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Abstract: In this paper, we derive a four-dimensional ordinary differential equation (ODE) model
representing the main interactions between Sox9, Sox10, Olig2 and several miRNAs, which drive
the process of (olygodendrocyte) differentiation. We utilize the Lyapunov–Andronov theory to
analyze its dynamical properties. Our results indicated that the strength of external signaling
(morphogenic gradients shh and bmp), and the transcription rate of mOlig2 explain the existence of
stable and unstable (sustained oscillations) behavior in the system. Possible biological implications
are discussed.
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1. Introduction

On a macroscopic level, the central nervous system (CNS) consists of gray and white
matter. These terms reflect the visual appearance of the tissues, owing to the white color of
myelin, a lipid rich substance that forms an interrupted insulating layer along the length
of the axon—extensions of the neurons used to relay outgoing information over relatively
long distances [1]. Gray matter is made up of the bodies of neurons, auxiliary cells called
glia and unmyelinated neural fibers, whereas white matter consists of myelinated axons
and glia cells responsible for their maintenance, including that of the myelin layer. In the
CNS, the myelinating cells are called “olygodendrocytes”, reflecting their ability to form
several myelin-filled protrusions, which wrap around adjacent axons.

The myelin layer is instrumental to the rapid propagation of neural signals [2], and
damage to it results in reduced cognitive function. Diseases such as Multiple Sclerosis,
which affect the myelin layer, are collectively known as “demylienating diseases”. Since it
is formed by olygodendrocytes, irregularities in olygodendrocyte function can be the root
cause of demyelination.

During embryogenesis, oligodendrocytes (OLs) develop from progenitor cells called
neural stem cells (NSC) in several loci and in several waves [3,4]. This differentiation process
may have different stages, alternatives and end products, depending on its origin [3,5].
There are three different models describing the sequential stages in OL development
reflecting this [6]. Proliferation-capable oligodendrocyte precursor cells (OPCs) exist in the
adult vertebrate CNS, which can replenish dead OLs [7,8]. The differentiation program
in OPCs is primed but suppressed through external signals [9]. Intercellular signaling
guides both migration and differentiation [3]. A number of growth hormones (GFs),
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transcription factors (TF) and non-coding RNAs have been implicated in the regulatory
networks controlling OL differentiation [10–12] and myelination [13], making it possible to
attempt to understand the underlying mechanisms as a system.

Several families of neural TFs and their mutual targets play a critical role in OL dif-
ferentiation. Cantone and colleagues [14] utilized a bioinformatics and network biology
analysis of transcriptomics and ChIP-Seq data from in vivo models of OL differentiation to
systematically detect feedback and feedforward gene circuits driving OL differentiation.
Their analysis delineated a complex regulatory architecture, in which central neural TFs
such as Olig2, Sox10 and Tcf7l2 were upstream of and hierarchically regulated by other
known TFs implicated in oligodendrogenesis such as Sox2, Sox6, Sox11, Nkx2-2, Nkx6-2,
Hes5, Myt1 and Myrf. Interestingly, Olig2 and Sox10 established a tightly regulated, highly
nonlinear gene subnetwork with several miRNAs, which contained feedback and feedfor-
ward loops upstream of multiple gene targets involved in the differentiation, migration
and maturation of OLs [15]. Reiprich and coauthors [12] hypothesized that the dynamic
regulation of this subnetwork through oligodendrogenesis may control an irreversible
switch of cellular properties that contribute to terminal OL differentiation.

Another line of evidence suggests that spatiotemporal waves and oscillations in the
activation of TF-driven gene circuits are essential to organizing cell differentiation and
distribution in developing tissue. These circuits may operate as time-keepers, marking
the rhythm of gene expression and tissue organization [16,17]. Tsiaris and colleagues [18]
found that Notch-signaling-dependent synchronization of gene expression oscillations
is necessary to re-establish the spatiotemporal patterns of gene expression required for
proper tissue development. In the context of oligodendrogenesis, Sueda and Kageyama [19]
combined observations made using time-lapsed imaging and immunohistological analyses
of tissue and discovered that the expression of Ascl1, a TF involved in differentiation of
brain cells, oscillated in proliferating OPCs; this occurred while this gene was repressed
when OPCs differentiated into mature oligodendrocytes. Others have hypothesized that
TF-expression oscillations maybe a mechanism for the fine-tuning and selection of gene
targets that is triggered by certain stimulation scenarios [20].

As an interdisciplinary approach in the life sciences, systems biology aims to integrate
experiments in iterative cycles with computational and mathematical modeling, simulations
and theory [21]. The intersection between neurobiology and systems biology can be defined
as systems neurobiology [22]. With the application of the systems neurobiological approach,
it is possible to investigate essential properties of the central nervous system (CNS) [23].

The dynamic nature of intracellular regulatory systems, like those involved in OL dif-
ferentiation, sometimes makes understanding cell behavior based solely on the association
of expression profiles with phenotypes insufficient. Mathematical modeling OTOH can fill
in the blanks between observable states with nigh infinite granularity.

For critical parameter values (also referred to as ‘bifurcation points’) the structures
of the solutions in the mathematical models are essentially changed. In the neighbor-
hood of bifurcation points, the dynamical behaviors of the biochemical system can change.
As well, self-sustained oscillations can emerge/disappear from stable equilibria (steady
states). Qualitatively, the appearance/disappearance of limited self-sustained oscillations
corresponds to the so-called Andronov–Hopf bifurcation (AHb) [24,25]. AHb can be sub-
critical or supercritical. The nature of AHb is determined from the sign of the so-called
first Lyapunov (focal) value, L1 [26–28]. When L1 is positive, then a hard (subcritical
(un-reversible)) bifurcation takes place, as the (codimension-1) boundary of stability is ‘dan-
gerous’ ([27,29,30]. In contrast, when L1 is negative, then a soft (supercritical (reversible))
bifurcation occurs. The self-oscillations emerge as the system crosses the ‘safe’ boundary of
stability. For instance, in [31], the analytical results (as Theorems) for stability and stability
loss regarding the limit cycle in a high dimensional case (i.e., dimension n ≥ 3) are shown.

Below, these analytical tools are used to investigate the reasons for the emergence of
the different expression profiles of OLs.
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2. Model

The model proposed in [14] describes the temporal variation in the expression of TFs,
mRNAs and miRNAs in 14 ODEs, and is the starting point from which our model is derived.
To facilitate both the exploration of the parameter space of the model and the interpretation
of the results, this model was further simplified by categorizing all interactions into groups,
and consolidating each group into one representative interaction. The reduced mathemati-
cal model (see Figure 1) of mSox9-mSox10-mOlig2-miR-17/335/338/155 regulatory circuit
of the neural tube has the form

.
y1 = k1 + k2

(I1+y2
3+y1)

5

(I1+y2
3+y1)

5
+k5

3

− k4y1 − y1y4,
.
y2 = k8

I2+y2
I2+y2+k9

− k10y2 − k11y2y4,
.
y3 = k15

(y2+y2
3+y1)

2

(y2+y2
3+y1)

2
+k2

17

− k18y3,

.
y4 = k22

y2
3

y2
3+k24

− k23y4,

(1)

where y1 , y2 and y3 are three mRNAs (mOlig2, mSox9 and mSox10), and where y4 repre-
sents the unification of four microRNAs (miR-17/335/338/155, respectively). According
to [14] (Table S5 in Supplementary Materials), k7 = kmSox9

BS = 0.004 ≈ 0; k14 = kmSox10
BS =

0.0015 ≈ 0; k21 = kmiRNA
BS ≈ 0; gOlig2 = 5.24 ≈ 5; gSox9 = 1.39 ≈ 1; gSox10 = 1.88 ≈ 2;

gmir338 = 0.9738 ≈ 1; gmir335 = 0.87 ≈ 1; gmir155 = 1; gmir17 = 0.99 ≈ 1; gTc f 712 = 0.8 ≈ 1,
and gMyr f = 1.46 ≈ 1. Here, we note that (i) in (1), the following substitutions are accepted:

ProtXi = αi.mRNA, αi =
ksi
kdi
≈ 1 (i = 1, 2, 3); (ii) all model parameters are taken from [14]

with dimension
[
h−1], and inputShh = I1 and inputBMPs = I2 are antagonistic signals

(morphogen gradients). The model (1) is considered to be a four-dimensional nonlinear
dynamical system.
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Figure 1. Scheme of the reduced model. Figure 1. Scheme of the reduced model.

In a recent study of ours [32], the role of I1 , I2 and k2 for the existence of stable and
unstable (sustained oscillations) behaviors in system (1) was demonstrated through a
numerical approach. Specifically, after direct numerical simulations, we ascertained that
(i) for some relevant values of k2, I1 and I2, system (1) is stable/unstable; (ii) depending on
the values of k2, I1 and I2, system (1) has one/two/three equilibria. Continuing with the
study of this system, a new qualitative analysis of system (1) was performed according to
the theory of Lyapunov–Andronov, and the new results can be cross-referenced using new
numerical experiments (simulations).
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3. Qualitative Analysis and Predictions

Let us consider system (2), which presents an autonomous nonlinear dynamical model.
All constants of this model are real and positive.

Qualitative analysis of a dynamical system aims at revealing behavioral patterns that
occur regardless of the adopted parameters [27,33]. Biological (biochemical) models are
often subject to qualitative analysis, which can be a very useful approach to reveal complex
dynamic behaviors.

Often, the qualitative analysis starts with the calculation of equilibrium (fixed) points.
System (2) is multi-stationary and has several possible equilibria in the form

a6y12
3 + a5y10

3 + a4y8
3 + a3y6

3 + a2y4
3 + a1y2

3 + a0 = 0 , y4 =
k22y2

3
(y2

3+k24)k23
,

y2
1 + 2β1y1 + γ = 0 , y2

2 +
β(k9+I2)−k8

β y2 −
k8 I2

β = 0 ,
(2)

where a0 − a6 , β , β1 and γ are coefficients (see Appendix A), and k1 − k4, k8 − k11, k15, k17,
k18, k22 − k24 are parameters as in [14].

The equilibrium (fixed) points (2) of system (1) depend on a large number of pa-
rameters, which all have different ranges of variation; see Appendix A. After numerical
calculations (for physiologically relevant values of y1 ∈ [0, 1]) of (1), we obtained that
for (i) I1 = I2 = 0, system (1) had one/two/three real positive fixed points (equilibria);
(ii) I1 = 0, I2 6= 0 (∈ (0− 0.6)), system (1) had one equilibrium; (iii) I1 6= 0, I2 = 0, system
(1) had one equilibrium; and (iv) I1 6= 0, I2 6= 0, system (2) had one equilibrium. In the
other words, the dynamic behavior of system (1) can be very different depending on the
signals I1 and I2. Note that stabilities, instabilities (including limit cycles (isolated periodic
solutions)) and bistability all take place; see Figure A1 in Appendix C.

To check the qualitative features of system (1), we first exchanged the variables for
local coordinates defined with respect to the fixed points (2), i.e., yi = yi + xi , (i = 1− 4).
After that, we expanded the functional terms in (1) as a Maclaurin series (see Appendix A).
Thus, the model (1) in local coordinates becomes

dx1
dt =

.
x1 = c1x1 + c2x3 + c3x4 + c4x2

1 + c5x2
3 + c6x1x3 − x1x4 + c7x3

1 + c8x3
3 + c9x2

1x3 + c10x1x2
3 + . . . h.o.t. ,

dx2
dt =

.
x2 = −c11x2 − c12x4 − c13x2

2 − k11x2x4 ,
dx3
dt =

.
x3 = c14x1 + c14x2 + c15x3 + c16x2

1 + c16x2
2 + c17x2

3 + c18x1x2 + c19x1x3 + c19x2x3 − c20x3
1−

−c20x3
2 + c21x3

3 − c22x1x2
2 + c23x1x2

3 + c23x2x2
3 − c24x2

1x2 − c25x2
1x3 − c25x2

2x3 − c26x1x2x3 + . . . h.o.t.,
dx4
dt =

.
x4 = c27x3 − k23x4 + c28x2

3 − c29x3
3 ,

(3)

where the analytical forms and numerical values of the coefficients for the equilibria and the
original parameters are given in Appendix A. Hence, we find the Routh–Hurwitz stability
conditions for (2) in the form

p = k23 + c11 − c1 − c15 > 0 ,
q = c1(c5 − c11 − k23) + c11(k23 − c15)− c2c14 − k23c15 > 0 ,
r = −[k23(c1c11 − c1c15 + c2c14 + c11c15) + c11(c2c14 − c1c15) + c14(c3c27 − c12c27)] > 0 ,
s = c1(k23c11c15 − c12c14c27) + c11c14(k23c2 + c3c27) > 0,
R = pqr− sp2 − r2 > 0 .

(4)

From here, our analysis focuses on the effects caused by changes in the bifurca-
tion parameters k2 , I1 and I2. According to [14] (Table S5 in Supplementary Materials),
experimentally derived values for k2 between 10% and 2 times the original value, i.e.,
k2 ∈ [0.04762, 0.95], are assumed. Since we do not know the exact values of some param-
eters of the model, we set I1 ∈ [0 , 0.11] and I2 ∈ [0 , 0.11], i.e., I1 + I2 ∈ [0 , 22]. All other
parameter values of system (1) were assigned according to [14] (Table S5 in Supplementary
Materials) and are
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k1 = 0.04719
[
h−1] , k3 = 0.4562

[
h−1] , k4 = 0.47619

[
h−1] , k8 = k10 = 0.0533

[
h−1] ,

k9 = 0.4883
[
h−1] , k11 = 0.4951

[
h1] , k15 = k18 = 0.1549

[
h−1] , k17 = 0.6446

[
h−1] ,

k22 = 0.0274
[
h−1] , k23 = 0.0289

[
h−1] , k24 = 1.9098

[
h−1] .

(5)

To derive the analytic form (formula) of L1 for model (3) (which is equivalent to (1))
we follow [26,27], as its numerical value (sign) is computed at bifurcation points, i.e., on the
Andronov–Hopf boundary of stability R = 0. For more details, see Appendix B and Table 1.
It is seen from Table 1 that the value (sign) of L1 is positive for all computed bifurcation
points,

(
kbi f

2 , Ibi f
1 , Ibi f

2

)
, which indicated subcritical bifurcation. Therefore, the boundary

of stability is dangerous and ‘hard’, meaning that irreversible loss of stability can occur.
Note here that for the calculation of L1 we use formula (A.11) because the sign of relation
4s− rp (see (5) or (A8)) at R = 0 is negative.

Table 1. Results for the first Lyapunov value (L1), at different bifurcation values of parameters
k2, I1, I2 and different equilibrium states y4.

Ibif
1 , Ibif

2 kbif
2 y4 L1

0.05
0.05 0.1637 0.075 0.0154

0.05
0.05 0.1776 0.07 0.0507

0.1
0.1 0.0696 0.075 0.0517

0.1
0.1 0.0506 0.07 0.0789

0.11
0.11 0.068 0.08 0.0337

4. Numerical Investigation

Furthermore, we use numerical computations to determine the biological relevance
of the analytical predictions obtained. For all numerical calculations, we have restricted
ourselves to the variation of k2 , I1 and I2. The other parameters remained same as (5).

First, we present a stable solution of system (1) when I1 = I2 = 0 and k2 = 0.4762.
As illustrated in Figure 2, this stable solution corresponded to a normal differentiation
process of oligodendrocytes. In fact, according to the qualitative analysis of model (1), the
latter had only one equilibrium. In passing, for k2 ∈ [0.04762 , 0.95], there was no change
in the dynamical behavior of system (1), i.e., we saw that changes of k2 were not solely
responsible for the occurrence of sustained periodic solutions of (1). We illustrated these
results with the numerical example given in Figure A2 (see Appendix D). In Figure A2,
the solutions for mOlig2 (y1), miRNA (y4), mSox9 (y2) and mSox10 (y3) were drawn for
three different values of the parameter k2, i.e., k2 = 0.04762; 0.4762; 0.95. The picture shows
clearly how only the level of the solutions was different, whereas the behavior was similar.

In the framework of model (1), the values of k2, I1 and I2 determined whether the
system passed from a stable to an unstable state. In Figure 3, an unstable solution (sus-
tained oscillation) of system (1) is shown at k2 = 0.085, I1 = 0.1 and I2 = 0.02, i.e.,
I1 + I2 = 0.12 = const. System (1) was very close to the boundary of stability but was in
the unstable zone.
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Figure 3. Sustained oscillations of system (1) at k2 = 0.085, I1 = 0.1 and I2 = 0.02. Legend: mOlig2
—solid line (left panel); mSox10 —solid line (right panel). All other parameter values are as those
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In Figure 4, we present a bifurcation diagram under variation of the control (bifur-
cation) parameters k2 , I1 and I2. The bifurcation diagram consists of two separate zones.
They correspond to two coexisting behaviors and have been obtained using the same initial
conditions, i.e., y1 = y2 = y3 = y4 = 0.1.

As one increases k2 from 0.08 to 0.16, and I1, I2 from 0.01 to 0.11, the equilibrium (fixed)
point becomes unstable at about k2 = 0.08. When there is a subcritical Andronov–Hopf
bifurcation (see Table 1), a limit cycle (sustained periodic oscillation) emerges, referred to as
the period-1 limit cycle. From a dynamical point of view, this means we have a dangerous
boundary of stability. In this case, when system (1) passes through this boundary, it escapes
the old regime and runs away. Alternatively, the dangerous boundary can be divided into
two subtypes [27,28,31]; (i) a dynamically definite boundary, where the transition process can
be completed with stochastic character; and (ii) a dynamically indefinite boundary where the
system has a limited number of periodic (limit cycles) solutions [34].
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I1 + I2 = 0.12 = const.

The results in Figures 3 and 4 require additional commentary from a dynamical point
of view. A positive value of the first Lyapunov value corresponds to a ‘dangerous’ boundary
of stability for the respective equilibrium state. This means that up until the moment of
bifurcation in the phase space of the system, there exists an unstable limit cycle in the
vicinity of the equilibrium point. If, at this point, the system is exposed to an external
perturbation with an intensity higher than the amplitude of the limit cycle, the system will
not return to its original equilibrium state but will instead adopt a different asymptotic
behavior. This new behavior is fully deterministic but may be one of several possible
behaviors. This is determined by the number of attractors, which affect the trajectory of the
unstable limit cycle until it reaches the equilibrium state.

In Figure 5, we show the amplitude of the oscillations for different values of k2 , I1
and I2. The amplitude of mOlig2 oscillations gradually increases when the bifurcation
parameter k2 increases. On the other hand, if we compare the amplitude values from
Figure 5a to Figure 5c, we can conclude that when the bifurcation parameters I1 and I2
increase (from 0.05 to 0.1, i.e., I1 + I2 increase), then the amplitude of oscillations decreases.
Note that the maximal values of the oscillations also decrease. In general, the period of the
oscillations is between 170 and 245 h, as it is the largest for I1 = I2 = 0.01; see Figure 6.
In addition, for higher levels of k2 (when I1 = I2 = 0.01) relaxant oscillations (slow-fast
phases) for mOlig2 emerge; see Figure A3 in Appendix D.
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In Figure 6, the range of the period of oscillations of Olig2 is ~1.5 to 2.5 times the
duration of differentiation proper (4 days) [35]. A differentiating OPC would therefore
experience levels of Olig2 determined by a single slope, peak or dip. However, OPCs
stuck in the proliferation phase may experience multiple oscillations. Without the external
signals from the morphogenic gradients shh (I1) and bmp (I2), the expression levels of the
major TFs are stable (see Figure 2). As the cell travels along the gradient, there is a potential
critical point, determined by a combination of signal strength Ii(i = 1, 2) and sensitivity
k2 (see Figure 4 red area), where they start to oscillate (see Figure 3). This will result in
different expression profiles depending on their position on the TF concentration curve.
A new, stable equilibrium may emerge if noise exceeds the amplitude of the signal. If
that happens with statistical regularity, it will result in a specific distribution of outcomes,
i.e., phenotypes.

5. Discussion and Conclusions

A large number of the phenomena in nature and technology have a dynamic character,
owing to their non-linearity. The discipline responsible for research into dynamic processes
is called non-linear dynamics. Its purpose is to find out the laws governing non-linear
dynamic processes. Since the time of Sir Isaac Newton, the approach to researching a
phenomenon has been to first make observations based on experiments, and then to
construct a mathematical model described by differential equations (ODE, PDE, DDE etc.)
and analyze it. Finally, the results from the model are compared to the prototype. In
non-linear dynamics, mathematical models are represented through systems of equations
with analytically chosen non-linearity, and a finite number of parameters. It is worth
noting that most models in non-linear dynamics cannot be exhaustively analyzed. Instead,
qualitative analysis (bifurcation theory) of the dynamic systems can be used to explain
and predict the appearance or disappearance of states and movements. In this article,
we explored a mathematical model consisting of four non-linear ODEs describing the
temporal variation in the expression of transcription factors and micro RNAs that drive the
differentiation process of olygodendrocytes using a special version of the quality theory of
ODEs: Lyapunov–Andronov bifurcation theory.

Based upon our results, a number of different outcomes for the differentiating cell
are possible:
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Case A: The cell does not pass through the red zone in Figure 4 (determined by the
strength of the morphogenic signal Ii(i = 1, 2) and the sensitivity k2); no bifurcation occurs,
and TF levels remain stable.

Case B: The cell passes through the red zone but spends a physiologically insignificant
amount of time in an unstable state due to noise, jumping to a different TF concentration
equilibrium than the original value.

Case C: The system remains in an unstable state long enough to experience an oscil-
lating signal. However, the noise level does not become high enough to push it out of the
boundary cycle.

Case D: A statistically determined percentage of cells fall into either category B or C,
or anywhere in between, resulting in several different phenotypes without the need for
added complexity.

Finally, we note that (1) all our speculations and predictions from a biological point of
view need experimental confirmation in the form of dynamic data for TF concentrations;
(2) from a mathematical point of view, a possible future consideration is the investigation
of model (1) in a fractional sense.
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Appendix A. Qualitative Analysis: Fixed Points (Equilibrium States) Derivation

The equilibria of the model (1) are calculated using the following equations:

a6y12
3 + a5y10

3 + a4y8
3 + a3y6

3 + a2y4
3 + a1y2

3 + a0 = 0 , y4 =
k22y2

3
(y2

3+k24)k23
,

y2
1 + 2β1y1 + γ = 0 , y2

2 +
β(k9+I2)−k8

β y2 −
k8 I2

β = 0 ,
(A1)

where

k1 = kBSmOlig2 , k2 = ktranmOlig2 , k3 = kmOlig2 , k4 = kdegmOlig2, k8 = ktranmSox9,
k9 = kmSox9 , k11 = kinhmSox9, k17 = kmSox10 , k24 = kmmir338, a6 = k1 + k2− A,
k10 = kdegmSox9, k15 = ktranmSox10, k18 = kdegmSox10, k22 = ktranmiR338, k23 = kdegmiR338,
a5 = (k1 + k2)(5α + k24)− 5Aα− B , a4 = 5α[(k1 + k2)(2α + k24)− B− 2Aα] ,
a3 = 10α2[(k1 + k2)(α + k24)− Aα− B] , a2 = 5α3[(k1 + k2)(2k24 + α)− Aα− 2B] ,
a1 = k1(5k244 + α5 + k35) + k2α4(5k24 + α)− Ak35− 5α4B− Aα5 ,
a0 = k1k24(k35 + α5) + k2k24α5− B(k35 + α5) , α = I1 + y1 , A = y1(1 + k4) , B = y1k4k24 ,
β = k8 + k11y4 , β1 = y2 + y32 , γ = β12− k172k18y3k15− k18y3.

(A2)

To investigate the type of (A1), it is supposed that

yi = yi + xi (i = 1− 4). (A3)

To determine analytically the character of (A1), we transform system (1)
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The functions 1
εi+ψi

in Maclaurin series have the form

1
εi + ψi

=
1

εi

(
1 + ψi

εi

) =
1
εi

[
1− ψi

εi
+

(
ψi
εi

)2
−
(

ψi
εi

)3
+ . . .

]
, (A4)

where

ε1 = k5
3, ε2 = k9, ε3 = k2

17, ε4 = k24, ψ1 =
[

I1 + (y3 + x3)
2 + y1 + x1

]5
,

ψ2 = I2 + y2 + x2 , ψ3 =
[
y2 + x2 + (y3 + x3)

2 + y1 + x1

]2
, ψ4 = (y3 + x3)

2.
(A5)

If we restrict ourselves to the linear terms from (A4), then after substitution of (A4)
and (A3) into (1), (1) takes the form

dx1
dt =

.
x1 = c1x1 + c2x3 + c3x4 + c4x2

1 + c5x2
3 + c6x1x3 − x1x4 + c7x3

1 + c8x3
3 + c9x2

1x3 + c10x1x2
3 + . . . h.o.t. ,

dx2
dt =

.
x2 = −c11x2 − c12x4 − c13x2

2 − k11x2x4 ,
dx3
dt =

.
x3 = c14x1 + c14x2 + c15x3 + c16x2

1 + c16x2
2 + c17x2

3 + c18x1x2 + c19x1x3 + c19x2x3 − c20x3
1−

−c20x3
2 + c21x3

3 − c22x1x2
2 + c23x1x2

3 + c23x2x2
3 − c24x2

1x2 − c25x2
1x3 − c25x2

2x3 − c26x1x2x3 + . . . h.o.t.,
dx4
dt =

.
x4 = c27x3 − k23x4 + c28x2

3 − c29x3
3 ,

(A6)

where

c1 = −k4 − y4 +
k2ρ1

ε1

(
1− 2ρ0

ε1

)
, c2 = k2ρ2

ε1

(
1− 2ρ0

ε1

)
, c3 = −y1 , c4 = k2

ε1

(
ρ3 −

2ρ0ρ3+ρ2
1

ε1

)
,

c5 = k2
ε1

(
ρ4 −

2ρ0ρ4+ρ2
2

ε1

)
, c6 = k2

ε1

(
ρ5 − 2(ρ1ρ2+ρ0ρ5)

ε1

)
, c7 = k2

ε1

(
ρ6 − 2(ρ0ρ6+ρ1ρ3)

ε1

)
,

c8 = k2
ε1

(
ρ7 − 2(ρ0ρ7+ρ2ρ4)

ε1

)
, c9 = k2

ε1

(
ρ8 − 2(ρ1ρ5+ρ2ρ3+ρ0ρ8)

ε1

)
,

c10 = k2
ε1

(
ρ9 − 2(ρ2ρ5+ρ1ρ4+ρ0ρ9)

ε1

)
, c11 = k10 + k11y4 +

k8
ε2

2
[ε2 − 2(I2 + y2)] ,

c12 = k11y2 , c13 = k8
ε2

2
, c14 = 2k15θ0

ε2
3

(
ε3 − 2θ2

0
)

, c15 = 2k15θ0θ1
ε2

3

(
ε3 − 2θ2

0
)
− k18 , c16 = k15

ε2
3

(
ε3 − 6θ2

0
)

,

c17 = k15
ε2

3

[
ε3
(
2θ0 + θ2

1
)
− 2θ2

0
(
2θ0 + 3θ2

1
)]

, c18 = 2k15
ε2

3

(
ε3 − 6θ2

0
)

, c19 = 2k15θ1
ε2

3

(
ε3 − 6θ2

0
)

,

c20 = 4k15θ0
ε2

3
, c21 = 2k15θ1

ε2
3

(
ε3 − 6θ2

0 − 2θ0θ2
1
)

, c22 = 12k15θ0
ε2

3
, c23 = 2k15

ε2
3

[
ε3 − 6θ0

(
θ0 + θ2

1
)]

,

c24 = − 12k15θ0
ε2

3
, c25 = − 12k15θ0θ1

ε2
3

, c26 = − 24k15θ0θ1
ε2

3
, c27 =

2k22y3
ε2

4

(
ε4 − 2y2

3
)

,

c28 = k22
ε2

4

(
ε4 − 6y2

3
)

, c29 =
4k22y3

ε2
4

, θ0 = y1 + y2 + y2
3 , θ1 = 2y3 , ς = I1 + y1 ,

ρ0 = ς5 + 5ς4y2
3 + 10ς3y4

3 + 10ς2y6
3 + 5ςy8

3 + y10
3 , ρ1 = 5ς4 + 20ς3y2

3 + 30ς2y4
3 + 20ςy6

3 + 5y8
3 ,

ρ2 = 10ς4y3 + 40ς3y3
3 + 60ς2y5

3 + 40ςy7
3 + 10y9

3 , ρ3 = 10ς3 + 30ς2y2
3 + 30ςy4

3 + 10y6
3 ,

ρ4 = 5ς4 + 60ς3y2
3 + 150ς2y4

3 + 140ςy6
3 + 45y8

3 , ρ5 = 40
(
ς3y3 + 3ς2y3

3 + 3ςy5
3 + y7

3
)

,
ρ6 = 10

(
ς2 + 2ςy2

3 + y4
3

)
, ρ7 = 10

(
4ς3y3 + 20ς2y3

3 + 9ςy5
3 + 12y7

3
)

, ρ8 = 60
(
ς2y3 + 2ςy3

3 + y5
3
)

,

ρ9 = 20
(

ς3 + 9ς2y2
3 + 15ςy4

3 + 7y6
3

)
.

(A7)

For (A1), the Routh–Hurwitz conditions for stability become

p = k23 + c11 − c1 − c15 > 0 ,
q = c1(c15 − c11 − k23) + c11(k23 − c15)− c2c14 − k23c15 > 0 ,
r = −[k23(c1c11 − c1c15 + c2c14 + c11c15) + c11(c2c14 − c1c15) + c14(c3c27 − c12c27)] > 0 ,
s = c1(k23c11c15 − c12c14c27) + c11c14(k23c2 + c3c27) > 0,
R = pqr− sp2 − r2 > 0 .

(A8)

In (A8), the notations p, q, r, s and R are as those in [26]. In four dimensional systems,
it is argued that the boundaries of stability are s = 0 and R = 0, so that we are interested
whether s and R are negative when the conditions p, q and r are always positive. For s = 0,
the characteristic equation has one zero root, and R = 0 has a pair of pure imaginary roots.
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The type of stability loss (crossing boundary R = 0) depends on the sign of first Lyapunov
value L1.

Appendix B. Calculation of L1

For dynamical systems, the first Lyapunov value is a well-established tool for mak-
ing qualitative predictions about the long-term behavior of the system. To explain this,
following [26], we calculate L1 (for detailed discussion of L1, see appendix in [36] or
also [27,28,37–42]) close to the boundary of stability R = 0 of system (1). According to
the Andronov–Hopf theory, the following relations are valid: (i) the sign of L1 (at R = 0)
defines the type (stable or instable) of equilibrium state; (ii) the type of equilibrium state
(at R = 0) qualitatively defines the reconstruction of phase space. For four first-order
nonlinear differential equations, there exists a strong connection between the analytical
form of first Lyapunov value, and the sign of relation 4s− rp (see (A8)) at R = 0:

case A. 4s− rp > 0—the characteristic equation has only complex roots

L1 = π
4b2

{
2
(

A(1)
22 A(2)

22 − A(1)
11 A(2)

11

)
− 2A(2)

12

(
A(2)

11 + A(2)
22

)
+ 2A(1)

12

(
A(1)

11 + A(1)
22

)
+ 3b

(
A(1)

111 + A(2)
222 + A(2)

112 + A(1)
122

)
+

+ 2b
∆

[
2
(

A(1)
23 + A(2)

13

)
∆3

[
−b∆2 A(3)

11 + m∆1 A(3)
12 + b∆2 A(3)

22 − 2bmnA(4)
11 + n∆4 A(4)

12 + 2bmnA(4)
22

]
+

+2
(

A(1)
24 + A(2)

14

)
∆3

[
−n∆4 A(3)

12 +m∆1 A(4)
12 − b∆2 A(4)

11 − 2bmnA(3)
22 + b∆2 A(4)

22 + 2bmnA(3)
11

]
+

+
(

3A(1)
13 + A(2)

23

)[
m∆2

3 A(3)
11 + 2b2m∆5 A(3)

11 + 2b∆2∆3 A(3)
12 − 2b2m∆6 A(3)

22 + n∆2
3 A(4)

11 − 2b2n ∆6 A(4)
11 +

+4mnb∆3 A(4)
12 + 2b2n∆5 A(4)

22

]
+
(

3A(1)
14 + A(2)

24

)[
2b2n∆6 A(3)

11 − n∆2
3 A(3)

11 − 4mnb ∆3 A(3)
12 − 2b2n∆5 A(3)

22 +

+m∆3∆7 A(4)
11 + 8mb2(b2 − n2)A(4)

11 + 2b∆2∆3 A(4)
12 − 2b2m∆6 A(4)

22

]
+
(

3A(2)
23 + A(1)

13

)[
−2b2m ∆6 A(3)

11 −

−2b∆2∆3 A(3)
12 + 2b2m∆5 A(3)

22 + m∆2
3 A(3)

22 + 2b2n∆5 A(4)
11 − 4bmn∆3 A(4)

12 − 2nb2∆6 A(4)
22 + n∆3 A(4)

22

]
+

+
(

3A(2)
24 + A(1)

14

)
[4bmn∆3 A(3)

12 − 2b2n∆5 A(3)
11 − n∆2

3 A(3)
22 + 2b2n∆6 A(3)

22 − 2b2m∆6 A(4)
11 − 2b∆2∆3 A(4)

12 +

+m∆2
3 A(4)

22 + 2b2m∆5 A(4)
22

]]}
,

(A9)

where

∆1 = m2 + n2 + 4b2 , ∆2 = m2 − n2 + 4b2 , ∆3 = m2 + n2 ,
∆4 = m2 + n2 − 4b2 , ∆5 = 4b2 + 3m2 − n2 , ∆6 = 3n2 −m2 − 4b2 ,

∆7 = m2 + n2 + 6b2 , b2 = r
p , m = − p

2 , n2 = sp
r −

p2

4 or n2 = p2

4 −
sp
r .

(A10)

case B. 4s− rp < 0—the characteristic equation has both real and complex roots:

L1 = π
4b2

{
2
(

A(1)
22 A(2)

22 − A(1)
11 A(2)

11

)
− 2
(

A(2)
11 + A(2)

22

)
A(2)

12 + 2
(

A(1)
11 + A(1)

22

)
A(1)

12 + 3b
(

A(1)
111 + A(2)

222 + A(2)
112 + A(1)

122

)
+

+ 2b
m(m2+4b2)

[
2m
(

A(1)
23 + A(2)

13

)(
bA(3)

11 − bA(3)
22 −mA(3)

12

)
−
(
m2 + 8b2)(A(3)

11 A(2)
23 + A(3)

22 A(1)
13

)
+

+4mb
(

A(3)
12 A(2)

23 − A(1)
13 A(3)

12

)
−
(
3m2 + 8b2) (A(3)

11 A(1)
13 + A(3)

22 A(2)
23

)]
+ 2b

n(n2+4b2)

[
2n
(

A(1)
24 + A(2)

14

)
×

×
(

bA(4)
11 − bA(4)

22 − nA(4)
12

)
−
(
n2 + 8b2)(A(4)

11 A(2)
24 + A(4)

22 A(1)
14

)
+ 4nb

(
A(4)

12 A(2)
24 − A(1)

14 A(4)
12

)
−

−
(
3n2 + 8b2) (A(4)

11 A(1)
14 + A(4)

22 A(2)
24

)]}
.

(A11)

We note that corresponding formulas and definitions of the coefficients A(l)
ij and A(l)

ijk
(i, j, k, l = 1, 2, 3, 4) can be seen in [26]. For system (A.6), we need to perform an extra
study. The complete elaboration of A(l)

ij and A(l)
ijk is
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A(l)
11 = 1

∆0

{
α′ l1
[
c4α2

11 + c5α2
31 + 2α11(c6α31 − α41)

]
− α′ l2α21(c13α21 + 2k11α41)+

+α′ l3
[
c16

(
α2

11 + α
2

21

)
+ c17α2

31 + 2α11(c18α21 + c19α31) + 2c19α21α31

]
+ α′ l4c28α2

31
}

,

A(l)
12 = 1

∆0
{α′ l1[c4α11α12 + c5α31α32 + c6(α11α32 + α12α31)]− α′ l2[c13α21α22 + k11(α21α42 + α22α41)]+

+α′ l3[c16(α11α12 + α21α22) + c17α31α32 + c18(α11α22 + α12α21) + c19(α11α32 + α12α31)+
+ c19(α21α32 + α22α31)] + α′ l4c28α31α32},

A(l)
22 = 1

∆0

{
α′ l1
(
c4α2

12 + c5α2
32 + 2c6α12α32 − 2α12α42

)
− α′ l2α22(c13α22 + 2k11α42)+

+α′ l3
[
c16
(
α2

11 + α2
22
)
+ c17α2

32 + 2α12(c18α22 + c19α32) + 2c19α22α32
]
+ α′ l4c28α2

32
}

,
A(l)

13 = 1
∆0
{α′ l1[c4α11α13 + c5α31α33 + c6(α11α33 + α13α31)− α11α43 − α13α41]−

−α′ l2[c13α21α23 + k11(α21α43 + α23α41)] + α′ l3[c16(α11α13 + α21α23) + c17α31α33 + c18(α11α23 + α13α21)+
+c19 (α11α33 + α13α31) + c19(α21α33 + α23α31) + α′ l4c28α31α33]} ,

A(l)
14 = 1

∆0
{α′ l1[c4α11α14 + c5α31α34 + c6(α11α34 + α14α31)− α11α44 + α14α41]− α′ l2k11α21α44+

+α′ l3 [c16α11α14 + c17α31α34 + c18α14α21 + c19(α11α34 + α14α31) + c19α21α34] + α′ l4c28α31α34} ,
A(l)

23 = 1
∆0
{α′ l1[c4α12α13 + c5α32α33 + c6(α12α33 + α13α32)− α12α43 − α13α42]−

−α′ l2[c13α22α23 + k11(α22α43 + α23α42)] + α′ l3[c16(α12α13 + α22α23) + c17α32α33 + c18(α12α23 + α13α22)+
+ c19(α12α33 + α13α32) + c19(α22α33 + α23α32)] + α′ l4c28α32α33} ,

A(l)
24 = 1

∆0
{α′ l1[c4α12α14 + c5α32α34 + c6(α12α34 + α14α32)]− α′ l2k11α22α44+

+α′ l3 [c16α12α14 + c17α32α34 + c18α14α22 + c19(α12α34 + α14α32) + c19α22α34] + α′ l4c28α32α34} ,
A(1)

111 = 1
∆0

{
α′11

(
c7α3

11 + c8α3
31 + 3c9α2

11α31
)
+ α′13

[
c21α3

31 − c20
(
α3

11 + α3
21
)
− 3α2

11(c24α21 + c25α31)−
− 3c25α2

21α31 − 6c26α31α11α21
]
− α′14c29α3

31
}

,
A(1)

122 = 1
∆0

{
α′11

[
c7α11α2

12 + c8α31α2
32 + c9α12(2α11α32 + α12α31)

]
+ α′13

[
c21α31α2

32 − c20
(
α11α2

12 + α21α2
22
)
−

−c24α12(2α11α22 + α12α21)− c25α12(2α11α32 + α12α31)− c25α22(2α21α32 + α31α22)−
−2c26 [α32(α11α22 + α12α21) + α12α22α31]− α′14c29α31α2

32
}

,
A(2)

222 = 1
∆0

{
α′21

[
c7α3

12 + c8α3
32 + c9α12α32(2α12 + α32)

]
+ α′23

[
c21α3

32 − c20
(
α3

12 + α3
22
)
−

−3α2
12(c24α22 + c25α32)− 3 α22α32(c25α22 + 2c26α12)]− α′24c29α3

32
}

,
A(2)

112 = 1
∆0

{
α′21

[
c7α3

12 + c8α2
31α32 + c9α11(α11α32 + 2α31α12)

]
+ α′23

[
c21α2

31α32−
−c20

(
α2

11α12 + α2
21α22

)
− c24α11(α11α22 + 2α21α12)− c25α11(α11α32 + 2α31α12)−

− c25α21(α21α32 + 2α31α22)− 2c26(α11α21α32 + α31(α11α22 + α12α21))]− α′24c29α2
31α32

}
.

(A12)

Notice that

α11 = −
[
c2c12c14 + c3

(
b2 + c11c15

)]
, α12 = bc3(c15 − c11) , α21 = c12

(
b2 + c2c14 − c1c15

)
,

α22 = −bc12(c1 + c15) , α31 = c14(c1c12 + c3c11) , α32 = bc14(c12 − c3) ,
α41 = b2(c1 − c11 + c15)− c11(c2c14 − c1c15) , α42 = b

[
b2 + c1(c11 − c15) + c2c14 + c11c15

]
,

α23 = −c12c14c27 , α24 = 0 , α33 = c14
[
(m + k23)(m + c11)− n2] , α44 = −nc14c27 ,

α34 = −nc14(2m + k23 + c11) , α43 = c14c27(m + c11) ,
α13 = n2(c15 − k23 − c11 − 3m) + (m + k23)(m + c11)(m− c15) + c12c14c27 ,
α14 = n

[
n2 − (m + c11)(2m + k23 − c15)− (m + k23)(m− c15)

]
,

(A13)

and

∆0 = det

∣∣∣∣∣∣∣∣
α11 α12 α13 α14
α21 α22 α23 0

α31 α32 α33 α34
α41 α42 α43 α44

∣∣∣∣∣∣∣∣ . (A14)

Using the previous formula (A14), we obtain
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α′11 = det

∣∣∣∣∣∣
α22 α23 0

α32 α33 α34
α42 α43 α44

∣∣∣∣∣∣ , α′12 = −det

∣∣∣∣∣∣
α12 α13 α14
α32 α33 α34
α42 α43 α44

∣∣∣∣∣∣ , α′13 = det

∣∣∣∣∣∣
α12 α13 α14
α22 α23 0

α42 α43 α44

∣∣∣∣∣∣ ,

α′14 = −det

∣∣∣∣∣∣
α12 α13 α14
α22 α23 0

α32 α33 α34

∣∣∣∣∣∣ , α′21 = −det

∣∣∣∣∣∣
α21 α23 0

α31 α33 α34
α41 α43 α44

∣∣∣∣∣∣ , α′22 = det

∣∣∣∣∣∣
α11 α13 α14
α31 α33 α34
α41 α43 α44

∣∣∣∣∣∣ ,

α′23 = −det

∣∣∣∣∣∣
α11 α13 α14
α21 α23 0

α41 α43 α44

∣∣∣∣∣∣ , α′24 = det

∣∣∣∣∣∣
α11 α13 α14
α21 α23 0

α31 α33 α34

∣∣∣∣∣∣ , α′31 = det

∣∣∣∣∣∣
α21 α22 0

α31 α32 α34
α41 α42 α44

∣∣∣∣∣∣ ,

α′32 = −det

∣∣∣∣∣∣
α11 α12 α14
α31 α32 α34
α41 α42 α44

∣∣∣∣∣∣ , α′33 = det

∣∣∣∣∣∣
α11 α12 α14
α21 α22 0

α41 α42 α44

∣∣∣∣∣∣ , α′34 = −det

∣∣∣∣∣∣
α11 α12 α14
α21 α22 0

α31 α32 α34

∣∣∣∣∣∣ ,

α′41 = −det

∣∣∣∣∣∣
α21 α22 α23
α31 α32 α33
α41 α42 α43

∣∣∣∣∣∣ , α′42 = det

∣∣∣∣∣∣
α11 α12 α13
α31 α32 α33
α41 α42 α43

∣∣∣∣∣∣ , α′43 = −det

∣∣∣∣∣∣
α11 α12 α13
α21 α22 α23
α41 α42 α43

∣∣∣∣∣∣ ,

α′44 = det

∣∣∣∣∣∣
α11 α12 α13
α21 α22 α23
α31 α32 α33

∣∣∣∣∣∣ .

(A15)

Appendix C. Qualitative Picture When Morphogen Gradients Are Equal to Zero
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Appendix D. Numerical Results for System (1) When the Bifurcation Parameters k2, I1
and I2 Have Different Values
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Figure A2. Various stable solutions for mOlig2 (solid line), miRNA, mSox9 and mSox10 (solid line)
arising from system (1) when I1 = I2 = 0 and k2 = 0.4762 (black lines); k2 = 0.04762 (red line), and
k2 = 0.95 (blue line).
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