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Abstract: Recommendation systems are now widely used on the Internet. In recommendation
systems, user preferences are predicted by the interaction of users with products, such as clicks
or purchases. Usually, the heterogeneous information network is used to capture heterogeneous
semantic information in data, which can be used to solve the sparsity problem and the cold-start
problem. In a more complex heterogeneous information network, the types of nodes and edges
are very large, so there are lots of types of metagraphs in a complex heterogeneous information
network. At the same time, machine learning tasks on heterogeneous information networks have
a large number of parameters and neural network architectures that need to be set artificially. The
main goal is to find the optimal hyperparameter settings and neural network architectures for the
performance of a task in the set of hyperparameter space. To address this problem, we propose a
metapath search method for heterogeneous information networks based on a network architecture
search, which can search for metapaths that are more suitable for different heterogeneous information
networks and recommendation tasks. We conducted experiments on Amazon and Yelp datasets and
compared the architecture settings obtained from an automatic search with manually set structures to
verify the effectiveness of the algorithm.

Keywords: heterogeneous information network; recommender system; network architecture search;
graph neural networks; metagraph; network embedding

MSC: 68T05

1. Introduction

As e-commerce continues to grow in scale and the number and variety of products
grows rapidly, it takes a lot of time for customers to find the products they want. This
kind of browsing through a large amount of irrelevant information will undoubtedly cause
a continuous loss of consumers who are drowning in the information overload problem.
To solve these problems, recommendation systems have been proposed and studied widely.
In a recommendation system, we predict the user’s preference by the interaction between
the user and the product in a session, such as clicking or buying. For example, on the
website Yelp (http://www.yelp.com, accessed on 21 June 2022), users can express their
preference for a product by rating it on a scale of 1–5, which represents very dislike, dislike,
moderate, like, and very like, respectively.

The current approach mainly uses the user’s rating information to predict the user’s
preferences. Based on this, the product for the next user interaction is predicted. However,
such an approach makes it difficult to solve the sparsity problem and the cold-start problem
in the recommendation system. In fact, using various semantic information contained in
different kinds of products and different user interactions can largely avoid the above two
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issues. Therefore, exploiting the heterogeneity of the data in the recommender system data
plays a crucial role in improving the effectiveness of recommender systems.

A heterogeneous information network (HIN) [1] is a network used to capture hetero-
geneous semantic information in data, which can be used to solve the sparsity problem
and the cold-start problem in recommender systems. Compared with other approaches, a
heterogeneous information network can better represent the relationship between users and
products. At the same time, the recommendation system approach based on heterogeneous
information networks can better represent different types of nodes and heterogeneous
relationships between nodes than homogeneous information networks. Metagraphs are
a major method used in heterogeneous information networks to capture the semantic
information in network data [2].

Currently, metagraph-based heterogeneous information network methods have been
applied in many information network data mining fields, such as social network data
analysis [3] and relational graph data mining [4]. In recommendation systems based on het-
erogeneous information networks, metagraphs are often used as a powerful representation
tool to obtain the relationships between nodes in heterogeneous information networks [5].
In a heterogeneous information network, two nodes can be connected by different meta-
graphs, and these metagraphs may have different semantic information between them.
Although the use of metagraphs and metapaths can effectively capture semantic informa-
tion in the network, current approaches based on metagraphs and metapaths are manually
specifying the structure of metagraphs and metapaths, which largely limits the recommen-
dation effect on heterogeneous information networks. Therefore, in this paper, we propose
a reinforcement learning-based approach to automatically find metapaths in heterogeneous
information networks, which uses the recommendation effect of the model as a reward to
guide the model to find better metagraphs and metapaths using the search method.

In a more complex heterogeneous information network, the numbers of the types
of nodes and edges are often very large, so there are many types of metagraphs in a
complex heterogeneous information network. For different recommendation tasks in het-
erogeneous information networks, different metagraphs play different roles [6]. Therefore,
when performing recommendation tasks on heterogeneous information networks, finding
the appropriate metagraphs is crucial for the performance of recommendation tasks on
heterogeneous information networks.

For example, when embedding nodes in a heterogeneous information network, the num-
ber of layers in the embedded network, the number of neurons in each layer, and the number
of dimensions of the node embedding are all hyperparameters that need to be determined
artificially. The type of graph neural network used to obtain the node embeddings and the
choice of the activation function are determined artificially. In experiments, adjusting these
hyperparameters consumes a lot of time and computational resources.

Recently, Neural Architecture Search (NAS) [7–12] has been gaining great attention
in machine learning fields, and its main goal is to find the optimal hyperparameters and
neural network architectures for task performance. Currently, DARTS (Differentiable Archi-
tecture Search)-based [13] neural network architecture search methods solved the scalability
challenge of an architecture search by formulating the task in a differentiable manner in
an effective way. Therefore, we extend the microscopic neural network architecture search
method to recommendation tasks in heterogeneous information networks. We use the
neural network architecture search method to obtain better neural network architecture
settings, and we use the memory-based method to search the metagraph structure used to
find a more suitable metagraph for the task, thus improving the recommendation results.

In this paper, we propose a neural network architecture search algorithm for recom-
mendation tasks on the metagraph of heterogeneous information networks. The main
contributions of our paper are the following.

• We propose a novel neural network architecture search algorithm for recommendation
tasks on heterogeneous information networks, which can automatically search for the
number of layers of neural networks, the number of neurons in each layer, the number
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of dimensions of the node embedding, and the type of graph neural networks used in
the recommendation process. It can significantly reduce the time and computational
resources compared with the manually searching way.

• We propose a metagraph search method for heterogeneous information networks
based on a micro-neural network architecture search, which can automatically search
for metagraphs which are more suitable for different heterogeneous information
networks and recommendation tasks.

• We conducted experiments on Amazon and Yelp datasets, comparing the architecture
settings obtained from the automatic search with the manually set recommendation
structure and verified the recommendation effectiveness of the algorithm.

2. Related Works
2.1. Heterogeneous Information Network Recommendation Model

As a data structure for representing and analyzing complex information, heteroge-
neous information networks are now widely used in real-life applications, such as commod-
ity recommendation systems [14] and social network analysis [15]. The metapath-based
heterogeneous information network approach is a mainstream data mining method on het-
erogeneous information networks. Recommender systems can be categorized into different
classes from the task perspective. For example, in many e-commerce websites, the recom-
mender system has no access to a user’s identifier and a user’s long-term interests with
items [16,17]. The news recommender system focuses on helping users find the right and
relevant content among millions of news articles from multiple sources [18–20]. Recommen-
dation tasks based on heterogeneous information networks are the main application area of
data mining on heterogeneous information networks. Sun et al. [15] combine the metapath
selection problem with the user-based clustering problem to learn the weights of different
metapaths to obtain the similarity between users and items. Yang et al. [21] propose a
semantic path-based similarity measure for weighted heterogeneous information networks
to achieve a user’s rating of the item. The NeuACF model [22] uses the PathSim model [2]
to calculate the similarity between users and items based on metapaths, followed by the ma-
trix decomposition method to calculate the embedding of users and items, and finally the
neural network to predict the user’s rating of the item. However, it is difficult to represent
the more complex connection relationships and semantic information between users and
items using only metapath-based methods, so metagraph-based data mining methods for
heterogeneous information networks have gradually received more attention [23]. In the
recommendation field, the FMG model [24] obtains the embeddings of users and items
through the matrix decomposition of the connection matrix of the metagraph and then uses
the user and items embeddings obtained in the first stage to predict users’ ratings of items
through the FM model [25]. Similar to the FMG model, the MGAR model [6] is a two-stage
model. In the first stage, the MGAR model obtains the user and product embeddings by
the matrix decomposition of the connection matrix of the metagraphs, and then in the
second stage, the FMG uses the attention model to weight the different metagraphs to
obtain the user’s rating of the product. Although the FMG uses an attention mechanism to
combine the user embedding and item embedding, there are lots of hyperparameters and
the schema of the metapath and metagraph which need to be set artificially. This poses a
major obstacle for us to find the optimal network structure.

The task of a heterogeneous information network-based recommender system is
to combine the content information and topological information of the heterogeneous
information network to predict the ratings between users and items. To capture the
complex connectivity information and semantic information of various orders between
users and items in the recommendation data, the heterogeneous information network
recommendation models are divided into two stages. In the first stage, the models often
use metagraph-based graph neural networks to obtain the embeddings of users and items.
This is followed by the second stage in which the models use an averaging or attention
mechanism to weight the embeddings of the metagraph nodes obtained from different
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metagraphs and predict the user’s rating using deep neural networks (DNN for short).
A common model structure is shown on the left in Figure 1.

Figure 1. Two-stage recommendation model with heterogeneous information network. The model
can be divided into two stages. In the first stage, we use graph neural networks to embed nodes into
low-dimensional space. In the second stage, we fuse the user embedding and item embedding; then,
we employ deep neural network to make recommendations.

Definition 1 (Metagraph [24]). For a heterogeneous information network G = (V, E, Vt, Et),
the V is the set of nodes in the network, E = V × V is the set of edges in the network, and Vt is
the set consisting of the types of nodes, and Et is the set of types of edges. Then, the metagraph
M = (VM, EM, VM

t , EM
t , vs, ve) is the set of edges from the starting node vs to the end node ve.

The directed acyclic graph (DAG), where VM ⊂ V, VM
t ⊂ Vt are the set of nodes in the metagraph,

M is the set of nodes and the set of node types in the metagraph, and EM ⊂ E, EM
t ⊂ Et are the set

of nodes and the set of node types in the metagraph, respectively. M are the set of edges and the set of
edge types in the metagraph, respectively. When the directed acyclic graph is a path, the metagraph
degenerates to a metapath.

We obtain the embeddings of users and items based on different metagraphs by com-
puting the user and items connection matrices under different metagraphs. First, for a given
heterogeneous information network G, we first compute the metapath P = (V1, V2, · · · , Vn),
the metapath P is the length of the metapath, and the connection matrix based on the
metapath P of the connection matrix is given by

Cp = AV1,V2 AV2,V3 · · · AVn−1,Vn , (1)

where Vi ∈ Vt, i = 1, 2, 3, · · · , n denotes a node type, and A(Vi ,Vj)
denotes a node type that

only considers nodes of type Ai and Aj, the adjacency matrix of the information network
where the node types are.
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For the metagraph, we can divide a metagraph into multiple layers according to the
hierarchy. For the metagraph after decomposition by layers M = (L1, L2, · · · , Ln), we can
obtain Equation (2),

CM = AL1,Lj1
ALj1

,Lj2
· · · ALjm ,Ln (2)

where n is the number of decomposed layers, 1 < j1 < j2 < · · · < jm < n, each
layer Ljk , k = 1, 2, · · · , m has and only has one node type in it. For a connection ma-
trix between two adjacent layers that contain only one node ALjk

Ljk+1
, it can be defined

by connecting the metapaths between the two layers. We assume that the metapath
between two layers contains only one node Ljk , Ljk+1

. The metapath between them is

P1
Ljk

,Ljk+1
, P2

Ljk
,Ljk+1

, · · · , Plk
Ljk

,Ljk+1
and the corresponding connection matrix is defined as

A1
Ljk

,Ljk+1
, A2

Ljk
,Ljk+1

, · · · , Ak
Ljk

,Ljk+1
. Then, the connectivity matrix ALjk

,Ljk+1
is defined by

Equation (3)
ALjk

,Ljk+1
= A1

Ljk
,Ljk+1

� A2
Ljk

,Ljk+1
· · · � Ak

Ljk
,Ljk+1

(3)

where � denotes the Hadamard product between the matrices.

2.2. Network Architecture Search

Most neural network architecture search algorithms are modeled based on reinforce-
ment learning algorithms [9,26–32] and EA algorithms [33–36]. For reinforcement learning-
based algorithms, recurrent neural networks are often used as controllers to obtain a
variable-length sequence that corresponds to the model framework obtained by the search.
Then, the algorithm uses the effect of the model on the test set and the policy gradient
descendent to update the parameters in the controller. For the EA-based algorithm, a base
model architecture is first initialized, followed by variation and crossover to obtain a new
model architecture. The better the algorithm performs in the test set, the more likely it is to
be retained in the search process. A search method combining both types of algorithms
is currently proposed to improve the efficiency of the search [37]. Parameter sharing is
proposed to transfer the well-trained weight before to a sampled architecture, to avoid
training the offspring architecture from scratch [38].

3. Methods

In this section, we present the detailed description of the proposed auto neural ar-
chitecture search for metagraph of heterogeneous information network (ANAS-HIN for
short) algorithm on heterogeneous information networks. The main notations are listed in
Table 1.

Table 1. Main notations.

Notation Description

G Heterogeneous information network
E Edge set of G
V Node set of G
A Adjacency matrix
X Node feature matrix
N (vi) Neighbor nodes of node vi
P Metapath of G
M Metagraph of G
CP, CM Connection matrix of metapath P or metagraph M
m Neural network architecture
RD(m) Reward of m on the validation set D



Mathematics 2022, 10, 2895 6 of 18

3.1. ANAS-HIN Algorithm
3.1.1. Neural Network Architecture Search Problem Formalization

For heterogeneous information network recommendation model framework proposed
in Figure 1, which contains multiple hyperparameters and multiple artificially set metap-
aths. Next, we search the hyperparameters and metapaths in the heterogeneous information
network using the neural network framework search method. For the heterogeneous in-
formation network recommendation model frameworkM and the given validation set D,
find the optimal architecture of m∗ ∈ M so that it can achieve the optimal recommendation
on the validation set D and achieve the optimal recommendation results on the validation
set E[RD(m)] as Equation (4).

m∗ = arg max
m∈M

E[RD(m)] (4)

The reinforcement learning framework is used to optimize the above equation to
obtain the optimal neural network architecture m∗, where the negative root mean square
error on the validation set D. The negative root mean square error on the validation set is
used as a reward for reinforcement learning selection (Reward, R).

We use recurrent neural networks (RNN for short) to select different hyperparame-
ters and neural network architectures. First, we will generate a corresponding network
framework description from the recurrent neural network m ∈ M. Then, we go through
the framework description m to generate a specific network, which will be trained on a
heterogeneous information network G. After training, the negative root mean square error
on the validation set D is used as the reward for reinforcement learning, which is used
to update the framework in reinforcement learning. The specific framework is shown in
Figure 2.

Figure 2. ANAS-HIN algorithm framework.

3.1.2. Neural Network Architecture Search Space

As shown in Figure 2, we have utilized a controller to generate the framework of
the neural network and use a recurrent neural network to search for the optimal neural
network framework in the hyperparameter space. We list the searched hyperparameters
and their search spaces in Table 2.

Then, we give a deep introduction of graph neural network type and multiple meta-
graph embedding aggregation method, respectively. Given a heterogeneous information
network G and the metagraph M, we can obtain its corresponding connection matrix as
AM. In order to resolve the corresponding user and commodity embeddings from the
metagraph M to resolve the corresponding user and product embeddings, we use a graph
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neural network [39] with two layers of hyperbolic space to obtain the corresponding user
and product embeddings.

Table 2. Hyperparameters and search space.

Hyperparameters Search Space

Number of layers of the graph neural network 1, 2, 3

Nonlinear activation functions for graphical neural networks Sigmoid, tanh, relu, identity, softplus, leaky_relu, elu

Graph neural network type Graph sage layer, graph attention layer, graph convolutional layer

Figure neural network attention mechanism head count 1, 2, 4, 8

Figure neural network output dimension 128, 256, 512

Metaplot node embedding dimension 128, 256

Multiple metagraph embedding aggregation method Splicing, averaging, attention mechanism aggregation

Scoring multilayer feedforward neural network layers 1, 2, 3

For G, the node in vi, let its corresponding feature be x0 ∈ Rd . where d is the feature
dimension. For featureless nodes, the one-hot vector corresponding to their IDs can be
used as input features. Here, we use graph convolutional layer, graph sage layer, and graph
attention layer to obtain the user embedding and item embedding.

• Graph convolutional layer: The graph convolutional layer is mainly used to aggre-
gate the adjacent node features in the network by convolution to obtain the node
embedding in the next layer.

X1 = σ
(

ÂMX0W
)

. (5)

where ÂM = D−
1
2 AMD−

1
2 denotes the connection matrix under the metagraph, M

the connection matrix after regularization under D is the connection matrix AM of
the degree matrix with diagonal elements Dll = ∑p AM(l, p), and the non-diagonal
elements are 0. W is the weight matrix.

• Graph attention layer: The graph attention layer is a variation of the graph convolu-
tional layer. When node aggregation is performed in the graph convolutional layer,
the relationship between node features is not considered; however, in the network,
the influence between nodes with different features is often different. Therefore,
the graph attention layer employs an attention mechanism to perform node aggre-
gation. Suppose the set of neighbor nodes N (vi) of node vi; then, when performing
node aggregation, the graph attention layer uses the attention mechanism to calculate
the weights of node vj on node vi as follows.

eij = a(WX0
i , Wh0

j ), vj ∈ N (vi),

where W is the learnable weight matrix and a(·, ·) is the attention mechanism. In our
experiments, we use a feedforward neural network as the attention mechanism. Then,
the graph attention layer regularizes the weights of all neighboring nodes using
softmax as follows.

αij =
eij

∑k∈N (vi)
eik

.

Finally, the graph attention layer uses a weighting approach to obtain the output of
the next layer.

X1
i = σ( ∑

j∈N (vi)

αijWX0
i ).
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• Graph sage layer: The graph sage layer is another class of variants of the graph
convolutional layer. To ensure symmetry in node aggregation, the graph sage layer
uses maximization pooling to aggregate the neighboring nodes of node vi.

X1
i = max(σ(WX0

j ) + b), ∀vj ∈ N (vj).

where max(·) denotes the element-wise max pooling.

Through the graph neural network based on metaplot, we can obtain the embeddings
of users and products under different metaplots. Then, we aggregate the user and product
embeddings based on different metagraphs to finally obtain more expressive user and
product embeddings to achieve more accurate recommendation results. When performing
node embedding aggregation, we introduce three aggregation methods here.

• Concatenation: For user embedding uM and product embedding iM, we directly
stitch the embeddings obtained under different metagraphs to obtain the final user
embedding and product embedding.

u = ||M∈LuM, i = ||M∈LiM,

where || represents the splicing operation. However, the stitching operation increases
the dimensionality of the embedding and therefore requires more computational
power of the computer.

• Mean: To avoid the increase in embedding dimensions, the user embedding uM and
the commodity embedding iM under different metagraphs are averaged.

u = MeanM∈L(uM), i = MeanM∈L(iM),

where Mean(·) denotes the averaging operation. In contrast, averaging can ensure
that the dimensionality of the aggregated vectors does not change, but it does not take
into account the difference between different metagraphs, while averaging directly
will make the aggregated vectors lose some information.

• Attention: The attention mechanism [40] can effectively avoid the disadvantages
of these two methods. The attention mechanism can weight the user and product
embeddings according to the input of different metagraphs, and the weight will be
changed by the impact of the embeddings on the recommendation effect obtained
from different original maps. The specific computation process is as follows.
For the metagraph derived from M, the user embedding obtained from the UM
and the product embedding IM, we use a two-layer perceptron for users and items,
respectively, to obtain the attention scores of the corresponding users and items αu

M
and αi

M.

αu
M = WT

2 ReLU
(

WT
1 uM + b1

)
+ b2, (6)

αi
M = WT

2 ReLU
(

WT
1 iM + b1

)
+ b2. (7)

where W1, W2 denotes the weight matrix, and b1, b2 is the bias term. ReLU(·) is the
nonlinear activation function. After obtaining the attention scores, we regularize the
attention scores of different metapaths using the softmax function as follows.

wu
M =

exp
(
αu

M
)

∑p∈L exp
(

αu
p

) , (8)

wi
M =

exp
(
αi

M
)

∑p∈L exp
(

αi
p

) . (9)
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where L denotes the set of all metagraph compositions. Finally, we obtain the embed-
ding of end users and items by weighting as Equations (10) and (11).

u = ∑
M∈L

wu
M · uM (10)

i = ∑
M∈L

wi
M · iM (11)

Finally, we use the embedding of users and products to obtain the user ratings for the
products. For user and product pairs (u, i), we first stitch together the embeddings of
the user and the item x = (u||i), and we use a multilayer feed forward neural network
to predict the user’s rating of the item. Ru,i The specific prediction process is shown
below. The specific prediction process is shown as Equation (12).

h0 = x = (u‖i)

Ru,i = f
(

WTh0 + b
) (12)

where W denotes the weight matrix, and b is the bias term. f (·) is the function of the
composite composition of the multilayer feedforward nonlinear neural network.

3.2. Metapaths Auto-Search

We propose to use the controller to search the new metagraph method. In the search
process, we incorporate a metagraph of length of the metagraph search process, where the
search space at each position is the node type and the empty type present in the current
graph. Once the controller selects the empty type, the current metagraph construction
is finished, and for the node types that the controller has searched, we use all the edge
types in them to connect them to the previous node types to obtain the searched metagraph
structure. We use both the manually constructed metagraph and the automatically searched
metagraph together for recommendations on heterogeneous information networks. For the
heterogeneous information network recommendation model framework, we use a list to
represent the model framework obtained by the search. Equation (13) is an example for
the list.

[2, tanh, graph attention layer, 4, 128, 128, mean, 3, U, I, Cat., I], (13)

which indicates the use of the graph attention mechanism as a graph convolutional network
in stage 1, with tanh as the activation function of the graph convolutional layers, and the
output dimension of each layer of the graph convolutional network is 128 dimensions,
and the node embedding model under the metagraph is obtained by compounding the two
layers of the graph convolutional layers, with the node embedding dimension of 128.

In stage 2, the node embeddings under multiple metagraphs are aggregated using the
averaging method, and a 2-layer feedforward neural network is used to obtain the current
score. Meanwhile, the search yields a metagraph of User → Item → Category → Item.
Thus, the task of the controller is to generate the optimal sequence of the above framework.
Let the length of the sequence be T; then, the sequence can be expressed as [m1, m2, · · · , mT ].
where mi(1 ≤ i ≤ T) is obtained by searching from the corresponding hyperparametric
search space. As mentioned before, we use the memory-based recurrent neural network to
model the process.

3.3. Recurrent Neural Network with Memory Mechanism

The linear modeling of hyperparameter space with recurrent neural network as con-
troller assumes that the hyperparameters are all linearly related to each other, but in
practice, the connection between hyperparameters is not necessarily linear, and the mod-
eling process has a greater relationship with the order of hyperparameters. Therefore,
the connection between hyperparameters and the order of hyperparameters have a greater
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impact on the modeling effect. To solve this problem, we incorporate a memory mechanism
in recurrent neural networks to model the connections between hyperparameters. Unlike
common search algorithms for neural network architectures, the NAS-HIN algorithm has
the following search process for hyperparameters.

• The controller predicts the number of layers of the graph neural network in 1, 2, 3,
placed at position 0 of the list of predicted model frames, calculated as:

a0 = so f tmax(W1 · xt + W2 · ht−1 + W3 ·M).

• The controller predicts the nonlinear activation function of the graphical neural net-
work in Sigmoid, tanh, relu, · · · , elu, placed at the 1st position in the list of predicted
model frames, calculated as:

a1 = so f tmax(W4 · xt + W5 · ht−1 + W6 ·M)

where W1, W2, W3, W4, W5, W6 are the learnable parameter matrices in recurrent neu-
ral networks and M is the learnable parameter matrix in the memory mechanism.
Then, the controller sequentially predicts the graph neural network type, the number
of graph neural network attention mechanism heads, the number of graph neural
network output dimensions, the number of metagraph node embedding dimensions,
the multivariate graph embedding aggregation method, and the number of scoring
multilayer feedforward neural network layers. After that we will experimentally
verify the effect of the memory mechanism on the effect of the model.

To obtain the optimal sequence of frames, we used a strategic gradient algorithm to
update the parameters in the recurrent neural network θ. After the recurrent neural network
generates the corresponding model frame sequence m, we construct a recommendation
model based on m, train it on the training set, and after the training, we test the model on
the test set D. After training, we test the model on the test set to obtain the test results
RD(m). In the experiments, the RD(m) is the negative root mean square error. We use it as
a reward to train the recurrent neural network. Because, here, RD(m) is not differentiable,
we use a reinforcement learning approach to update the parameters θ:

∇θEP(m1:T ;θ)[R] =
T

∑
t=1

EP(m1:T ;θ)[∇θ log P(mt | mt−1:1; θ)(R− b)] (14)

where b represents the exponential sliding average of the previous frame rewards in training,
for the current generative model frame m, the corresponding model training process and
the training for the controller are independent of each other. In our experiments, we
used cross-entropy loss for the training of the control. Considering that for the model m
the randomness of the training and testing process in the training process, we repeat the
training process N times and selected the best top K. In order to reduce the error caused by
randomness, we repeat the training process several times and select the top model as the
candidate model for the final comparison.

3.4. Optimization

Because the nodes contain more types in most heterogeneous information networks
and the metapaths in some of them are long in length, it takes longer time to optimize them
in experiments using reinforcement learning methods. Thus, we use the Gumbel-Max trick
to speed up the training of automatic metapath selection. For a metapath of length N, there
are Nv = |Vt|+ 1 node types that can be selected at each step. At the ith step of selection,
the controller R draws a node type from the discrete distribution Ti,j:

mp
i =

i−1

∑
j=1

Ri,j(m
p
j ; Wi,j), s.t.Ri,j ∼ Ti,j, (15)
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where Wi,j are the corresponding weights in the controller Ri,j. The discrete distribution Ti,j
is then defined by a softmax function.

P(Ri,j = vk
t ) =

exp(Ak
i,j)

∑K
k′=1 Ak′i,j

, vk
i ∈ Vt

where Ai,j ∈ RNv is the prediction weight of the controller for each category when making
the ith step selection. From Formula (15), it can be seen that the controller needs to be
sampled when making each selection step, so the weights in the controller are not derivable
and cannot be trained using the gradient descent method. In order to be able to optimize
the ANAS-HIN algorithm using the gradient descent method, we used the Gumbel-Max
trick to accelerate the optimization of the model. Therefore, we use the following equation
instead of Formula (15):

mp
i =

i−1

∑
j=1

Nv

∑
k=1

hk
i,jv

k
t (m

p
j ; Wk

i,j),

s.t.hk
i,j = onehot(arg max

k
(Ak

i,j + ok)).

where ok is obtained by independent sampling from the Gumbel (0,1) distribution, i.e.,

ok = − log(− log(u)), u ∼ Uni f [0, 1].

Next, we will use the so f tmax function to approximate the argmax function to make
the whole process derivable.

h̃k
i,j =

exp
((

log
(

P
(

Ri,j = vk
t

))
+ ok

)
/τ
)

∑K
k′=1 exp

((
log
(

P
(

Ri,j = vk′
t

))
+ ok′

)
/τ
) ,

where τ is the temperature parameter, and h̃k
i,j → hk

i,j when τ → 0.

4. Experiment

In this section, we conducted experiments on two real datasets. First, we apply
the ANAS-HIN algorithm on the two heterogeneous information networks datasets. We
compared the ANAS-HIN algorithm with some recommendation algorithms to verify the
real effects of the models. Finally, we performed an ablation analysis on the model to verify
the effects of different parts of the model.

4.1. Dataset

Two datasets of Yelp (http://www.yelp.com/dataset/, accessed on 21 June 2022) and
Amazon (http://jmcauley.ucsd.edu/data/amazon/, accessed on 21 June 2022) are used for
our experiments. The Yelp dataset is a business recommendation dataset, and we extracted
a subset of data from the Yelp dataset, which contains 18,465 users, 536 businesses, and
20,000 ratings, with a minimum rating of 1 and a maximum rating of 5, where the higher
the rating is, the more users prefer the business. The Amazon dataset contains 16,970 users,
336 products, and 20,000 ratings, the same as the Yelp dataset, with a minimum rating
of 1 and a maximum rating of 5, where a higher rating indicates that the user prefers the
product [41]. The specific statistics of the two datasets are shown in Table 3.

http://www.yelp.com/dataset/
http://jmcauley.ucsd.edu/data/amazon/
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Table 3. Statistical information of the dataset.

Relations (A-B) Number of A Number of B Number of (A-B)

Yelp

User-User 18,454 18,454 125,223
User-Business 18,454 576 20,000
User-Review 18,454 20,000 20,000
Business-Star 576 9 576
Business-State 576 51 576
Business-Category 576 1237 1827
Business-City 576 1010 576
Review-Business 20,000 576 20,000
Review-Aspect 20,000 10 172,349

Amazon

User-Business 16,970 336 19,287
User-Review 16,970 18,331 18,198
Business-Category 336 16 323
Review-Business 18,331 336 20,000
Review-Aspect 18,331 10 162,407

For the Review-Aspect data, we used the Gensim tool to classify the average of the
data by topic, where we set the number of topics to 10, so that each average corresponds
to a vector of length 10, and each number in the vector corresponds to the probability
of the review being the topic. The metagraph we chose in both datasets is shown in
Figures 3 and 4.

Figure 3. Metagraphs used in Yelp dataset.

Figure 4. Metagraphs used in Amazon dataset.

4.2. Evaluation Indicators

In order to evaluate the recommendation effectiveness of different models, we used
root mean square error (RMSE) as Equation (16) to evaluate the recommendation effective-
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ness of different models. The smaller the RMSE, the better the recommendation effect of
the model.

RMSE =

√√√√∑(u,i)∈Dtest

(
Ru,i − R̂u,l

)2

|Dtest |
, (16)

where Dtest denotes the test set, and R̂u,l denotes the model’s prediction for the user’s
commodity pair (u, i), and Ru,i denotes the predicted rating of the user product pair, (u, i)
denotes the true rating of the user pair, and |Dtest| denotes the number of user pairs in the
test set.

4.3. Baseline Algorithms

In order to verify the recommendation effectiveness of the ANAS-HIN algorithms, we
compare them with the following baseline methods usually used in these recommenda-
tion systems.

• NeuACF [1]: The NeuACF model makes recommendations from two aspects. On the
one hand, it uses human-defined metapaths for similarity between users and items;
on the other hand, it uses matrix decomposition methods to obtain the embedding of
users and items, uses inner product to obtain the similarity between users and items,
and finally, it combines the similarity of both aspects to predict users’ ratings of items.

• MGAR [6]: Similar to the FMG model, the MGAR model is also a two-stage model.
In the first stage, the MGAR model performs matrix decomposition through the
connection matrix of metagraphs to obtain the embedding of users and products,
and then in the second stage, the FMG weights the different metagraphs through the
attention model to obtain the users’ ratings of products.

• SemRec [14]: The SemRec model is mainly for weighted heterogeneous information
network for recommendation, which uses human-defined weighted metapaths to
calculate the similarity between users and products, and finally uses this similarity to
predict users’ ratings of products.

• FMG [24]: The FMG model is similar to the recommendation model framework we
introduced. In the first stage, it uses a method based on metagraph and metapath
matrix decomposition to obtain the embeddings of users and items; then, it uses the
embeddings of users and items as their features, followed by a factor machine model
to predict the users’ ratings of items.

• FM [25]: Factorization machine (FM) mainly uses linear combinations of users and
items to predict users’ ratings of items. Unlike the PMF model, the factor machine
model considers not only the first-order similarity between users and items but also
the second-order similarity between users and items, and finally, the factor machine
model combines this order similarity and the second-order similarity to predict users’
ratings of items.

• PMF [42]: Probabilistic Matrix Factorization (PMF) model transforms the interaction
between users and items into an interaction matrix between users and items, and uses
matrix decomposition to obtain the embeddings of users and items, and finally uses
the inner product between the embeddings of users and items to predict the users’
ratings of items.

4.4. Experimental Results

The experimental results are shown in Figure 5. In the experiments, we randomly
selected 80% of the data in the dataset as the training set and the remaining 20% of the data
as the test set. The first row in each method in Figure 5 corresponds to the RMSE value of
the recommended effect of that method.

The ANAS-HIN performed better than six baseline methods on the Yelp dataset.
Compared to the PMF method, the ANAS-HIN improved the recommended effect by 70.1%.
The effect of the ANAS-HIN improved by 56.6% over the FM method. The performance
of the SemRec method on the Yelp dataset was 56.0% lower than that of the ANAS-HIN.
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Moreover, the ANAS-HIN significantly outperformed the FMG method, with a 50.1%
improvement in RMSE values for the ANAS-HIN. The ANAS-HIN brought a positive
effect of 30.1% and 3.4% relative to both the NeuACF and MGAR methods, respectively.
On the Amazon dataset, the ANAS-HIN showed a superior effect similar to that of the
Yelp dataset.

Figure 5. Experimental results on Yelp and Amazon datasets.

Compared with the PMF method, the ANAS-HIN brought a 66.0% advantage. Com-
pared with the FM method, the ANAS-HIN improved the recommendation effect by 42.7%.
Based on the SemRec method, the ANAS-HIN method improved the RMSE value by
44.9%. The RMSE value of the FMG method was 41.4% lower than that of the ANAS-HIN.
The RMSE value of the ANAS-HIN brought a positive effect of 29.8% and 5.2% relative to
both the NeuACF and MGAR methods, respectively. The comparison between the ANAS-
HIN algorithm and the FMG algorithm and also the ANAS-HIN algorithm and the MGAR
algorithm shows that the ANAS-HIN algorithm can find more powerful neural network
architecture for a recommendation task by the method of neural network architecture
search, which effectively improves the effectiveness of the recommendation algorithm on
the heterogeneous information network.

4.5. Ablation Study

In this subsection, we investigate the effect of the memory mechanism in the NAS-
HIN algorithm on the effectiveness of the algorithm. We remove the memory mechanism
from the ANAS-HIN algorithm and use linear modeling for the search in hyperparameter
space. We refer to the ANAS-HIN algorithm with the memory mechanism removed as
the ANAS-HIN-M algorithm. We list the algorithm effects of the ANAS-HIN-M algorithm
on the Yelp dataset and the Amazon dataset in Table 4. From Table 4, we can see that
after removing the memory mechanism, the ANAS-HIN algorithm decreases 2.60% and
1.67% on the Yelp and Amazon datasets, respectively, which shows that the algorithm has
difficulty in capturing the association between the hyperparameters after removing the
memory mechanism.

Table 4. Experimental results of ablation study.

ANAS-HIN-M ANAS-HIN

Yelp 0.5701 0.5607

Amazon 0.6743 0.6632
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4.6. Impact of Different Metagraphs on the Model

In this subsection, we investigate the effect of using different metagraphs and meta-
graphs obtained from an ANAS-HIN search (M-Auto) on the model in a heterogeneous
information network. Therefore, we calculate the effect of recommendation in the ANAS-
HIN when using one metagraph alone in each of the two datasets, compared with the effect
when using all the metagraphs (M-A-all). The specific effects are shown in Tables 5 and 6.
Metagraph Mi is shown in Figures 3 and 4.

Table 5. Impact of different metagraphs in Yelp dataset.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M-Auto M-A-All

1.2539 1.3064 1.3374 1.3738 1.3628 1.1953 1.3821 1.3705 1.3792 1.1345 0.5607

Table 6. Impact of different metagraphs in Amazon dataset.

M1 M2 M3 M4 M5 M-Auto M-A-All

1.1309 1.1356 1.1429 1.1763 1.149 1.0856 0.6632

From the above results in Tables 5 and 6, it can be seen that the recommendation effect
is not good when only one metagraph is used. This indicates that each metagraph contains
only part of the information between the user and the product.

From Table 5, we can see that in the Yelp dataset, the metagraph M6, which is manually
determined by U → I → State → I → U in the manually determined metaplot, has the
most effect on the recommendation improvement, from which it can be seen that the loca-
tion where the business is located has the most effect on the user in Yelp’s recommendation.
In the Amazon dataset of Table 6, the metamap M5 has the most improvement on the
recommendation effect. Comparing with other manually determined metagraphs, we can
find that metagraph M5 contains the most semantic information, so its improvement on the
recommendation effect is the most, from which we can see that the medium- and high-order
semantic information can make the recommendation effect better.

In both datasets, the metagraph M-Auto, which is automatically searched by the
ANAS-HIN algorithm, improves the recommendation effect more than all other manu-
ally determined metagraphs, which indicates that the ANAS-HIN algorithm can obtain
metagraphs with richer semantic information by searching. From the results, we can also
see that the effect of combining multiple metagraphs for recommendation effect will be
much improved than that of using only one metagraph. From this, we can see that the
semantic information contained in one metagraph is limited, and the semantic information
in different metagraphs is different. Therefore, combining the semantic information in
multiple metagraphs can effectively improve the recommendation effect of the model.
Moreover, the impact of different metagraphs on the recommendation effect of the model
is also different.

5. Summary

In this paper, we propose a neural network architecture search algorithm, the ANAS-
HIN model, for recommendation algorithms on heterogeneous information networks. We
first decompose the common recommendation algorithms on heterogeneous information
networks; then, we summarize the more important hyperparameters in the recommenda-
tion algorithm and use a list to represent the model architecture of the recommendation
algorithm. We use recurrent neural networks to model the selection of each hyperparameter
and also use the recommendation effect of the algorithm model on the validation set as
the reward corresponding to this architecture. Finally, we use reinforcement learning to
train the ANAS-HIN model to obtain the optimal recommendation algorithm architecture.
In addition, we use the NAS architecture to automatically search the metagraph structure
used in the recommendation task to find a metagraph structure that is more suitable for the
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current dataset and the recommendation task. To verify the effectiveness of the ANAS-HIN
algorithm, we applied the ANAS-HIN algorithm on two recommendation algorithms on
the FMG and MGAR heterogeneous information networks and performed a neural net-
work architecture search on both algorithms to obtain the optimal setting architecture. We
conducted experiments on two real heterogeneous information network recommendation
datasets, Yelp and Amazon, and compared the recommendation effectiveness with six
mainstream recommendation algorithm models. The experimental results verified the
effectiveness of the models on the recommendation task. In addition, there are some limita-
tions of our model. Our model is mainly designed for recommendation systems based on
heterogeneous information networks; however, it is not applicable for many other types of
recommendation system scenarios, such as a session-based recommender system. This also
provides directions for our future research.
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