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Abstract: This paper covers the construction and research of a scheme to solve the problem with
nonlinear dispersion wave equations, described by the model Korteweg–de Vries equation. The
article proposes approximating the equation based on improved “Upwind Leapfrog” schemes. Its
difference operator is a linear combination of operators of the “Standard Leapfrog” and “Upwind
Leapfrog” difference schemes, while the modified scheme is obtained from schemes with optimal
weight coefficients. Combining certain values of the weight coefficients mutually compensates for
approximation errors. In addition, the modified scheme acquires better properties compared with
the original schemes. The results of test calculations of solutions of the nonlinear Korteweg–de Vries
equation are presented, illustrating the advantages of the modified scheme.
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1. Introduction

Nonlinear wave processes are intensively researched in the various fields of science
and technology, including optics, radiophysics and hydrodynamics [1]. Mathematical
modeling of issues related to wave processes on the free surface of a heavy liquid leads
to hydrodynamic models that consider both nonlinear and dispersion effects [2]. The
quasilinear transfer equation is used as a means of testing the methods of theoretical
investigation of systems of nonlinear hyperbolic equations, as well as methods of their
numerical implementation. One of the generalizations of the quasilinear transport equation
for the case of dispersion media is the Korteweg–de Vries equation (KdV) [3]. The equation
has soliton solutions localized in space, represented by a classical solitary wave with a
single hump and an infinite period, monotonically decaying at infinity [4]. Among the
solutions of the KdV equation, both generalized solitary waves and solitary wave packets
can be distinguished.

Many physical processes are described by partial differential equations, so the solution
of this class of equations is one of the most urgent and complex problems. The complexity
is due to the fact that general solution methods have been developed for linear differential
equations, such as Fourier, Laplace and others; there are no general solution methods for
nonlinear partial differential equations. Therefore, it is necessary to develop and design
special solution methods for each type of nonlinear equation or groups of the same type
of equation. A wide range of approaches for the numerical integration of the equations of
long nonlinear waves is presented in the literature [5–8].
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In [9], a number of problems of the theory of quasilinear equations are considered.
Nonstationary solutions of the Cauchy problem are obtained for the model equation; they
consider nonlinearity, dispersion and dissipation. The equation under study is used in
a wide range of problems of continuum mechanics; in particular, it is used to describe
the propagation of nonlinear longitudinal waves in rods. Based on the model equation,
complex behavior of traveling waves was revealed, which can be regarded as discontinuity
structures in solutions of the same equation without considering dissipation and dispersion.
This led to the ambiguity of solutions to standard self-similar problems consisting of a
sequence of Riemann waves and shock waves that have a stationary structure. On the basis
of the KdV model equation, the interaction of nonlinear waves (when moving towards
each other or one after the other) is also studied when the corresponding self-similar
problems of collision of discontinuities have a nonunique solution. In the work of S.K.
Godunov [10], situations are considered when, as a result of the interaction of nonlinear
waves at long times, asymptotics containing discontinuities with an unsteady periodic
oscillatory structure are formed.

The classical and modified KdV equations have a significant role in the physics of
nonlinear waves in view of their integrability. Other equations from the same family,
derived from different physical and technical applications, are less well known. These are
the modular KdV equation, the lognormal KdV equation, the Gardner equation, the Shamil
equation, the Benjamin–Ono and Kawahara equations, as well as fractional equations.
These equations differ in the degree of nonlinearity in the advective term and the order
of linear variance (including fractional). The paper [11] is devoted to the discussion of
practical applications of the KdV family of equations and the general properties of their
solutions. The research methodology is based on the theory of weakly nonlinear waves in
weakly dispersed media of various physical nature. It is shown that many KdV equations
of the hierarchy have common properties of solutions and do not have explosive instability.
For this, the degree of nonlinearity should not be very large.

A generalized scale-invariant analogue of the KdV equation is considered in [12].
The auxiliary equation method allows us to find expressions for a variety of solutions—
both bounded and singular—which have explicit closed-form expressions. Generalized
solutions of the KdV equation [13] are discussed in [14]. It is not by chance that the problem
of waves on the water surface has become central in the development of the theory of
nonlinear waves. It belongs to the most significant application of nonlinear hydrodynamics.
Waves on the free water surface have always been an important subject for research, since
they are a well-known and, at the same time, quite a complex phenomenon that is easily
observable, but quite difficult to describe. For example, the original model equations of
KdV and Boussinesq were originally derived as an approximation for surface waves. The
review [15] provides the derivation of model equations with justification and the use of
asymptotic methods where necessary. It is necessary to understand what place the equation
in question occupies in the hierarchy of approximations that have a physical meaning,
which in turn are consequences of the precise formulation of the chosen problem about
waves on the water surface.

Research on the convective flows of a viscous incompressible fluid is one of the most
common problems in a variety of theoretical and applied scientific disciplines. In recent
decades, interest in research on solutions describing natural convection has increased
significantly. Convection is an example of the self-organization of dynamic systems ob-
served during experiments. The first named structure of self-organization also refers to
convection—the Benard cells called hexagonal prisms with a liquid rise in the center. Dur-
ing hydrodynamic experiments, Bernard suggested that an important role in the occurrence
of convection is played not only by gravity, but also by the thermocapillary Marangoni
effect. It not only explains the reasons for the generation of thermocapillary convection, but
also the mechanisms of the occurrence of bioconvection and concentration convection. The
paper of Velarde M., Nepomnyashchy A. and Hennenberg M. is devoted to research on
the mechanism of the occurrence of oscillatory interphase instability and wave movements
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in the Benard layers [16]. Research on the fourth-order nonlinear Schrödinger equation
(NSEIV) was performed by Sedletsky Y. [17] for the envelope of Stokes waves on the water
surface of finite depth. The NSEIV describes the amplitude modulations of the funda-
mental harmonic of Stokes waves on the surface of the medium and deep (compared to
the wavelength) liquid layer. It is derived based on the multi-scale method used to solve
equations of mathematical physics. The added terms of the equation describe the effect of
third-order linear dispersion and the effects of nonlinearity dispersion. As the nonlinearity
and dispersion decrease, the equation is uniformly transformed into the NSE for Stokes
waves on the surface of a liquid of finite depth, first obtained by Hashimoto and Ono. The
coefficients of the resulting equation are given explicitly as functions of k · h, where k is the
wave number and h is the water depth. If k · h tends to infinity, then these coefficients are
converted into the NSEIV coefficients, first obtained for infinite depth.

The research of Popov S.P. is devoted to investigating the properties of two-dimensional
soliton solutions of the Lidke–Spachek type evolutionary equation [18]. This equation is
a generalization of the two-dimensional case of the KdV equation. An algorithm for the
numerical solution of an evolutionary equation of the Lidke–Spachek type is described.
The calculation data of the structure of localized soliton solutions and the process of their
interaction with plane solitons are discussed. The results of numerical experiments are
compared with the solutions of the Kadomtsev–Petviashvili equations of the first kind
and the Zakharov–Kuznetsov equation, which is similar in structure to the considered
evolutionary equation.

In the paper of S.J.D. D’Alessio, J.P. Pascal, E. Ellaban, and C. Ruyer-Quil, the liquid
flow stability under the influence of gravity, loaded with a soluble surfactant down a heated
slope, is investigated [19]. The Marangoni instability associated with settling films contain-
ing heated surfactants is researched. A mathematical model is proposed that considers the
variations of the surface tension depending on the surfactant concentration and temper-
ature. The linear stability is analyzed both asymptotically for small wave numbers and
numerically for arbitrary wave numbers. An expression for the critical Reynolds number is
obtained that considers thermocapillary and salt capillary effects and reduces to known
published results for special cases. The nonlinear model was solved numerically to research
the instability of the equilibrium flow and the development of the emerging constant
surface waves. Studies have shown that the results of the numerical implementation of the
nonlinear model are in good agreement with the analysis of linear stability.

Analysis of the works of other authors has shown that among the main methods,
methods based on the pseudo-spectral approach can be distinguished, as well as those
based on the use of explicit and implicit finite-difference schemes.

During the numerical solution of hydrodynamic equations, discontinuous solutions
may arise and propagate. This imposes certain requirements on the design of optimal
difference schemes that can be used in a wide range. To study waves of small but finite
amplitude in dispersive media, it becomes necessary to develop numerical methods with
good dissipative and dispersive properties; when implementing the study, nonstrong,
nonphysical oscillations in the solution are required to achieve at least the second order
of accuracy.

In this regard, this article presents a solution to the problem of nonlinear wave dynam-
ics of solitons, including the Korteweg–de Vries equation, using the example of a modified
“Upwind Leapfrog” scheme. A detailed analysis of this scheme was performed in [20,21].

2. Materials and Methods

Test problems of a special type are used when developing difference schemes for
nonlinear problems. The KdV equation is considered as a test problem to research the
waves of small but finite amplitude in a dispersion environment.
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2.1. The KdV Mathematical Model

In the rectangle QT = {(x, t) : 0 ≤ x ≤ l, 0 ≤ t ≤ T} for the KdV equation:

∂u
∂t

+ u
∂u
∂x

+ β
∂3u
∂x3 = 0 (1)

or
ut + uux + βuxxx = 0, β = const > 0,

It is necessary to define a solution u(x, t) for the Cauchy problem under the following
conditions:

at the initial time moment t = 0:

u(x, 0) = u0(x), 0 ≤ x ≤ l (2)

on the boundaries:
u(0, t) = u(l, t) = uxx(0, t) = 0, t ≥ 0 (3)

or periodic conditions in the space:

u(0, t) = u(l, t), ux(0, t) = ux(l, t), uxx(0, t) = uxx(l, t),t ≥ 0 (3a)

where u(x, t) = v + δv(x, t); v = const is the average velocity; δv(x, t) is the oscillatory
velocity; β is a dispersion coefficient.

2.2. Numerical Solution of the KdV Equation Based on the “Left Corner” Difference Scheme

Let us define a numerical solution to the model problem (1)–(3) using the “left corner”
finite-difference scheme [22]. We will use this problem as a test one.

A uniform computational grid on the domain of the problem definition ω = ωτ ×ωh
is introduced, where ωτ = { tn|n = 0, 1, . . . , T}, with the constant time step τ = tn+1 − tn,
T is the time steps number, ωh = { xi|xi = ih; i = 0, 1, . . . , N; Nh = l} with the step h by a
spatial variable, N is the number of steps in the space.

The “left corner” finite-difference scheme for the KdV equation has the form:

un+1
i − un

i
τ

+ ui−1/2
un

i − un
i−1

h
+ β

un
i+1 − 3un

i + 3un
i−1 − un

i−2
h3 = 0 (4)

where ui−1/2 = (ui + ui−1)/2.

2.3. Research the “Left Corner” Scheme Stability

We investigate the stability of the “left corner” scheme (4) for the KdV equation. Define
un

i = ϕn · ejki, where j =
√
−1. We substitute this expression inequality (4), and divide the

equality by ϕn · ejki:

ϕ− 1
τ

+ u · 1− e−jk

h
+ β · ejk − 3 + 3 · e−jk − e−2jk

h3 = 0

After the transformations, this expression will take the form:

ϕ = 1− uτ

h
(1− cos k)− uτ j

h
sin k− βτ

4 cos k− 3− cos 2k− 2j sin k + j sin 2k
h3 = 0

If we introduce the notations, we get: a = uτ
h , b = βτ

h3 .

ϕ = 1− a(1− cos k)− a j sin k− b(4 cos k− 3− cos 2k) + b j(2 sin k− sin 2k)
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We select the real and imaginary parts:

ϕ = 1 + (cos k− 1)(a + 2b(cos k− 1))− j(a + 2b(cos k− 1)) sin k

If we introduce the notation c = a + 2b(cos k− 1), we get:

ϕ = 1 + (cos k− 1)c− j c sin k

A necessary and sufficient condition for the stability of the equation is the fulfillment
of inequality |ϕ| ≤ 1.

|ϕ|2 = (1− c + c cos k)2 + c2 sin2 k = (1− c)2 + 2c cos k(1− c) + c2

≤ (1− c)2 + 2c(1− c) + c2 = 1 at 0 ≤ c ≤ 1 or 0 ≤ uτ
h + 2 βτ

h3 (cos k− 1) ≤ 1

Therefore, the scheme is stable under the conditions β ≤ uh2/4, uτ
h ≤ 1. The disad-

vantage of the “left corner” scheme is large dissipation. To eliminate large grid viscosity, it
is necessary to reduce the step h of the spatial variable, which leads to restrictions that are
more stringent on the parameter β. As a result, the class of problems for which the scheme
of the form (4) is applicable is narrowed.

2.4. “Upwind Leapfrog” and “Standard Leapfrog” Difference Schemes for the KdV Equation

The basic constructive aspects of developing effective grid schemes of the “Upwind
Leapfrog” type with improved dispersion properties [9,10] for the nonlinear KdV equations
are illustrated by solving the test problem (1)–(3).

A uniform computational grid on the domain of the problem definition ω = ωτ ×ωh,
is introduced, where ωτ = { tn|n = 0, 1, . . . , T}, with the constant time step τ = tn+1 − tn,
T is the time steps number, ωh = { xi|xi = ih; i = 0, 1, . . . , N; Nh = l} with the step h by
the spatial variable, and N is the number of steps in the space.

The numerical solution of the problem (1)–(3) can be carried out using finite-difference
schemes [23,24]:

the “Upwind Leapfrog” scheme:

un+1
i − un

i
2τ

+
un

i−1 − un−1
i−1

2τ
+ un

i−1/2
un

i − un
i−1

h
+ β

un
i+1 − 3un

i + 3un
i−1 − un

i−2
h3 = 0 (5)

the “Standard Leapfrog” scheme:

un+1
i − un−1

i
2τ

+ un
i+1/2

un
i+1 − un

i
2h

+ un
i−1/2

un
i − un

i−1
2h

+ β
un

i+2 − 2un
i+1 + 2un

i−1 − un
i−2

2h3 = 0 (6)

In the “Standard Leapfrog” scheme for a finite-difference approximation of a third-
order derivative, a symmetric difference derivative is used, obtained as a half-sum of the
right and left difference derivatives, where the approximation of the second derivative is
used as a function.

The extended templates of these schemes, considering the approximation of the third
derivative by a spatial variable, are given in Figures 1 and 2. Both schemes have three layers.
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Figure 2. Extended templates of the “Standard Leapfrog” (a) scheme and a linear combination of the
schemes “Upwind Leapfrog” and “Standard Leapfrog” (b) for the KdV equation.

To solve the KdV model equation, we consider the application of a modified scheme,
which is a linear combination of the difference scheme “Upwind Leapfrog” with weight
coefficients 2/3 and “Standard Leapfrog” with weight coefficients 1/3 [21]. The approxi-
mation of Equation (1) has the form:

un+1
i − un

i
τ

+ 2
un

i−1 − un−1
i−1

3τ
+

un
i − un−1

i
3τ

+ un
i+1/2

un
i+1 − un

i
3h

+ 5un
i−1/2

un
i − un

i−1
3h

+

1
3

β
un

i+2 + 2un
i+1 − 12un

i + 14un
i−1 − 5un

i−2
h3 = 0

(7)
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2.5. Research the Scheme Stability, Obtained on the Basis of a Linear Combination of the “Upwind
Leapfrog” and “Standard Leapfrog” Schemes

We investigate the stability of the scheme (7) using the harmonic method [25,26]. Let
un

i = ϕn · ejki, where j =
√
−1; we substitute this expression in the equality (7):

ϕn+1 · ejki − ϕn · ejki

τ
+ 2

ϕn · ejk(i−1) − ϕn−1 · ejk(i−1)

3τ
+

ϕn · ejki − ϕn−1 · ejki

3τ
+

+u
ϕn · ejk(i+1) + 4ϕn · ejki − 5ϕn · ejk(i−1)

3h
+

1
3

β
ϕn · ejk(i+2) + 2ϕn · ejk(i+1) − 12ϕn · ejki + 14ϕn · ejk(i−1) − 5ϕn · ejk(i−2)

h3 = 0

Divide the equality by ϕn · ejki; thus, we have:

ϕ− 1
τ

+ 2 · e−jk − ϕ−1 · e−jk

3τ
+

1− ϕ−1

3τ
+ u · ejk + 4− 5 · e−jk

3h
+

β · e2jk + 2ejk − 12 + 14 · e−jk − 5e−2jk

3h3 = 0

multiply the equation by ϕ · τ:

ϕ2 +

(
2
3
· e−jk − 2

3
+ u · τ · ejk + 4− 5 · e−jk

3h
+ β · τ · e2jk + 2ejk − 12 + 14 · e−jk − 5e−2jk

3h3

)
ϕ− 2e−jk + 1

3
= 0.

Let a = uτ/h, b = βτ/h3, then

ϕ2 +

(
2
3
· e−jk − 2

3
+ a · ejk + 4− 5 · e−jk

3
+ b · e2jk + 2ejk − 12 + 14 · e−jk − 5e−2jk

3

)
ϕ− 2e−jk + 1

3
= 0.

We use the Euler formula ejk = cos k + j sin k:

ϕ2 +

(
2
3
· (cos k− 1)− j

2
3
· sin k +(a + 2b · (cos k− 1))

−4 cos k + 6j sin k + 4
3

)
ϕ− 2e−jk + 1

3
= 0.

We denote c = a + 2b(cos k− 1); then, the equation has the form:

ϕ2 +

(
2
3
· (cos k− 1)− j

2
3
· sin k + c · −4(cos k− 1) + 6j sin k

3

)
ϕ− 2e−jk + 1

3
= 0

ϕ2 +

(
2
3
· (cos k− 1)(1− 2c)− j · sin k

(
2
3
− 2c

))
ϕ− 2e−jk + 1

3
= 0

The solution of the quadratic equation with respect to ϕ:

ϕ1,2 = −
(

1
3 · (cos k− 1)(1− 2c)− j · sin k

(
1
3
− c
))
±√(

1
3
· (cos k− 1)(1− 2c)− j · sin k

(
1
3
− c
))2

+
2e−jk + 1

3
.

We consider the case c = 0:

ϕ1,2 = −
(

1
3
· (cos k− 1)− 1

3
j · sin k

)
±

√(
1
3
· (cos k− 1)− j · 1

3
sin k

)2
+

2e−jk + 1
3

or

ϕ1,2 = −1
3
· e−jk +

1
3
±
(

1
3
· e−jk +

2
3

)
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As a result, we have ϕ1 = 1, ϕ2 = − 2
3 · e−jk − 1

3 ; therefore, ϕ2 is not a solution.
We consider the case c = 1:

ϕ1,2 = −
(
− 1

3 · (cos k− 1) + 2
3 j · sin k

)
±√(

− 1
3 · (cos k− 1) + 2

3 j · sin k
)2

+ 2e−jk+1
3

or ϕ1,2 = 1
3 · (cos k− 1)− 2

3 j · sin k±
(

2
3 cos k− 1

3 j sin k + 1
3

)
.

As a result, we obtain ϕ1 = e−jk, i.e., ϕ1 = cos k− j sin k, so |ϕ1|2 = cos2 k + sin2 k = 1,
|ϕ1| = 1,ϕ2 = − 1

3 e−jk − 2
3 ; therefore, ϕ2 is not a solution.

Denote ψ(k, c) absolute values of the function ϕ1,2(k, c):

ψ =
∣∣∣−( 1

3 · (cos k− 1)(1− 2c)− j · sin k
(

1
3 − c

))
±√(

1
3 · (cos k− 1)(1− 2c)− j · sin k

(
1
3 − c

))2
+ 2e−jk+1

3

∣∣∣∣∣.
The behavior of the function values ψ(k, c) can be checked numerically. As a result, for

the values k ∈ [0, 2π] and c ∈ [0, 1] we can make sure that the inequality ψ ≤ 1 is observed,
i.e., |ϕ| ≤ 1, indicating the stability of the difference scheme.

2.6. Research the Accuracy of the Modified Scheme

The function u(x, t) was written as a finite trigonometric Fourier series [17] in the
complex form:

u(x, t) =
N

∑
m=−N

Cm(t)ejωmx, u2(x, t)/2 =
N

∑
m=−N

Dm(t)ejωmx (8)

where ω = π
l ; m is the harmonic number; Cm(t) = 2

l

l∫
0

u(x, t)e−jωmxdx is the complex

amplitude of the m-the harmonic; j =
√
−1. After substituting (8) into (1), we get:(

N

∑
m=−N

Cm(t)ejωmx

)′
t

+

(
N

∑
m=−N

Dm(t)ejωmx

)′
x

+ β

(
N

∑
m=−N

Cm(t)ejωmx

)′′′
xxx

= 0

We can change the sequence of differentiation and summation operations in the partial
sum of the series and calculate the derivative by the space:

N

∑
m=−N

(Cm(t))
′
te

jωmx + jωm
N

∑
m=−N

Dm(t)ejωmx − jβω3m3
N

∑
m=−N

Cm(t)ejωmx = 0

Considering that the functions ejωmx are linearly independent for different values of
m, we find:

(Cm(t))
′
t = −jωmDm(t) + jβω3m3Cm(t) (9)

Let us consider the application of a modified scheme, which is a combination of the
“Upwind Leapfrog” and “Standard Leapfrog” difference scheme (7) for solving the KdV
model equation.

Considering (8) and xi = ih, the Equation (7) has the form:
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N
∑

m=−N

Cn+1
m ejωmhi − Cn

mejωmhi

τ
+ 2

N
∑

m=−N

Cn
mejωmh(i−1) − Cn−1

m ejωmh(i−1)

3τ
+

N
∑

m=−N

Cn
mejωmhi − Cn−1

m ejωmhi

3τ
+

N
∑

m=−N

Dn
mejωmh(i+1) + 4Dn

mejωmhi − 5Dn
mejωmh(i−1)

3h
+

1
3

β
N
∑

m=−N

Cn
mejωmh(i+2) + 2Cn

mejωmh(i+1) − 12Cn
mejωmhi + 14Cn

mejωmh(i−1) − 5Cn
mejωmh(i−2)

h3 = 0.

After the transformations, we have:

N
∑

m=−N

Cn+1
m − Cn

m
τ

ejωmhi + 2
N
∑

m=−N

Cn
m − Cn−1

m
3τ

e−jωmhejωmhi+

N
∑

m=−N

Cn
m − Cn−1

m
3τ

ejωmhi +
N
∑

m=−N

Dn
mejωmh + 4Dn

m − 5Dn
me−jωmh

3h
ejωmhi+

1
3

β
N
∑

m=−N

Cn
me2jωmh + 2Cn

mejωmh − 12Cn
m + 14Cn

me−jωmh − 5Cn
me−2jωmh

h3 ejωmhi = 0

Due to linear independence of ejωmi, we can rewrite the last expression in the form:

Cn+1
m − Cn

m
τ

+ 2
Cn

m − Cn−1
m

3τ
e−jωmh +

Cn
m − Cn−1

m
3τ

+ Dn
m

ejωmh + 4− 5e−jωmh

3h
+

1
3

βCn
m

e2jωmh + 2ejωmh − 12 + 14e−jωmh − 5e−2jωmh

h3 = 0

(10)

At τ → 0 from (10), it is followed:

(Cm(t))
′
t

(
4
3
+ 2

e−jωmh

3

)
+ Dn

m
ejωmh + 4− 5e−jωmh

3h
+

1
3

βCn
m

e2jωmh + 2ejωmh − 12 + 14e−jωmh − 5e−2jωmh

h3 = 0

or

(Cm(t))
′
t = −

ejωmh + 4− 5e−jωmh

2h
(
2 + e−jωmh

) Dn
m − β

e2jωmh + 2ejωmh − 12 + 14e−jωmh − 5e−2jωmh

2h3
(
2 + e−jωmh

) Cn
m. (11)

Lemma 1. At approximation of the problem (1)–(3) by the difference scheme (7), for each harmonic,
the solutions to the problem of the propagation velocity of the wave and the dispersion term are less
than the real values and differ, respectively, by magnitudes:

α1 = 1− ejωmh + 4− 5e−jωmh

2jωmh
(
2 + e−jωmh

) ,→ α2 = 1 +
e2jωmh + 2ejωmh − 12 + 14e−jωmh − 5e−2jωmh

2jω3m3h3
(
2 + e−jωmh

)
Proof of Lemma 1. At τ → 0 from (11) it follows that:

(Cm(t))
′
t = −jωmDn

m
ejωmh + 4− 5e−jωmh

2jωmh
(
2 + e−jωmh

)−
−jω3m3βCn

m
e2jωmh + 2ejωmh − 12 + 14e−jωmh − 5e−2jωmh

2jω3m3h3
(
2 + e−jωmh

) .
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Given equality (9), the solution using scheme (7) corresponds to the solution of
the equation:

u′t = −
(

u2/2
)

x
(1− α1)− βu′′′xxx(1− α2)

α1 = 1− ejωmh + 4− 5e−jωmh

2jωmh
(
2 + e−jωmh

) ,→ α2 = 1 +
e2jωmh + 2ejωmh − 12 + 14e−jωmh − 5e−2jωmh

2jω3m3h3
(
2 + e−jωmh

)
�

Lemma 2. The modified difference scheme for the problem (1)–(3) has an approximation error equal
to the O

(
τ2 + h3).

Proof of Lemma 2. At h→ 0 from (10), it follows that:

Cn+1
m − Cn

m
τ

+ 2
Cn

m − Cn−1
m

3τ
e−jωmh +

Cn
m − Cn−1

m
3τ

+ Dn
m

ejωmh + 4− 5e−jωmh

3h
+

+
1
3

βCn
m

e2jωmh + 2ejωmh − 12 + 14e−jωmh − 5e−2jωmh

h3 =
Cn+1

m − Cn−1
m

τ
+ 2jωmDn

m−

2jβω3m3Cn
m = 2(Cm(t))

′
t + 2jωmDn

m − 2jβω3m3Cn
m + O

(
τ2)

We can investigate the order of the approximation error using a modified difference
scheme of the convective term in the space. We made the replacement jωmh = s:

α1 = 1− es + 4− 5e−s

2s(2 + e−s)
= − s3

36
+ O

(
s4)

or α1 = j
(ωmh)3

36
+ O

(
h4)

According to the obtained expression, the modified difference scheme approximates
the convective term with the third order of accuracy in the space.

We can estimate the order of the approximation error of the dispersion term in
the space:

α2 = 1− e2s + 2es − 12 + 14e−s − 5e−2s

2s3(2 + e−s)
= − s2

12
+ O

(
s3
)

The research on the order of approximation error by a modified difference scheme for
solving problems described by the Korteweg–de Vries model equation showed that the
difference scheme (9) has an approximation error equal to the O

(
τ2 + h3). �

3. Results and Discussion

A numerical implementation of a nonlinear dispersion model used to solve the KdV
equation in the form of a software module is carried out. Comparison of numerical (based
on schemes (4)–(7)) and analytical solutions of the KdV problem with the initial condi-
tions δv0(x) = 0.1 sin(π(x− 10)/20)(h(10− x)− h(30− x)), where h(x) is the Heaviside
function, is shown in Figure 3.

Input data for the presented numerical experiments: average velocity v = 0.5 m/s,
time step τ = 0.1 s, β = 0.1 m3/s, space step h = 1 m, the length of the time interval T is
100 s. A detailed idea of the behavior of the wave during its propagation, described by
the KdV equation using modified schemes, can be obtained from the analysis of the wave
profile (along the abscissa axis, the distance is postponed; along the ordinate axis, we see
the oscillatory component of the velocity δv).
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Figure 3 demonstrates the solution to the linearized KdV problem. The red line
is the numerical solution of the linearized KdV problem; the blue line is its analytical
(accurate) solution. The numerical implementation of the problem obtained on the basis
of the schemes is: the “left corner” shown in Figure 3a; the “Standard Leapfrog” shown
in Figure 3b; the “Upwind Leapfrog” shown in Figure 3c; and the proposed scheme of
the form (7) (a linear combination of the schemes “Upwind Leapfrog” and “Standard
Leapfrog”) shown in Figure 3d.

The results of numerical calculations of the linearized KdV problem based on a modi-
fied difference scheme and a linear combination of cabaret and cross schemes practically
coincide with the analytical solution. The use of the “left corner” scheme is impractical for
solving the problem because this scheme has a large error caused by dissipation, which is
evident from the calculation results.

Table 1 shows the dependence on the error of solving the problem normally L1 on time. The
relative error was estimated using the formula: ψn = ∑

i
ψn

i /∑
i
|q(xi, tn)|, ψn

i =
∣∣qn

i − q(xi, tn)
∣∣,

where q(xi, tn)—the accurate solution in the node (xi, tn), qn
i —numerical solution on the nth

time layer. Calculation data for the table: time step τ = 0.1 s, β = 0.1 m/s, space step
h = 1 m.

The thickening of the computational grid leads to a quadratic increase in labor intensity,
and is possible only with small values of the parameter β. From the restriction β ≤ uh2/4, it
follows that the grinding of the grid step h by spatial coordinate leads to a narrowing of the
range of input parameters set for the initial KdV problem, in which the difference schemes
described above are stable; namely, the upper value of the parameter β. For large parameter
values β, a stable solution can be obtained only on coarse grids; therefore, it is necessary to
increase the accuracy of the difference scheme to reduce the error of the solution. We set
the following input data for calculations when solving the linearized test problem KdV:
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time step τ = 0.05 s, β = 0.025 m3/s, space step h = 0.5 m. Table 2 shows the dependence
of the error on solving the problem on time for a more detailed calculation grid.

Table 1. The dependence of the error of solving the problem on time.

50 s 100 s 200 s 500 s 1000 s

“left corner” 0.373 0.524 0.719 0.846 0.908

“Standard Leapfrog” 0.146 0.224 0.324 0.505 0.713

“Upwind Leapfrog” 0.103 0.146 0.197 0.283 0.391

a linear combination of the
schemes “Upwind Leapfrog”

and “Standard Leapfrog”
0.048 0.059 0.069 0.085 0.101

Table 2. Dependence of the error on solving the problem on time.

50 s 100 s 200 s 500 s 1000 s

“Left corner” 0.229 0.368 0.541 0.772 0.934

“Standard Leapfrog” 0.069 0.1 0.144 0.237 0.34

“Upwind Leapfrog” 0.046 0.068 0.101 0.153 0.223

a linear combination of the
schemes “Upwind Leapfrog”

and “Standard Leapfrog”
0.022 0.027 0.034 0.046 0.057

Figure 4 demonstrates the solution to the nonlinear KdV problem. The numerical
solution of the problem obtained on the basis of the schemes is: the “left corner” shown in
Figure 4a; the “Standard Leapfrog” shown in Figure 4b; the “Upwind Leapfrog” shown
in Figure 4c; and the modified scheme of the form (7) (a linear combination of schemes
“Upwind Leapfrog” and “Standard Leapfrog”) shown in Figure 4d.
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Comparing the data in Tables 1 and 2 (for the initial and smaller grids), we conclude
that when the grid thickens, there is no increase in the accuracy of the numerical solution of
the problem. Therefore, it is advisable to use a more accurate scheme to solve the problem,
which, according to the experiments, is a modified scheme of the form (7).

Figure 5 shows the solution to the KdV problem in the dynamics. The solution of the
problem based on the proposed scheme (7) is given. Figure 5a shows the graphs of the solu-
tion, where initial condition is bell solitary wave solution δv0(x) = 0.1 sin(π(x− 10)/20)
(h(10− x)− h(30− x)). Figure 5b shows the graphs of the solution, where the initial
distribution is kink solitary wave solution δv1(x) = 0.1(h(10− x)− h(30− x)).
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According to the graphs shown in Figure 5, we can follow the changing shape of
the curve to solve the KdV problem and its shift along the Ox axis at t ∈ [0, 100], with
a 25 s time step. The developed difference schemes for the numerical implementation
of the nonlinear and linearized KdV problem do not differ much from each other in
their properties (accuracy and stability). The behavior of the numerical solution, in this
case, depends more on the choice of the difference scheme. The executed numerical
experiments based on the proposed scheme of the form (7) are in good agreement with
the analytical solution of the linearized KdV problem. The obtained numerical solutions
of the KdV problem are used in the study of the dynamics of changes in the wave profile
when studying the propagation of wave processes over long distances. It is important
to develop and use high-precision difference schemes in the study of these processes
since error tends to accumulate. The proposed scheme allows us to obtain a numerical
solution to the KdV problem in the nonlinear case, which is relevant in solving problems of
wave hydrodynamics.

4. Conclusions

The paper proposes an approximation of the KdV equation of a modified difference
scheme with improved dispersion properties. It is the result of a linear combination of
the difference operators of the “Upwind Leapfrog” and “Standard Leapfrog” schemes,
for which the weight coefficients were obtained as a result of minimizing the order of
approximation error. A study of its behavior on uniform rectangular grids was carried out.

A comparison of the properties of the schemes “left corner”, “Standard Leapfrog”,
and “Upwind Leapfrog” and the proposed scheme showed that the modified scheme has
great advantages over the others. The disadvantage of the “left corner” scheme is a large
dissipation. To eliminate large grid viscosity, it becomes necessary to reduce the step h by
the spatial variable; however, the thickening of the computational grid leads to a quadratic
increase in labor intensity and more stringent restrictions on the parameters β. The stability
and accuracy research results showed that the proposed difference scheme has the same
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limitations as the “left corner” scheme with an approximation error equal to the O
(
τ2 + h3).

According to the results of numerical calculations, it follows that it is expedient to use a
modified difference scheme to solve the KdV problem.

Author Contributions: Conceptualization, A.S.; methodology, A.N.; software, A.C.; validation, E.T.
and Y.B.; formal analysis, A.C.; investigation, E.T.; resources, Y.B.; data curation, A.N.; writing—
original draft preparation, E.T. and A.N.; writing—review and editing, A.S. and A.C.; visualization,
E.T. and Y.B.; supervision, A.S.; project administration, A.C.; funding acquisition, A.S. All authors
have read and agreed to the published version of the manuscript.

Funding: The study was supported by the Russian Science Foundation (grant no. 22-11-00295),
https://rscf.ru/en/project/22-11-00295/ (accessed on 7 August 2022).

Institutional Review Board Statement: The study does not include research methods that involve
humans or animals.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Acknowledgments: The authors would like to acknowledge the administration of Don State Techni-
cal University for resource and financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Witham, J.B. Linear and Nonlinear Waves; Shabat, A.B., Ed.; Mir: Moscow, Russian, 1977; p. 622.
2. Karpman, V.I. Nonlinear Waves in Dispersing Environment; Nauka: Moscow, Russian, 1973; p. 176.
3. Samarskii, A.A.; Vabishevich, P.N.; Matus, P.P. Difference Schemes with Operator Multipliers; Institute of mathematical modeling of

RAS: Minsk, Belarus, 1998; p. 442.
4. Berezin, L.A. Numerical Study of Nonlinear Waves in a Rarefied Plasma; Nauka Novosibirsk: Moscow, Russia, 1977; p. 109.
5. Samarskii, A.A.; Mazhukin, V.I.; Matus, P.P.; Mikhaylik, I.A. L2-conservative schemes for the Korteweg-de Vries equation. Rep.

Russ. Acad. Sci. 1997, 357, 458–461.
6. Mazhukin, V.I.; Matus, P.P.; Mikhailyuk, I.A. Finite-difference schemes for the Korteweg-de Vriesequation. Diff. Equat. 2000,

36, 709–716. [CrossRef]
7. Bykovskaya, E.N.; Shapranov, A.V.; Mazhukin, V.I. Analysis of the error of approximation of two-layer difference schemes for the

Korteweg de Vries equation. Keldysh Inst. Prepr. 2021, 1, 1–17. [CrossRef]
8. Goloviznin, V.M.; Karabasov, S.A.; Sykhodulov, D.A. A variation approach to the construction of finite-difference scheme with

space-split time derivative for the Korteweg-de Vries equation. Mat. Model. 2000, 12, 105–116.
9. Gel’fand, I.M. Some problems in the theory of quasi-linear equations. Uspekhi Mat. Nauk. 1959, 14, 87–158.
10. Godunov, S.K. On nonunique ‘blurring’ of discontinuities in solutions of quasilinear systems. Sov. Math. Dokl. 1961, 136, 272–273.
11. Chugainova, A.P.; Shargatov, V.A. Stability of nonstationary solutions of the generalized KdV-Burgers equation. Comput. Math.

Math. Phys. 2015, 55, 251–263. [CrossRef]
12. Alzaleq, L.; Manoranjan, V.; Alzalg, B. Exact traveling waves of a generalized scale-invariant analogue of the Korteweg–de Vries

equation. Mathematics 2022, 10, 414. [CrossRef]
13. Korteweg, D.J.; de Vries, G. XLI. On the change form of long waves advancing in a rectangular channel and on new type of long

stationary waves. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1895, 39, 422–443. [CrossRef]
14. Kruzhkov, S.N.; Faminskii, A.V. Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation. Math. USSR-Sb.

1984, 48, 391. [CrossRef]
15. Zeytounian, R.K. Nonlinear long waves on water and solitons. Phys.-Uspekhi 1995, 38, 1333–1381. [CrossRef]
16. Velarde, M.; Nepomnyashchy, A.; Hennenberg, M. Onset of oscillatory interfacial instability and wave motions in Benard layers.

Adv. Appl. Mech. 2001, 37, 167–238.
17. Sedletsky, Y. The fourth-order nonlinear Schrödinger equation for the envelope of stokes waves on the surface of a finite-depth

fluid. J. Exp. Theor. Phys. 2003, 97, 180–193. [CrossRef]
18. Popov, S.P. On properties of the two-dimensional soliton solutions of an evolution equation. Comput. Math. Math. Phys. 2004,

44, 1221–1230.
19. D’Alessio, S.J.D.; Pascal, J.P.; Ellaban, E.; Ruyer-Quil, C. Marangoni instabilities associated with heated surfactant-laden falling

films. J. Fluid Mech. 2020, 887. [CrossRef]
20. Sukhinov, A.I.; Chistyakov, A.E. CABARET difference scheme with improved dispersion properties. Matem. Model. 2019,

31, 83–96. [CrossRef]

https://rscf.ru/en/project/22-11-00295/
http://doi.org/10.1007/BF02754240
http://doi.org/10.20948/prepr-2021-1
http://doi.org/10.1134/S0965542515020074
http://doi.org/10.3390/math10030414
http://doi.org/10.1080/14786449508620739
http://doi.org/10.1070/SM1984v048n02ABEH002682
http://doi.org/10.1070/PU1995v038n12ABEH000124
http://doi.org/10.1134/1.1600810
http://doi.org/10.1017/jfm.2019.1058
http://doi.org/10.1134/S207004821906019X


Mathematics 2022, 10, 2922 15 of 15

21. Sukhinov, A.I.; Kuznetsova, I.Y.; Chistyakov, A.E.; Protsenko, E.A.; Belova, Y.V. Study of the accuracy and applicability of the
difference scheme for solving the diffusion-convection problem at large grid Péclet numbers. Comput. Contin. Mech. 2020,
13, 437–448. [CrossRef]

22. Samarskii, A.A. The Theory of Difference Schemes: Textbook Manual; Main Editorial Office of Physical and Mathematical Literature of
the Publishing House “Nauka”: Moscow, Russian, 1977; p. 656.

23. Goloviznin, V.M.; Samarskii, A.A. Some characteristics of finite difference scheme “cabaret”. Matem. Model. 1998, 10, 101–116.
24. Gushchin, V.A. Family of quasi-monotonic finite-difference schemes of the second-order of approximation. Math. Models Comput.

Simul. 2016, 8, 487–496. [CrossRef]
25. Samarskii, A.A.; Popov, I.P. Difference Methods for Solving Problems of Gas Dynamics: Textbook: For Universities; Main Editorial Office

of Physical and Mathematical Literature of the Publishing House “Nauka”: Moscow, Russian, 1992; p. 424.
26. Samarskii, A.A. Classes of stable schemes. USSR Comput. Math. Math. Phys. 1967, 7, 171–223. [CrossRef]

http://doi.org/10.7242/1999-6691/2020.13.4.34
http://doi.org/10.1134/S2070048216050094
http://doi.org/10.1016/0041-5553(67)90100-0

	Introduction 
	Materials and Methods 
	The KdV Mathematical Model 
	Numerical Solution of the KdV Equation Based on the “Left Corner” Difference Scheme 
	Research the “Left Corner” Scheme Stability 
	“Upwind Leapfrog” and “Standard Leapfrog” Difference Schemes for the KdV Equation 
	Research the Scheme Stability, Obtained on the Basis of a Linear Combination of the “Upwind Leapfrog” and “Standard Leapfrog” Schemes 
	Research the Accuracy of the Modified Scheme 

	Results and Discussion 
	Conclusions 
	References

