than
{un} under conditions of Lemmas in [19,22,23], respectively. These Lemmas correspond
to part (i) of Lemma 1, Lemma 3 and Lemma 4, respectively. However, by asking the
initial approximation s to be bounded above by a slightly larger bound the quadratic order
of convergence is recovered. Hence, the preceding Lemmas can replace the order ones,
respectively in the semi-local proofs for NM in these references. The parameter K0 and K
are connected to x0 and L′ as follows
(K7) ∃ parameter K0 > 0 such that for x1 = x0 −L′(x0)

−1L(x0)

‖L′(x0)
−1(L′(x1)−L′(x0))‖ ≤ K0‖x1 − x0‖,

(K8) ∃ parameter K such that ∀ξ ∈ [0, 1], ∀x, y ∈ D0,∥∥∥∥∫ 1

0
L′(x0)

−1(L′(x + ξ(y− x))−L′(x))dξ

∥∥∥∥ ≤ K
2
‖y− x‖.

Note that K0 ≤ M0 and K ≤ M. The convergence criteria in Lemmas 1, 3 and 4 do not
necessarily imply each other in each case. That is why we do not only rely on Lemma 4 to
show the semi-local convergence of NM. Consider the following three sets of conditions:

(A1): (K1), (K4), (K5), (K6) and conditions of Lemma 1 hold for ρ = t∗, or
(A2): (K1), (K4) (K5), (K6), conditions of Lemma 2 hold with ρ = t∗, or
(A3): (K1), (K4) (K5), (K6), conditions of Lemma 3 hold with ρ = t∗, or
(A4): (K1), (K4) (K5), (K6), conditions of Lemma 4 hold with ρ = t∗.

The upper bounds of the limit point given in the Lemmas and in closed form can
replace ρ in condition (K4). The proof are omitted in the presentation of the semi-local
convergence of NM since the proof is given in the aforementioned references [19,20,22,23]
with the exception of quadratic convergence given in part (ii) of the presented Lemmas.

Theorem 2. Suppose any of conditions Ai, i = 1, 2, 3, 4 hold. Then, sequence {xn} generated by
NM is well defined in B[x0, ρ], remains in B[x0, ρ] ∀n = 0, 1, 2, . . . and converges to a solution
x∗ ∈ B[x0, ρ] of equation L(x) = 0. Moreover, the following assertion hold ∀n = 0, 1, 2, . . .

‖xn+1 − xn‖ ≤ tn+1 − tn

and
‖x∗ − xn‖ ≤ t∗ − tn.

The convergence ball is given next. Notice, however that we do not use all conditions Ai.

Proposition 1. Suppose: there exists a solution x∗ ∈ B(x0, ρ0) of equation L(x) = 0 for some
ρ0 > 0; condition (K5) holds and ∃ ρ1 ≥ ρ0 such that

M0

2
(ρ0 + ρ1) < 1. (41)
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Set D1 = D ∩ B[x0, ρ1]. Then, the only solution of equation L(x) = 0 in the set D1 is x∗.

Proof. Let x∗ ∈ D1 be a solution of equation L(x) = 0. Define linear operator
J =

∫ 1
0 L
′(x∗ + τ(x∗ − x∗))dτ. Then, using (K5) and (41)

‖L′(x0)
−1(L′(x0)− J)‖ ≤ M0

∫ 1

0
((1− τ)‖x0 − x∗‖+ τ‖x0 − x∗‖)dτ

≤ M0

2
(ρ0 + ρ1) < 1. (42)

Therefore, x∗ = x∗ is implied by the invertability of J and

J(x∗ − x∗) = L(x∗)−L(x∗) = 0.

If conditions of Theorem 2 hold, set ρ0 = ρ.

4. Numerical Experiments

Two experiments are presented in this Section.

Example 3. Recall Example 1 (with L(x) = c(x)). Then, the parameters are s =
1− a

3
,

K0 =
a + 5

3
, M0 = 3− a, M1 = 2(2− a). It also follows D0 = B(1, 1− a) ∩ B

[
1,

1
M0

]
=

B
[
1,

1
M0

]
, so K = M = 2

(
1 +

1
3− a

)
. Denote by Ti, i = 1, 2, 3, 4 the set of values a for

which conditions (K3), (N2) − N4) are satisfied. Then, by solving these inequalities for a :
T1 = ∅, T2 = [0.4648, 0.5), T3 = [0.4503, 0.5), and T4 = [0.4272, 0.5), respectively.

The domain can be further extended. Choose a = 0.4, then,
1

M0
= 0.3846. The following

Table 1 shows, that the conditions of Lemma 1, since K0t < 1 and M0tn+1 < 1 ∀ n = 1, 2, . . ..

Table 1. Sequence (6) for Example 1.

n 1 2 3 4 5 6 7 8

tn 0.2000 0.2865 0.3272 0.3425 0.3455 0.3456 0.3456 0.3456

Example 4. Let U = V = IR3, D = B(x0, 0.5) and

L(x) =
(
ex1 − 1, x3

2 + x2, x3
)T .

The equation L(x) = 0 has the solution x∗ = (0, 0, 0)T and L′(x) = diag(ex1 , 3x2
2 + 1, 1).

Let x0 = (0.1, 0.1, 0.1)T . Then s = ‖L′(x0)
−1L(x0)‖∞ ≈ 0.1569,

M0 = max
{

e0.6

e0.1 ,
3(0.6 + 0.1)

1.03

}
≈ 2.7183,

M1 = max
{

e0.6

e0.1 ,
3(0.6 + 0.6)

1.03

}
≈ 3.49513.

It also follows that
1

M0
≈ 0.3679, D0 = D ∩ B[x0,

1
M0

] = B[0.1, 0.3679] and

K0 = max
{

ep1

e0.1 ,
3(p2 + 0.1)

1.03

}
≈ 2.3819,

M = K = max
{

ep1

e0.1 ,
6p1

1.03

}
≈ 2.7255,

where p1 = 0.1 +
1

M0
≈ 0.4679, p2 ≈ 0.0019.
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Notice that M0 < M1 and M < M1. The Kantorovich convergence condition (K3) is not
fulfilled, since 2M1s ≈ 1.0968 > 1. Hence, convergence of converge NM is not assured by the
Kantorovich criterion. However, the new conditions (N2)–(N4) are fulfilled, since q2s ≈ 0.9749 < 1,
q3s ≈ 0.9320 < 1, q4s ≈ 0.8723 < 1.

The following Table 2 shows, that the conditions of Lemma 1 are fulfilled, since K0t < 1 and
M0tn+1 < 1 ∀n = 1, 2, . . ..

Table 2. Sequence (6) for Example 4.

n 1 2 3 4 5 6

tn 0.1569 0.2154 0.2266 0.2271 0.2271 0.2271

Example 5. Let U = V = C[0, 1] be the domain of continuous real functions defined on the
interval [0, 1]. Set D = B[x0, 3], and define operator L on D as

L(v)(v1) = v(v1)− y(v1)−
∫ 1

0
N(v1, t)v3(t)dt, v ∈ C[0, 1], v1 ∈ [0, 1], (43)

where y is given in C[0, 1], and N is a kernel given by Green’s function as

N(v1, t) =
{

(1− v1)t, t ≤ v1
v1(1− t), v1 ≤ t.

(44)

By applying this definition the derivative of L is

[L′(v)(z)](v1) = z(v1)− 3
∫ 1

0
N(v1, t)v2(t)z(t)dt (45)

z ∈ C[0, 1], v1 ∈ [0, 1]. Pick x0(v1) = y(v1) = 1. The norm-max is used. It then follows from
(43)–(45) that L′(x0)

−1 ∈ L(B2, B1),

‖I −L′(x0)‖ < 0.375, ‖L′(x0)
−1‖ ≤ 1.6,

s = 0.2, M0 = 2.4, M1 = 3.6,

and D0 = B(x0, 3) ∩ B[x0, 0.4167] = B[x0, 0.4167], so M = 1.5. Notice that M0 < M1 and
M < M1. Choose K0 = K = M0. The Kantorovich convergence condition (K3) is not fulfilled,
since 2M1s = 1.44 > 1. Hence, convergence of converge NM is not assured by the Kantorovich
criterion. However, new condition (36) is fulfilled, since 2M4s = 0.6 < 1.

Example 6. Let U = V = IR, D = (−1, 1) and

L(x) = ex + 2x− 1.

The equation L(x) = 0 has the solution x∗ = 0. The parameters are s =
∣∣∣ ex0 + 2x0 − 1

ex0 + 2

∣∣∣,
M0 = M1 = e, K0 = K = M = ex0+

1
e and

D0 = (−1, 1) ∩
[

x0 −
1
e

, x0 +
1
e

]
=
[

x0 −
1
e

, x0 +
1
e

]
.

Let us choose x0 = 0.15. Then, s ≈ 0.1461. Conditions (K3) and (N2) are fulfilled. The
majorizing sequences {tn} (6) and {un} from Theorem 1 are:

{tn} = {0, 0.1461, 0.1698, 0.1707, 0.1707, 0.1707, 0.1707},

{un} = {0, 0.1461, 0.1942, 0.2008, 0.2009, 0.2009, 0.2009, 0.2009}.

In Table 3, there are error bounds. Notice that the new error bounds are tighter, than the ones
in Theorem 1.
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Table 3. Results for x0 = 0.15 for Example 6.

n |xn+1− xn| |tn+1− tn| |un+1− un|

0 1.4607 × 10−1 1.4607 × 10−1 1.4607 × 10−1

1 3.9321 × 10−3 2.3721 × 10−2 4.8092 × 10−2

2 2.5837 × 10−6 8.7693 × 10−4 6.6568 × 10−3

3 1.1126 × 10−12 1.2039 × 10−6 1.3262 × 10−4

4 0 2.2688× 10−12 5.2681× 10−8

Let us choose x0 = 0.2. Then, s ≈ 0.1929. In this case condition (K3) is not held, but (N2)
holds. The majorizing sequence {tn} (6) is:

{tn} = {0, 0.1929, 0.2427, 0.2491, 0.2492, 0.2492, 0.2492, 0.2492 }.

Table 4 shows the error bounds from Theorem 2.

Table 4. Results for x0 = 0.2 for Example 6.

n |xn+1− xn| |tn+1− tn|

0 1.929 × 10−1 1.929 × 10−1

1 7.0934 × 10−3 4.9769 × 10−2

2 8.4258 × 10−6 6.4204 × 10−3

3 1.1832 × 10−11 1.1263 × 10−4

4 0 3.4690 × 10−8

5. Conclusions

We developed a comparison between results on the semi-local convergence of NM.
There exists an extensive literature on the convergence analysis of NM. Most convergence
results are based on recurrent relations, where the Lipschitz conditions are given in affine
or non-affine invariant forms.The new methodology uses recurrent functions. The idea
is to construct a domain included in the one used before which also contains the Newton
iterates. That is important, since the new results do not require additional conditions. This
way the new sufficient convergence conditions are weaker in the Lipschitz case, since they
rely on smaller constants. Other benefits include tighter error bounds and more precise
uniqueness of the solution results. The new constants are special cases of earlier ones. The
methodology is very general making it suitable to extend the usage of other numerical
methods under Hölder or more generalized majorant conditions. This will be the topic of
our future work.
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