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Abstract: As an extension of the standard Weibull distribution, a new crucial distribution termed
alpha power Weibull distribution has been presented. It can model decreasing, increasing, bathtub,
and upside-down bathtub failure rates. This research investigates the estimation of model parameters
and some of its reliability characteristics using progressively Type-II censored data. To get estimates
of unknown parameters, reliability, and hazard rate functions, the maximum likelihood, and Bayesian
estimation approaches are studied. To acquire estimated confidence intervals for unknown parameters
and reliability characteristics, the maximum likelihood asymptotic properties are used. The Markov
chain Monte Carlo approach is used in Bayesian estimation to provide Bayesian estimates under
squared error and LINEX loss functions. Furthermore, the highest posterior density credible intervals
of the parameters and reliability characteristics are determined. A Monte Carlo simulation study
is used to investigate the accuracy of various point and interval estimators. In addition, various
optimality criteria are used to choose the best progressive censoring schemes. Two real data from
the engineering field are analyzed to demonstrate the applicability and significance of the proposed
approaches. Based on numerical results, the Bayesian procedure for estimating the parameters and
reliability characteristics of alpha power Weibull distribution is recommended. The analysis of two
real data sets showed that the alpha power Weibull distribution is a good model to investigate
engineering data in the presence of progressive Type-II censoring.

Keywords: alpha power weibull distribution; progressive Type-II censoring; maximum likelihood;
Bayesian paradigm; reliability measures; MCMC techniques

MSC: 62F10; 62F15; 62N01; 62N02; 62N05

1. Introduction

In industrial life testing and medical survival analysis, the objects of interest are
frequently lost or withdrawn before failure. As a result, the obtained sample is referred
to as a censored sample (or an incomplete sample). Some main reasons for removing the
experimental units are to conserve the working experimental units for future usage, reduce
the total time on the test, and save on expenses. Different censoring schemes are available
in the literature, including random, Type-I and Type-II censoring; however, they lack the
flexibility to allow units to be removed at any point other than the experiment’s termination
point. As a consequence, a more general censoring scheme named progressive Type-II
censoring is provided. For example, during a clinical test, some patients have to be dropped
out from the study for more investigation or to save experimental time. In addition, some
products have to be withdrawn from the experiment for more thorough examination or kept
for use as test samples in other investigations. This would lead to progressive censoring.
The progressively Type-II censored sample can be stated schematically as follows. Assume
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that n distinct units are placed on a life test and m < n is a predetermined number of
units to fail. Let (R1, R2, . . . , Rm) be previously fixed so that, at the time of the first failure
X1:m:n, R1, surviving units are randomly removed from the experiment. At the time of the
second failure X2:m:n, R2 surviving items are randomly removed from the experiment. This
method is repeated until the remaining Rm surviving items are eliminated from the test at
the time of the mth observed failure Xm:m:n. It is obvious that n = m + ∑m

i=1 Ri. The case of
traditional Type-II censored sampling occurs when R1 = R2 = · · · = Rm−1 = 0, resulting in
Rm = n−m. When R1 = R2 = · · · = Rm = 0, the progressively Type II censoring scheme
reduces to the case of a complete sample. Suppose we have a continuous population with
probability density function (PDF), f (·), and cumulative distribution function (CDF), F(·),
then the likelihood function for a progressively Type-II censored sample of size m is given
by

L = C
m

∏
i=1

f (xi:m:n)[1− F(xi:m:n)]
Ri , (1)

where C is a constant that is independent of the parameters. Many authors, including
Balakrishnan and Lin [1], Asgharzadeh [2], Basak et al. [3], Kim et al. [4] and Dey
et al. [5,6] and Elshahhat and Rastogi [7], have studied inference under progressively
Type-II censored samples using a variety of lifetime distributions, including exponential,
generalized logistic, log-normal, Weibull, Marshall–Olkin extended exponential, gamma
and inverted Nadarajah–Haghighi distributions, respectively. Balakrishnan [8] provided a
good introduction to the concept of progressive censoring as well as an excellent review
article. Aggarwala and Balakrishnan [9] created a method to simulate progressively Type-II
censored samples from any continuous distribution.

Recently, powerful progress has been made in the improvement of several traditional
distributions and their efficient utilization to challenges in different domains including
engineering, medical, and finance, among others. One of the most flexible distributions
is known as the alpha power Weibull (APW) distribution which was introduced by
Nassar et al. [10] by utilizing the alpha power transformation method introduced by
Mahdavi and Kundu [11]. It can be considered to be a flexible extension of the traditional
Weibull distribution and can deliver several desirable properties and better flexibility in
the form of the hazard and density functions. If X is a random variable that follows the
APW distribution, then its PDF and CDF can be expressed as

f (x; α, β, λ) =
λβ log(α)xβ−1 exp(−λxβ)α1−exp(−λxβ)

α− 1
, x > 0, α, β, λ > 0, α 6= 1, (2)

and

F(x; α, β, λ) =
α1−exp(−λxβ) − 1

α− 1
, (3)

where α and β are shape parameters and λ is a scale parameter. For α → 1, the APW
distribution reduces to the alpha power exponential distribution proposed by Mahdavi
and Kundu [11]. The APW distribution’s reliability function (RF) and hazard rate function
(HRF) are expressed as follows:

R(x; α, β, λ) =
α

α− 1

(
1− α− exp(−λxβ)

)
(4)

and

h(x; α, β, λ) =
λβ log(α)xβ−1 exp(−λxβ)

αexp(−λxβ) − 1
. (5)

Using some different choices of α, β and λ, Figure 1a shows different plots of the PDF
which indicates that the APW distribution can be used to model data that is positively
skewed, negatively skewed, or approximately symmetric.
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In addition, Figure 1b presents different plots of the HRF, which shows that the APW
distribution allows for monotonically increasing, decreasing, bathtub, upside-down then
bathtub shape hazard rates, which are quite common in reliability studies. Nassar et al. [10]
studied the main properties of the APW distribution and estimated its unknown parameters
using the maximum likelihood procedure. Based on analyzing two real data sets, they
showed that it provides better results when compared with some other competitive models.
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Figure 1. The PDFs and HRFs of the APW distribution using some specified values.

Despite the APW distribution’s significance and flexibility, no work has examined the
estimation of its unknown parameters and the reliability characteristics under censored
samples. Additionally, there is additional work to be done on the Bayesian estimation of
the APW distribution. As a result, we may list the objectives of this study as follows:

• To acquire the maximum likelihood estimators (MLEs) of the unknown parameters,
RF and HRF based on progressive Type-II censored data;

• Using the asymptotic properties of the MLEs, create the approximate confidence
intervals (ACIs) of the unknown parameters. In addition, the ACIs of RF and HRF are
calculated using the delta technique to derive the variances of their estimators;

• To obtain the Bayes estimates under squared-error loss (SEL) and LINEX loss (LL)
functions and to compute the highest posterior density (HPD) credible intervals of the
unknown parameters, RF and HRF;

• To compare the efficiency of the different point and interval estimators by implementing
an extensive simulation study;

• To make a guideline for selecting the optimal progressive censoring scheme;
• To show the importance of the proposed methods through analyzing two engineering

real data sets.

The remainder of the paper is structured as follows: The MLEs and ACIs are covered
in Section 2. Section 3 presents the Bayesian estimation of the APW distribution. Section 4
gives the outcomes of the simulation study. In Section 5, we deliver various methods for
determining the optimal progressive censoring scheme. Two engineering real data sets are
investigated in Section 6. Finally, in Section 7, some concluding remarks are shown.

2. Maximum Likelihood Estimation

The MLEs of the parameters α, β, and λ as well as RF and HRF of the APW distribution
under progressively Type-II censored data are given in this section. Suppose x = x1:m:n, x2:m:n, . . . , xm:m:n
is a progressively Type-II censored sample from a life test of size m taken from APW
population with PDF and CDF as given by (2) and (3), respectively.
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Then, from (1)–(3), the likelihood function, ignoring the constant term, takes the
following form:

L(α, β, λ|x) ∝ [λβ log(α)]m
(

α

α− 1

)n
exp

[
−λ

m

∑
i=1

xβ
i − log(α)

m

∑
i=1

e−λxβ
i

]

×
m

∏
i=1

(
1− α−e−λxβ

i

)Ri

, (6)

where xi = xi:m:n, i = 1, . . . , m, for the sake of simplicity. The natural logarithm (say
` = log L(α, β, λ|x)) of (6) can be written as follows:

` = m log[λβ log(α)] + n log
(

α

α− 1

)
− λ

m

∑
i=1

xβ
i − log(α)

m

∑
i=1

e−λxβ
i

+
m

∑
i=1

Ri log

(
1− α−e−λxβ

i

)
. (7)

The MLEs of α, β and λ, denoted by α̂, β̂ and λ̂, respectively, can be obtained by
maximizing the log-likelihood function in (7). Equivalently, the MLEs can be acquired by
solving the following three nonlinear equations:

∂`

∂α
=

m
α log(α)

+ n
(

1
α
− 1

α− 1

)
− 1

α

m

∑
i=1

e−λxβ
i +

1
α

m

∑
i=1

Rie−λxβ
i ψ−1

i = 0, (8)

∂`

∂β
=

m
β
− λ

m

∑
i=1

xβ
i log(xi) + λ log(α)

m

∑
i=1

vi log(xi)

− λ log(α)
m

∑
i=1

Rivi log(xi)ψ
−1
i = 0 (9)

and

∂`

∂λ
=

m
λ
−

m

∑
i=1

xβ
i + log(α)

m

∑
i=1

vi − log(α)
m

∑
i=1

Riviψ
−1
i = 0, (10)

where ψi = αexp(−λxβ
i ) − 1 and vi = xβ

i exp(−λxβ
i ).

From (8)–(10), it is clear that the MLEs of α, β and λ can be found by using the
Newton–Raphson approach. It is important to mention here that the MLEs of the APW
distribution based on Type-II censored sample can be derived directly from (8)–(10) by
setting R1 = R2 = · · · = Rm−1 = 0. Utilizing the invariance property of the MLEs, one can
obtain the MLEs of the RF and HRF at a distinct time t, respectively, as follows:

R̂(t) =
α̂

α̂− 1

(
1− α̂− exp(−λ̂tβ̂)

)
and

ĥ(t) =
λ̂β̂ log(α̂)tβ̂−1 exp(−λ̂tβ̂)

α̂exp(−λ̂tβ̂) − 1
.

It is important to build the confidence intervals for the unknown parameters, RF
and HRF. Here, we use the MLEs’ asymptotic properties to get the ACIs for the various
quantities. Based on the theory of large samples, it is known that the asymptotic distribution
of the MLEs (α̂, β̂, λ̂) is normal distribution with mean (α, β, λ) and variance–covariance
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matrix given by I−1(α, β, λ). In practice, it is not easy to obtain I−1(α, β, λ) due to the
complicated expressions of the second derivatives of the log-likelihood function.

Therefore, we can consider I−1(α̂, β̂, λ̂) to estimate I−1(α, β, λ), which can be obtained
directly from the observed Fisher information matrix as follows:

I−1(α̂, β̂, λ̂) =


− ∂2`

∂α2 − ∂2`
∂α∂β − ∂2`

∂α∂λ

− ∂2`
∂β∂α − ∂2`

∂β2 − ∂2`
∂β∂λ

− ∂2`
∂λ∂α − ∂2`

∂λ∂β − ∂2`
∂λ2


−1

(α̂,β̂,λ̂)

. (11)

The Fisher’s elements of (11) are obtained from the log-likelihood function as follows:

∂2`

∂α2 =
m[1 + log(α)]
[α log(α)]2

+ n
[
(α− 1)−2 − α−2

]
+

1
α2

m

∑
i=1

e−λxβ
i +

m

∑
i=1

α−2ψ−2
i Rie−λxβ

i φi,

∂2`

∂β2 = − m
β2 − λ

m

∑
i=1

xβ
i log2(xi) + λ log(α)

m

∑
i=1

ϕi − λ log(α)
m

∑
i=1

Ri ϕiψ
−1
i

− λ2 log2(α)
m

∑
i=1

Riwiψ
−2
i ,

∂2`

∂λ2 = − m
λ2 − log(α)

m

∑
i=1

xβ
i vi − log(α)

m

∑
i=1

Rivi$iψ
−2
i ,

∂2`

∂α∂β
=

λ

α

m

∑
i=1

vi log(xi) +
λ

α

m

∑
i=1

Ri$ie−λxβ
i log(xi)ψ

−2
i ,

∂2`

∂α∂λ
=

1
α

m

∑
i=1

vi +
1
α

m

∑
i=1

Ri$ie−λxβ
i ψ−2

i

and

∂2`

∂β∂λ
= −

m

∑
i=1

xβ
i log(xi) + log(α)

m

∑
i=1

ϕi log−1(xi)− log(α)
m

∑
i=1

Ri ϕi log−1(xi)ψ
−1
i

− λ log2(α)
m

∑
i=1

Riwi log−1(xi)ψ
−2
i ,

where ϕi = vi log2(xi)(1 − λxβ
i ), wi = v2

i log2(xi)α
exp(−λxβ

i ), φi = 1 − αexp(−λxβ
i )(1 +

exp(−λxβ
i )) and $i = xβ

i [1 + αexp(−λxβ
i )(log(α) exp(−λxβ

i )− 1)].
Then, the 100(1− ε)% ACIs of the unknown parameters α, β and λ can be computed

as follows:
α̂± zε/2

√
v̂(α̂), β̂± zε/2

√
v̂(β̂) and λ̂± zε/2

√
v̂(λ̂), (12)

where v̂(α̂), v̂(β̂) and v̂(λ̂) are the estimated variances obtained from the main diagonal
elements of (11), respectively. In addition, the zε/2 is the upper (ε/2)th percentile point of
the standard normal distribution.

To get the ACIs of R(t) and h(t) of the APW distribution, we require obtaining the
variances of the estimators of R(t) and h(t). Here, we consider using the delta method
which is one of the most powerful techniques to reach these variances, see Greene [12] for
further information on the delta method.
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To apply the delta method, we first need to get the first order derivatives of R(t) and
h(t) with respect to the unknown parameters α, β, and λ as follows:

∂R(t)
∂α

=
1 + (α− 1)e−λtβ − αe−λtβ

(α− 1)2αe−λtβ
,

∂R(t)
∂β

= −λα log(α) log(t)tβe−λtβ

(α− 1)αe−λtβ
,

∂R(t)
∂λ

=
α log(α)tβe−λtβ

(α− 1)αe−λtβ
,

∂h(t)
∂α

=

λβtβ−1e−λtβ

[
αe−λtβ(

1− log(α)e−λtβ
)
− 1
]

α
(

αe−λtβ
− 1
)2 ,

∂h(t)
∂β

=
λtβ−1e−λtβ

log(α)
[
1 + β log(t)− λβtβ log(t)

]
αe−λtβ

− 1
+

λ2βt2β−1e−2λtβ
log2(α) log(t)αe−λtβ(

αe−λtβ
− 1
)2 ,

and

∂h(t)
∂λ

=
βtβ−1e−λtβ

log(α)
[
1− λtβ

]
αe−λtβ

− 1
+

λβt2β−1e−2λtβ
log2(α)αe−λtβ(

αe−λtβ
− 1
)2 .

Let ΥR = ( ∂R
∂α , ∂R

∂β , ∂R
∂λ )|(α,β,λ)=(α̂,β̂,λ̂) and Υh = ( ∂h

∂α , ∂h
∂β , ∂h

∂λ )|(α,β,λ)=(α̂,β̂,λ̂).

Then, we can obtain the approximate estimates of the variances of R̂(t) and ĥ(t),
respectively, as follows:

v̂(R̂) ≈ [ΥR I−1(α̂, β̂, λ̂)Υ>R ] and v̂(ĥ) ≈ [Υh I−1(α̂, β̂, λ̂)Υ>h ],

where I−1(α̂, β̂, λ̂) is given by (11). Based on these results, the ACIs of R(t) and h(t) at the
confidence level 100(1− ε) can be computed, respectively, as

R̂(t)± z ε
2

√
v̂(R̂) and ĥ(t)± z ε

2

√
v̂(ĥ).

In R software, for given (xi, Ri), i = 1, . . . , m data set, both point and interval
frequentist estimates of α, β, λ R(t) or h(t) can be easily evaluated through ‘maxLik’
package (proposed by Henningsen and Toomet [13]), which uses the Newton–Raphson
method via ‘maxNR()’ function of maximization.

3. Bayesian Estimation

The Bayesian approach has gained significant attention in statistical analysis during
the past few decades as an effective and practical alternative to the traditional approach.
In this part, under SEL and LL functions, Bayes estimates of the unknown parameters are
derived, together with RF, HRF, and the associated HPD credible intervals are also acquired.
The different parameters are assumed to be independent and have gamma distributions.
There was no conjugate prior to the APW distribution.
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As a result, we presumptively use gamma priors, which are thought to be more flexible
than other priors and adjust to the support of the parameters. Additionally, the independent
gamma priors are clear and straightforward, which may avoid many complicated inferential
issues, see also in this regard Kundu and Howlader [14], Dey et al. [15] and Nassar et al.
[16]. Let α ∼ Gamma(a1, b1), β ∼ Gamma(a2, b2) and λ ∼ Gamma(a3, b3). Then, the joint
prior distribution of the unknown parameters can be expressed as follows:

π(α, β, λ) ∝ αa1−1 βa2−1 λa3−1 e−(b1α+b2β+b3λ), α, β, λ > 0, (13)

where aj, bj > 0, j = 1, 2, 3, are the hyper-parameters. Combining the likelihood function in
(6) with the joint prior distribution in (13), the posterior distribution of α, β and λ can be
written as follows:

g(α, β, λ|x) = A−1 αn+a1−1βm+a2−1λm+a3−1[log(α)]m

(α− 1)n exp

[
−λ

(
m

∑
i=1

xβ
i + b3

)]

× exp

[
− log(α)

m

∑
i=1

e−λxβ
i − b1α− b2β

]
m

∏
i=1

(
1− α−e−λxβ

i

)Ri

, (14)

where A is the normalized constant and given by

A =
∫ ∞

0

∫ ∞

0

∫ ∞

0

αn+a1−1βm+a2−1λm+a3−1[log(α)]m

(α− 1)n exp

[
−λ

(
m

∑
i=1

xβ
i + b3

)]

× exp

[
− log(α)

m

∑
i=1

e−λxβ
i − b1α− b2β

]
m

∏
i=1

(
1− α−e−λxβ

i

)Ri

dα dβ dλ.

Employing SEL function, the Bayes estimator of any function of α, β and λ, say
v(α, β, λ), can be obtained as the posterior mean expressed as follows:

ṽ(α, β, λ) =

∫ ∞
0

∫ ∞
0

∫ ∞
0 v(α, β, λ)π(α, β, λ) L(α, β, λ)∫ ∞

0

∫ ∞
0

∫ ∞
0 π(α, β, λ) L(α, β, λ)

. (15)

It is obvious that the Bayes estimator ṽ(α, β, λ) is represented as the ratio of two
integrals which cannot be depicted in closed form. Consequently, a Monte Carlo Markov
Chain (MCMC) technique can be operated to approximate the Bayes estimate. To apply
the MCMC technique, we first need to obtain the full conditional distributions of α, β, and
λ. From the posterior distribution in (14), the full conditional distributions of the three
parameters can be written, respectively, in the following forms:

g1(α|β, λ, x) ∝
αm+a1−1[log(α)]m

(α− 1)n exp

[
− log(α)

m

∑
i=1

e−λxβ
i − b1α

]
m

∏
i=1

(
1− α−e−λxβ

i

)Ri

, (16)

g2(β|α, λ, x) ∝ βm+a2−1 exp

[
−λ

m

∑
i=1

xβ
i − log(α)

m

∑
i=1

e−λxβ
i − b2β

]
m

∏
i=1

(
1− α−e−λxβ

i

)Ri

(17)

and

g3(λ|α, β, x) ∝ λm+a3−1 exp

[
−λ

(
m

∑
i=1

xβ
i + b3

)
− log(α)

m

∑
i=1

e−λxβ
i

]
m

∏
i=1

(
1− α−e−λxβ

i

)Ri

. (18)

It is clear that the full conditional distributions of α, β, and λ in (16)–(18), respectively,
can not be reduced to any well-known distributions.
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Consequently, generating α, β, and λ directly from these distributions is impossible
utilizing the usual ways. To overcome this problem, we consider using a Metropolis–Hastings
(M–H) technique. To use the M–H technique, we assume the normal distribution as the
proposal distribution to acquire the Bayes estimates and to construct the HPD credible
intervals for the unknown parameters as well as the RF and HRF. To yield samples from
(16)–(18), we suggest applying the following steps of the M–H algorithm:

Step 1. Set the initial values of (α, β, λ), say (α(0), β(0), λ(0)).
Step 2. Set j = 1.
Step 3. Generate α? from (16) from N(α(j−1), v̂(α(j−1))).
Step 4. Obtain:

p(α(j−1)|α?) = min

[
1,

g1(α
?|β(j−1), λ(j−1))

g1(α(j−1)|β(j−1), λ(j−1))

]
.

Step 5. Generate u, where U ∼ U(0, 1).
Step 6. If u ≤ p(α(j−1)|α?), set α(j) = α?, otherwise, set α(j) = α(j−1).
Step 7. Repeat Steps 3–6 for β and λ to generate β(j) and λ(j) from (17) and (18), respectively.
Step 8. Compute the RF and HRF through setting α(j), β(j) and λ(j) instead of α, β and λ,

respectively, for t > 0.
Step 9. Place j by j + 1.
Step 10. Redo Steps 3 to 8, Q times to compute[

α(1), β(1), λ(1), R(1)(t), h(1)(t)
]
, . . . ,

[
α(Q), β(Q), λ(Q), R(Q)(t), h(Q)(t)

]
.

Step 11. Obtain the Bayes estimates of α, β, λ, R(t) and h(t), say φ, assuming M burn-in
period under SEL function as follows:

φ̃SEL =
1

Q−M ∑Q
j=M+1 φ(j).

Step 12. Obtain the Bayes estimates of α, β, λ, R(t) and h(t), say φ, under LL function
introduced by Varian [17] as follows:

φ̃LL = −1
q

log

(
∑Q

j=M+1
e−qφ(j)

Q−M

)
,

where q 6= 0.
Step 13. Apply the technique proposed by Chen and Shao [18] to compute the HPD credible

intervals of α, β, λ, R(t) and h(t).

4. Monte Carlo Simulation

To compare the behaviour of the proposed estimators for α, β, λ, R(t) and h(t) obtained
in the proceeding sections, an extensive Monte Carlo simulation study is performed.
Using different choices of n, m and Ri, i = 1, . . . , m, a large number 1000 of Type-II
progressive censored samples are simulated from the APW distribution when the true
value of parameters (α, β, λ) is taken as (0.5, 1.5, 0.1). Following Nassar et al. [10], the
true values of α, β and λ are selected, and one can consider other values for the unknown
parameters based on their domains.

In addition, the corresponding true values of the reliability characteristics R(t) and
h(t) at distinct time t = 0.5 are 0.952 and 0.145, respectively. For each specified value of
n such as n = 50 (moderate) and 100 (large), different values of the failure proportion
(m/n)100% such as 40 and 80% are used. It is obvious that, when the number of failed
subjects exceeds (or achieves) a certain value m, the test is stopped.
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Moreover, to evaluate the performance of removal patterns Ri, i = 1, . . . , m, various
censoring schemes are also considered as

Scheme-1 : R1 = n−m, Ri = 0 for i 6= 1,

Scheme-2 : R m
2
= n−m, Ri = 0 for i 6= m/2,

Scheme-3 : Rm = n−m, Ri = 0 for i 6= m.

In addition, it is worth noting here that the kind of the proposed schemes 1, 2, and
3 behave in the same way as the left, middle, and right censoring plans, respectively.
To demonstrate the effects of the gamma priors on the Bayesian estimates, two sets of
hyper-parameters ai, bi, i = 1, 2, 3, called Prior-1: (a1, a2, a3) = (2.5, 7.5, 0.5) and bi =
5, i = 1, 2, 3 and Prior-2: (a1, a2, a3) = (5, 15, 1) and bi = 10, i = 1, 2, 3 are taken into
consideration. It is clear that the target posterior distribution is reduced proportionally
to the corresponding likelihood function if one does not have prior information on the
unknown parameters α, β, and λ. Thus, we have used informative priors 1 and 2 when
those hyper-parameter values are chosen in such a way that the prior mean became the
expected value of the model parameter.

Using the M–H algorithm described in Section 3, we generate 12,000 MCMC samples
from each conditional posterior distribution. Then, the first 2000 MCMC iterations have
been discarded as the burn-in period from the generated sequence and also checked the
convergence of the generated chain. Hence, both trace and autocorrelation plots of the
MCMC variates of α, β, λ, R(t) and h(t) (for (n, m) = (50, 20) and Scheme-1 as an example)
are plotted in Figure 2. It is evident that the MCMC iterations for all unknown parameters
are mixed adequately and thus the calculated results are reasonable. Thus, using the
remaining 10,000 MCMC variates, the average MCMC estimates (using SEL and LL (for
q(−2,−0.02,+2)) functions) and associated 95% HPD credible intervals of α, β, λ, R(t) and
h(t) are computed.

The comparison between MLEs and Bayes estimates of α, β, λ, R(t) or h(t) (say φ “for
short”) is made based on their root mean squared-error (RMSE) and mean relative absolute
bias (MRAB) values, respectively, as

RMSE(φ̂τ) =

√
1
B ∑B

j=1

(
φ̂
(j)
τ − φτ

)2
, τ = 1, 2, 3, 4, 5,

and
MRAB(φ̂τ) =

1
B ∑B

j=1
1

φτ

∣∣∣φ̂(j)
τ − φτ

∣∣∣, τ = 1, 2, 3, 4, 5,

where B is the number of generated sequence data, φ̂ is the objective estimate of φ, φ̂
(j)
τ

denotes the estimate obtained at the j-th sample of φτ , φ1 = α, φ2 = β, φ3 = λ, φ4 = R(t)
and φ5 = h(t).

Furthermore, the comparison between ACIs and HPD credible intervals of the same
unknown parameters is made using their average confidence lengths (ACLs) and coverage
probabilities (CPs) as given, respectively, by

ACL(1−ε)%(φ) =
1
B ∑B

j=1

(
Uφ̂(j) −Lφ̂(j)

)
, τ = 1, 2, 3, 4, 5,

and
CP(1−ε)%(φ) =

1
B ∑B

j=1 1(
L

φ̂(j) ;U
φ̂(j)

)(φ), τ = 1, 2, 3, 4, 5,

where 1(·) is the indicator function and L(·) and U (·) denote the lower and upper bounds,
respectively, of (1− ε)% asymptotic (or HPD credible) interval of φτ . It should be noted
that the lower bounds of the calculated ACIs of α, β, λ, R(t) and h(t) maybe have negative
values. To avoid the negative lower bounds, the log transformation method can be applied.
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Via R 4.1.2 software with two useful packages, namely, ‘coda’ and ‘maxLik’ packages
proposed by Plummer et al. [19] and proposed by Henningsen and Toomet [13], respectively,
all numerical evaluations were carried out. Recently, these packages are also recommended
by Elshahhat and Nassar [20].
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Figure 2. Autocorrelation (top-panel) and Trace (bottom-panel) plots for MCMC draws of α, β, λ,
R(t) and h(t).

The heatmap plots of the simulation results of α, β, λ, R(t) and h(t) are provided
in Figures 3–7, respectively. All simulation tables are presented in the Supplementary
Materials. For specification based on Prior 1 (P1) as an example, several notations have
been used such as the Bayes estimates based on the SEL function mentioned as “SEL-P1”
and the Bayes estimates based on LL function using q = −2, −0.02 and +2 mentioned as
“LL1-P1”, “LL2-P1” and “LL3-P1”, respectively.

From Figures 3–7, some comments can be drawn which are stated as:

• In general, the proposed estimates of the unknown APW parameters α, β and λ (or
the reliability characteristics R(t) and h(t)) are very good in terms of lowest RMSE,
MRAB and ACL values and highest CP values.

• As n(or m) increases, all proposed estimates perform better. Similar behavior is
observed in case of the total number of removal patterns, Ri, i = 1, 2, . . . , m, decreases.

• Regarding the simulated outcomes for the interval estimates, we find that the lower
bounds of all unknown parameters are always positive. We have also observed that
the computed interval estimates of R(t) lie in the range (0, 1).

• In most cases, comparing schemes 1 and 3, it can be seen that the RMSEs, MRABs and
ACLs of all unknown parameters are smaller based on scheme 1 (when the remaining
n−m live items are removed at the time of X1) scheme 3 (when the remaining n−m
live items removed at the time of Xm), whereas the associated CPs of all unknown
parameters are smaller based on scheme 3 compared to scheme 1. This result is due
to the fact that the expected duration of the experiments based on the first stage is
greater than any other. Therefore, the data collected under scheme 1 provided more
information about the unknown parameters α, β, λ, R(t) and h(t) than those obtained
using other schemes.

• When comparing the two Bayes estimators based on gamma priors 1 and 2, it is shown
that prior 2 performs better than prior 1 in terms of the smallest RMSEs, MRABs, and
ACLs, as well as the greatest CPs. This occurred because the variance of prior 2 is less
than that of prior 1.

• To sum up, the Bayes MCMC inference via the M–H algorithm is recommended
to estimate the unknown parameters and the reliability characteristics of the APW
distribution when the sample is progressively Type-II censored.
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Figure 3. The heatmaps for estimation results of α.
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Figure 4. The heatmaps for estimation results of β.
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Figure 5. The heatmaps for estimation results of λ.
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Figure 6. The heatmaps for estimation results of R(t).
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Figure 7. The heatmaps for estimation results of h(t).

5. Optimal Progressive Censoring Plan

In the statistical literature, finding the optimal censoring scheme has recently gained
a lot of attention; for instance, read Chapter 10 of Balakrishnan and Aggarwala [21],
Ng et al. [22] and Pradhan and Kundu [23]. For fixed n and m, possible censoring schemes
refer to all R1, . . . , Rm combinations such that m + ∑m

i=1 Ri = n and selecting the best
sample technique entails locating the progressive censoring scheme that provides the most
information about the unknown parameters among all conceivable progressive censoring
schemes. The first concern is, of course, how to establish unknown parameter information
measures based on specific progressive censoring data, and the second is how to compare
two distinct information measures based on two different progressive censoring procedures;
for additional information, see Elshahhat and Rastogi [7].

The discussion that follows goes over some of the optimality criteria that were used
in this context. In practice, we want to choose the filtering scheme that provides the
most information about the unknown parameters. Table 1 provides some commonly used
optimal criteria (OC) to assist us in selecting the best progressive censoring strategy.

Table 1. Some practical censorship plan optimal criteria.

Criterion Method

OC1 Maximize trace(I3×3(·))
OC2 Minimize trace(I−1

3×3(·))
OC3 Minimize det(I−1

3×3(·))
OC4 Minimize var(log(ŷp)), 0 < p < 1

In terms of criteria OC1, we want to maximize the trace of the observed Fisher
information matrix I3×3(·). Furthermore, for criterion OC2 and OC3, our goal is to minimize
the determinant and trace of I−1

3×3(·), respectively.
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It is obvious that the criterion OC4, which is dependent on the value of p, tends to
minimize the variance of logarithmic MLE of the p-th quantile. As a result, for the quantile
function of the APW distribution (say ŷp), then log(ŷp) is provided by

log(ŷp) =
1
β

log
{
− 1

λ
log
[

1− log(1 + p(α− 1))
log(α)

]}
,

where 0 < p < 1. Employing the delta method, one can approximate the variance of log(ŷp).
The optimum progressive censoring, on the other hand, corresponds to the maximum value
of the criterion OC1 and the lowest value of the criteria OCi, i = 2, 3, 4.

6. Engineering Applications

To show how the proposed estimators can be used in a real practical situation, in
this section, we shall present the analysis of two real data sets from an engineering area
for illustrative purposes. The first data set (say Data-I), reported by Murthy et al. [24],
consists of the failure times of 20 mechanical components. The second data set (say Data-II)
represents accelerated lifetime data obtained from the Instrument Development Unit of
the Physical Research Staff, Boeing Aircraft Company, by subjecting metal-coupons to
stress/cycle 2.6× 104 psi. This data set has been reported and analyzed by Cheng and
Elsayed [25]. The ordered data points of both data sets I and II are provided in Table 2.

Table 2. The failure times of mechanical components and metal-coupons.

Data Failure Times

I 0.067, 0.068, 0.076, 0.081, 0.084, 0.085, 0.085, 0.086, 0.089, 0.098,
0.098, 0.114, 0.114, 0.115, 0.121, 0.125, 0.131, 0.149, 0.160, 0.485

II 2.33, 2.58, 2.68, 2.76, 2.90, 3.10, 3.12, 3.15, 3.18, 3.21, 3.21, 3.29,
3.35, 3.36, 3.38, 3.38, 3.42, 3.42, 3.42, 3.44, 3.49, 3.50, 3.50, 3.51,
3.51, 3.52, 3.52, 3.56, 3.58, 3.58, 3.60, 3.62, 3.63, 3.66, 3.67, 3.70,
3.70, 3.72, 3.72, 3.74, 3.75, 3.76, 3.79, 3.79, 3.80, 3.82, 3.89, 3.89,
3.95, 3.96, 4.00, 4.00, 4.00, 4.03, 4.04, 4.06, 4.08, 4.08, 4.10, 4.12,
4.14, 4.16, 4.16, 4.16, 4.20, 4.22, 4.23, 4.26, 4.28, 4.32, 4.32, 4.33,
4.33, 4.37, 4.38, 4.39, 4.39, 4.43, 4.45, 4.45, 4.52, 4.56, 4.56, 4.60,
4.64, 4.66, 4.68, 4.70, 4.70, 4.73, 4.74, 4.76, 4.76, 4.86, 4.88, 4.89,
4.90, 4.91, 5.03, 5.17, 5.40, 5.60

Before further proceeding to draw our estimates, to verify the validity of the APW
distribution, the Kolmogorov–Smirnov (K–S) statistic is computed with its p-value based
on the given data sets, see Table 3. Furthermore, based on both data sets I and II, the
MLEs along with their standard errors (SEs) of the APW parameters are also calculated
and provided in Table 3. It shows that the APW distribution fits both data sets I and II
quite well. Moreover, the estimated/empirical RF of the APW distribution is displayed in
Figure 8.

Table 3. Summary fit of the APW distribution under real data sets.

Data
MLE (SE)

K-S (p-Value)
α β λ

I 42849.2 (9.2940) 0.92007 (0.1488) 21.2764 (7.1551) 0.181 (0.530)
II 68891.6 (2.0970) 2.72066 (0.2052) 0.00658 (0.0192) 0.045 (0.986)
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Figure 8. Plot of estimated/empirical RF of the APW distribution under real data sets.

Following the generation procedure of progressively Type-II censored order statistics
proposed by Balakrishnan and Cramer [26], different Type-II progressively censored
samples using different choices of m and R are generated from the complete real data
sets I and II, see Table 4. In short, the censoring pattern R = (1, 0, 0, 0, 1) is referred
to by R = (1, 0∗3, 1). Because we lack prior information about the APW parameters,
the Bayes estimates under SEL and LL (for q(= −3,+3)) functions are approximated by
MCMC sampler under gamma improper, i.e., ai, bi = 0, i = 1, 2, 3. Using the M–H sampler,
40,000 MCMC samples are generated and the first 10,000 iterations of the simulated variates
of each unknown parameter are omitted as burn-in.

Using Table 4, both maximum likelihood and Bayes estimates with their SEs of the
unknown parameters of α, β and λ as well as the reliability characteristics R(t) and h(t) (at
distinct times t = 0.1 and 4.5 for data sets I and II, respectively) are calculated and shown
in Table 5. Moreover, two-sided 95% ACI and HPD interval estimates with their lengths
are calculated and listed in Table 6. It demonstrates that the point estimates obtained by
likelihood and Bayesian estimation methods of the unknown parameters α, β, λ, R(t) and
h(t) are very close to each other as expected. Consequently, both ACI and HPD interval
estimates of the same unknown parameters are also identical.

In addition, using Table 2, the concept of selecting an OC under the proposed criteria
OCi, i = 1, 2, 3, 4 in Table 1 is discussed. However, the calculated values of these criteria
from each generated sample are reported in Table 7. It shows that the best progressive
censoring scheme is that it removes the surviving units n−m at the time of first failure X1.
Thus, the data obtained by the censoring schemes R = (5, 0∗14) and R = (57, 0∗44) deliver
more information about the unknown parameters compared to other censoring schemes
based on sample S1 from the data sets I and II, respectively.

Table 4. Various Type-II progressively censored samples from mechanical components and
metal-coupons data sets.

Data (Sample) m R Type-II Progressive Censored Data

Data-I (S1) 15 (5, 0∗14) 0.067, 0.085, 0.086, 0.089, 0.098, 0.098, 0.114, 0.114, 0.115, 0.121, 0.125, 0.131,
0.149, 0.160, 0.485

Data-I (S2) (0∗7, 5, 0∗7) 0.067, 0.068, 0.076, 0.081, 0.084, 0.085, 0.085, 0.086, 0.115, 0.121, 0.125, 0.131,
0.149, 0.160, 0.485

Data-I (S3) (0∗14, 5) 0.067, 0.068, 0.076, 0.081, 0.084, 0.085, 0.085, 0.086, 0.089, 0.098, 0.098, 0.114,
0.114, 0.115, 0.121

Data-II (S1) 45 (57, 0∗44) 2.33, 4.10, 4.12, 4.14, 4.16, 4.16, 4.16, 4.20, 4.22, 4.23, 4.26, 4.28, 4.32, 4.32, 4.33,
4.33, 4.37, 4.38, 4.39, 4.39, 4.43, 4.45, 4.45, 4.52, 4.56, 4.56, 4.60, 4.64, 4.66, 4.68,
4.70, 4.70, 4.73, 4.74, 4.76, 4.76, 4.86, 4.88, 4.89, 4.90, 4.91, 5.03, 5.17, 5.40, 5.60

Data-II (S2) (0∗22, 57, 0∗22) 2.33, 2.58, 2.68, 2.76, 2.90, 3.10, 3.12, 3.15, 3.18, 3.21, 3.21, 3.29, 3.35, 3.36, 3.38,
3.38, 3.42, 3.42, 3.42, 3.44, 3.49, 3.50, 3.50, 4.52, 4.56, 4.56, 4.60, 4.64, 4.66, 4.68,
4.70, 4.70, 4.73, 4.74, 4.76, 4.76, 4.86, 4.88, 4.89, 4.90, 4.91, 5.03, 5.17, 5.40, 5.60

Data-II (S3) (0∗44, 57) 2.33, 2.58, 2.68, 2.76, 2.90, 3.10, 3.12, 3.15, 3.18, 3.21, 3.21, 3.29, 3.35, 3.36, 3.38,
3.38, 3.42, 3.42, 3.42, 3.44, 3.49, 3.50, 3.50, 3.51, 3.51, 3.52, 3.52, 3.56, 3.58, 3.58,
3.60, 3.62, 3.63, 3.66, 3.67, 3.70, 3.70, 3.72, 3.72, 3.74, 3.75, 3.76, 3.79, 3.79, 3.80
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Table 5. Bayesian and non-Bayesian point estimates with their (SEs).

Data (Sample) Par. MLE SEL
LL

q→ −3 +3

Data-I (S1) α 5215.91 (9.9806) 5215.79 (0.0012) 5215.79 (0.1173) 5215.79 (0.1175)
β 0.98113 (0.1654) 0.97475 (0.0003) 0.97475 (0.0063) 0.97475 (0.0064)
λ 19.6584 (7.0600) 19.5330 (0.0013) 19.5331 (0.1253) 19.5329 (0.1255)

R(0.1) 0.66680 (0.0897) 0.65470 (0.0004) 0.65472 (0.0121) 0.65469 (0.0121)
h(0.1) 11.0652 (3.0169) 11.3187 (0.0120) 11.3274 (0.2624) 11.3099 (0.2449)

Data-I (S2) α 4109.20 (16.778) 4109.12 (0.0010) 4109.12 (0.0812) 4109.12 (0.0813)
β 0.90644 (0.1382) 0.90381 (0.0002) 0.90381 (0.0026) 0.90380 (0.0026)
λ 17.2650 (5.2720) 17.2594 (0.0002) 17.2594 (0.0056) 17.2594 (0.0057)

R(0.1) 0.62372 (0.0906) 0.61496 (0.0004) 0.61497 (0.0087) 0.61497 (0.0088)
h(0.1) 11.4490 (2.9306) 11.6298 (0.0109) 11.6370 (0.1880) 11.6227 (0.1737)

Data-I (S3) α 3037.22 (12.141) 3037.10 (0.0012) 3037.10 (0.0170) 3037.10 (0.0172)
β 1.87803 (0.0561) 1.87459 (0.0002) 1.87460 (0.0034) 1.87458 (0.0034)
λ 179.701 (11.682) 179.581 (0.0012) 179.581 (0.0196) 179.580 (0.0198)

R(0.1) 0.55294 (0.0941) 0.51630 (0.0004) 0.51631 (0.0366) 0.51629 (0.0366)
h(0.1) 30.1922 (5.9534) 30.7723 (0.0289) 30.8225 (0.6305) 30.7221 (0.5301)

Data-II (S1) α 13184.1 (7.5350) 13184.1 (0.0005) 13184.1 (0.0198) 13184.1 (0.0199)
β 5.49946 (1.0631) 5.48942 (0.0004) 5.48942 (0.0100) 5.48941 (0.0101)
λ 0.00064 (0.0010) 0.00065 (0.0001) 0.00065 (0.0001) 0.00065 (0.0001)

R(4.5) 0.54056 (0.0663) 0.54319 (0.0003) 0.54319 (0.0006) 0.54318 (0.0026)
h(4.5) 2.02086 (0.3760) 2.01151 (0.0014) 2.01162 (0.0092) 2.01140 (0.0095)

Data-II (S2) α 16800.2 (8.3890) 16800.1 (0.0005) 16800.2 (0.0192) 16800.1 (0.0192)
β 2.31383 (0.2399) 2.31013 (0.0002) 2.31031 (0.0034) 2.31030 (0.0035)
λ 0.09262 (0.0313) 0.09261 (0.0001) 0.09262 (0.0001) 0.09261 (0.0001)

R(4.5) 0.38192 (0.0578) 0.38739 (0.0003) 0.38740 (0.0054) 0.38738 (0.0055)
h(4.5) 1.20386 (0.2226) 1.19574 (0.0007) 1.19577 (0.0080) 1.19571 (0.0081)

Data-II (S3) α 3044.66 (8.4211) 3044.58 (0.0005) 3044.58 (0.0198) 3044.58 (0.0199)
β 3.62164 (0.5138) 3.61722 (0.0002) 3.61722 (0.0044) 3.61721 (0.0044)
λ 0.01805 (0.0122) 0.01805 (0.0001) 0.01805 (0.0001) 0.01805 (0.0001)

R(4.5) 0.11439 (0.0521) 0.11968 (0.0001) 0.11968 (0.0052) 0.11968 (0.0053)
h(4.5) 3.17180 (0.8818) 3.14771 (0.0014) 3.14783 (0.0239) 3.14760 (0.0242)

To assess the convergence of MCMC results, trace plots of the simulated posterior
samples of α, β, λ, R(t) and h(t) using the generated sample S1 (as an example) from
the given data sets I and II are displayed in Figure 9a,b, respectively. It displays 40,000
chain values of α, β, λ, R(t) and h(t) with their sample mean and two bounds of 95% HPD
credible interval estimates via soled (—) and dashed (- - -) lines, respectively. It indicates
that the MCMC procedure based on the remaining 40,000 variates converges satisfactorily
and also shows that discarding the first 10,000 samples as burn-in is an appropriate size
to erase the effect of the initial values. In addition, employing the Gaussian kernel, the
marginal posterior density estimates of α, β, λ, R(t) and h(t) with their histograms under
40,000 chain values are depicted in Figure 10a,b. Likewise, in each histogram plot, the
sample mean of any unknown parameter is represented as a vertical dash-dotted line (:).
It is evident from the estimates that all the generated posterior samples of all unknown
parameters are fairly symmetrical.

Moreover, some important properties of MCMC samples of α, β, λ, R(t) and h(t) such
as: mean, median, mode, 10th percentile (10th Per.), 90th percentile (90th Per.), 1st quartile
(Q1), 3rd quartile (Q3), standard deviation (St.D) and skewness are calculated and recorded
in Table 8. It indicates that the central tendency measures are very close to each other
and supports our findings shown in Figure 10a,b. Generally, the outcomes of the offered
estimates using complete mechanical components and metal-coupons data sets I and II
furnish a good demonstration of the proposed model.
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Table 6. Two-sided 95% ACI/HPD credible interval estimates with their [lengths].

Data (Sample) Par. ACI HPD

Data-I (S1) α (5196.32,5235.40) [39.123] (5215.31,5216.26) [0.9531]
β (0.65693,1.30542) [0.6485] (0.87338,1.07297) [0.1996]
λ (5.82054,33.4950) [27.675] (19.0529,20.0088) [0.9558]

R(0.1) (0.49101,0.84254) [0.3515] (0.47944,0.81220) [0.3328]
h(0.1) (5.15220,16.9792) [11.826] (6.87047,16.1170) [9.2466]

Data-I (S2) α (4076.31,4142.13) [65.768] (4108.73,4109.50) [0.7729]
β (0.63542,1.17737) [0.5418] (0.80770,0.99710) [0.1894]
λ (6.93170,27.5973) [20.666] (17.1641,17.3587) [0.1947]

R(0.1) (0.44621,0.80144) [0.3552] (0.44479,0.77855) [0.3338]
h(0.1) (5.70540,17.1932) [11.488] (7.37171,15.8363) [8.4646]

Data-I (S3) α (3013.30,3060.72) [47.601] (3036.62,3037.58) [0.9636]
β (1.76811,1.98784) [0.2197] (1.78621,1.97273) [0.1865]
λ (156.853,202.630) [45.780] (179.099,180.057) [0.9579]

R(0.1) (0.33851,0.70724) [0.3687] (0.34780,0.69582) [0.3480]
h(0.1) (18.5234,41.8603) [23.337] (19.6077,42.0103) [22.403]

Data-II (S1) α (13169.3,13198.8) [29.538] (13183.8,13184.3) [0.3942]
β (3.81867,7.58206) [4.1652] (5.34999,5.63856) [0.2886]
λ (0.00000,0.00269) [0.0027] (0.00051,0.00080) [0.0003]

R(4.5) (0.41053,0.67058) [0.2601] (0.43642,0.65180) [0.2154]
h(4.5) (1.28400,2.75771) [1.4737] (1.46978,2.52883) [1.0591]

Data-II (S2) α (16783.7,16816.6) [32.883] (16799.1,16800.4) [0.3907]
β (1.84368,2.78397) [0.9403] (2.23453,2.38518) [0.1506]
λ (0.03119,0.15403) [0.1228] (0.09242,0.09281) [0.0004]

R(4.5) (0.26859,0.49524) [0.2266] (0.28783,0.48894) [0.2011]
h(4.5) (0.76764,1.64008) [0.8724] (0.91844,1.47679) [0.5583]

Data-II (S3) α (3028.16,3061.17) [33.009] (3044.39,3044.78) [0.3863]
β (2.61458,4.62870) [2.0141] (3.53864,3.69566) [0.1570]
λ (0.00000,0.04193) [0.0477] (0.01786,0.01825) [0.0004]

R(4.5) (0.01219,0.21660) [0.2044] (0.06977,0.17712) [0.1074]
h(4.5) (1.44349,4.90012) [3.4566] (2.62990,3.70098) [1.0711]

Table 7. Optimum censoring schemes under different criteria for the generated samples.

Data (Sample)
OC

1 2 3
4

p→ 0.3 0.6 0.9

Data-I(S1) 424.215 149.484 12.5341 0.00003 0.00004 0.00005
Data-I(S2) 403.364 309.306 19.4084 0.00014 0.00027 0.00104
Data-I(S3) 373.326 283.854 22.6268 0.00014 0.00025 0.00101

Data-II(S1) 555,341,875 57.9098 1.145× 10−7 0.00312 0.00584 0.00898
Data-II(S2) 34,643.95 70.4282 1.189× 10−4 0.00973 0.01513 0.04476
Data-II(S3) 939,839.5 71.1757 1.978× 10−5 0.00339 0.00605 0.02257

Table 8. Vital characteristics of MCMC outputs under real data sets.

Data (Sample) Par. Mean Median Mode 10th Per. Q1 Q3 90th Per. St.D Skewness

Data-I(S1) α 5215.793 5215.790 5215.388 5215.761 5215.821 5215.956 5216.017 0.245518 0.042190
β 0.974750 0.974691 0.947588 0.918576 0.945511 1.008212 1.037157 0.051219 0.079699
λ 19.53302 19.53443 19.36797 19.50941 19.56930 19.70611 19.76602 0.251062 0.012388

R(0.1) 0.654703 0.658459 0.618190 0.551449 0.603101 0.712432 0.756041 0.087047 −0.267609
h(0.1) 11.31867 11.27519 12.31599 8.510673 9.773981 12.80011 14.19419 2.408606 0.166149

Data-II(S1) α 13184.08 13184.08 13184.03 13183.95 13184.01 13184.15 13184.21 0.100155 −0.019713
β 5.489416 5.487643 5.513135 5.398241 5.441076 5.537582 5.583023 0.073373 0.097865
λ 0.000650 0.000648 0.000619 0.000558 0.000601 0.000697 0.000742 0.000073 0.158549

R(4.5) 0.543188 0.543267 0.550241 0.470849 0.5050401 0.581378 0.615787 0.055517 −0.048618
h(4.5) 2.011512 2.003145 1.980009 1.662526 1.822136 2.191168 2.368636 0.272226 0.201025
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Figure 9. Trace MCMC plots of α, β, λ, R(t) and h(t) under real data sets.
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Figure 10. Histograms with estimated kernel density of α, β, λ, R(t) and h(t) under real data sets.

7. Conclusions

This study investigated the estimation problems for the parameters, reliability, and
hazard rate functions of alpha power Weibull distribution based on a progressively Type-II
censored sample. In this regard, two estimation procedures are considered, namely the
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maximum likelihood and Bayesian estimations methods. The approximate confidence
intervals of the unknown parameters are acquired and, to obtain such intervals for the
reliability and hazard rate functions, the delta method is used to obtaining their variances.
In the Bayesian paradigm, the MCMC technique is employed to obtain the Bayesian
estimates under squared error and LINEX loss functions, and the highest posterior credible
intervals are also acquired. Extensive simulation research is implemented to notice the
performance of the various proposed estimators. We have also presented different criteria
to select the optimal sampling scheme. Two engineering applications are studied to display
the importance of the different procedures discussed in the paper. The outcomes of the
numerical analysis show that the Bayesian estimation method using the MCMC approach
is advised to obtain point and interval estimates of the alpha power Weibull distribution
based on progressively Type-II censored data. The Bayesian estimates have the smallest
root mean square errors as well as interval lengths when compared with those based on
the maximum likelihood method. In addition, the real data analysis showed the flexibility
of the alpha power Weibull distribution to model engineering data. As a future work, it is
important to compare the Bayesian method using the Metropolis–Hastings algorithm with
some other methods such as Hamiltonian Monte Carlo.
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