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Abstract: The arithmetic optimization algorithm (AOA) is a new metaheuristic algorithm inspired
by arithmetic operators (addition, subtraction, multiplication, and division) to solve arithmetic
problems. The algorithm is characterized by simple principles, fewer parameter settings, and
easy implementation, and has been widely used in many fields. However, similar to other meta-
heuristic algorithms, AOA suffers from shortcomings, such as slow convergence speed and an easy
ability to fall into local optimum. To address the shortcomings of AOA, an improved arithmetic
optimization algorithm (IAOA) is proposed. First, dynamic inertia weights are used to improve
the algorithm’s exploration and exploitation ability and speed up the algorithm’s convergence
speed; second, dynamic mutation probability coefficients and the triangular mutation strategy
are introduced to improve the algorithm’s ability to avoid local optimum. In order to verify the
effectiveness and practicality of the algorithm in this paper, six benchmark test functions are selected
for the optimization search test verification to verify the optimization search ability of IAOA; then,
IAOA is used for the parameter optimization of support vector machines to verify the practical ability
of IAOA. The experimental results show that IAOA has a strong global search capability, and the
optimization-seeking capability is significantly improved, and it shows excellent performance in
support vector machine parameter optimization.

Keywords: arithmetic optimization algorithm (AOA); dynamic inertia weights; dynamic coefficient
of mutation probability; triangular mutation strategy; support vector machine

MSC: 68T20

1. Introduction

With the prosperous development of science and technology and the economy, intelli-
gence has gradually stepped into many fields, such as science, engineering, the economy,
and national defense. Accordingly, numerous complex problems requiring optimization
solutions have emerged in these fields. Traditional optimization methods include linear
programming, dynamic programming, integer programming, branch-and-bound, and
other classical algorithms, which often have poor optimization results and difficulties in
meeting practical needs when solving problems with large variable dimensions, high order,
many objective functions, and complex constraints. The proposed metaheuristic algorithm
provides a new way of thinking for solving various complex and tricky engineering op-
timization problems. It is investigated that metaheuristic algorithms solve optimization
problems with sufficient efficiency and reasonable computational cost compared with exact
algorithms [1].
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A metaheuristic algorithm is a deterministic algorithm plus heuristic random search to
obtain the close-enough solution to the optimization problem through iterative iterations,
which includes the following four main categories: Evolutionary Algorithms (EA), Swarm
Intelligence Algorithms (SI), Physical Law Based Algorithms (PHA), and Human-Based
Algorithms. EA simulates the processes of biological survival and reproduction in nature
and the process of continuous evolution through heredity, mutation, and natural selection.
Its classical algorithms include the Genetic Algorithm (GE) [2], Differential Evolution
(DE) [3], Estimation Of Distribution Algorithms (EDA) [4], DNA Computing [5], Gene
Expression Programming (GEP) [6], Memetic Algorithm (MA) [7], and Cultural Algorithms
(CA) [8]. SI simulates the hunting strategy and reproductive behavior of natural animal
groups, etc., and its classical algorithms include Artificial Bee Colony (ABC) [9], Gray Wolf
Optimization (GWO) [10], Particle Swarm Optimization (PSO) [11], Cuckoo Search (CS) [12],
Harris Hawks Optimization (HHO) [13], Whale Optimization Algorithm (WOA) [14], Slime
Mould Algorithm (SMA) [15], and Seagull Optimization Algorithm (SOA) [16]. PhA is
inspired by the laws of physics, and its typical algorithms include Henry Gas Solubility
Optimization (HGSO) [17], Big Bang–Big Crunch (BBBC) [18], Multi-verse Optimizer
(MVO) [19], Electromagnetic Field Optimization (EFO) [20], and Gravitational Search
Algorithm (GSA) [21]. Human-based algorithms inspired by human behavior, typical
algorithms include Teaching-Based Learning Algorithms (TBLA) [22], Harmony Search
(HS) [23], Imperialist Competitive Algorithm (ICA) [24], Fireworks Algorithm (FWA) [25],
and Collective Decision Optimization (CSO) [26]. Meta-heuristic algorithms have the
advantages of simple principles, fewer parameter settings, and easy implementation, which
have obvious advantages in solving complex optimization problems [27]. Therefore, these
algorithms have received extensive attention and research since they were proposed and
have been applied to multi-robot cooperation [28], wireless sensor networks [29], object
detection [30], honeycomb core design [31], feature selection [32], and multi-objective
problems [33].

The arithmetic optimization algorithm (AOA) [34] is a new population-based meta-
heuristic algorithm proposed by Abualigah et al. The arithmetic optimization algorithm
is inspired by the application of arithmetic operators (addition, subtraction, multiplica-
tion, and division) in solving arithmetic problems. The algorithm is able to solve opti-
mization problems without computing their derivatives, so applications in other disci-
plines would be a valuable contribution. For example, Khatir et al. [35] used AOA for
damage detection, localization, and quantification of functional gradient material (FGM)
plate structures. Deepa et al. [36] used AOA for Alzheimer’s disease (AD) classification.
Almalawi et al. [37] used AOA to predict the particle size distribution of heavy metals in
the air. Ahmadi et al. [38] used AOA for multiple types of distributed generation (DGs) and
energy storage systems (ESSs) for optimal layout. Bhat et al. [39] used AOA for wireless sen-
sor network (WSN) deployment. Similar to numerous other metaheuristics, AOA suffers
from shortcomings, such as slow convergence and the tendency to fall into local optimality.
Therefore, numerous scholars have made numerous improvements as well as applications
of this algorithm. For example, Kaveh et al. [40] modified the original formulation of AOA
to enhance exploration and exploitation and applied it to skeleton structure optimization for
discrete design variables. Agushaka et al. [41] used natural logarithm and exponential op-
erators to enhance the exploration capability of AOA and applied it to welded beam design
(WBD), compression spring design (CSD), and pressure vessel design (PVD). Premkumar
et al. [42] proposed a multi-objective arithmetic optimization algorithm formulated and
developed based on the mechanisms of elite non-dominance ranking and congestion dis-
tance and used it to solve real-world constrained multi-objective optimization problems
(RWMOPs). Zheng et al. [43] mixed the viscous and arithmetic optimization algorithms to
improve the optimization speed and accuracy of the algorithm and applied it to classical en-
gineering design problems. Abualigah et al. [44] used a differential evolution technique to
enhance the local study of AOA and applied it to image segmentation. Ibrahimd et al. [45]
proposed an algorithm based on a hybrid of an electrofishing optimization algorithm and
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an arithmetic optimization algorithm to improve the convergence speed of the algorithm
and increase the ability of the algorithm to handle high-dimensional problems and applied
it to feature selection. Wang et al. [46] proposed a novel parallel communication strategy
for adaptive parallel arithmetic optimization algorithms to prevent the algorithm from
falling into local optimal solutions and used it for robot path planning. Ewees et al. [47]
mixed arithmetic optimization algorithms with genetic algorithms to enhance their search
strategies and adjust the balance of their search strategies directly and used them for fea-
ture selection. Abualigah et al. [48] combined the marine predator algorithm and a new
integrated variational strategy to improve the convergence speed of the algorithm and
apply it to engineering design cases. Khodadadi et al. [49] proposed a dynamically tuned
exploration and developed an arithmetic optimization algorithm for a better search phase and
applied it to classical engineering problems. Mahajan et al. [50] proposed a hybrid algorithm
based on the Aquila optimizer and an arithmetic optimization algorithm to enhance AOA
in solving high-dimensional problems. Li et al. [51] introduced a chaotic mapping strategy
into the optimization process of AOA to improve its convergence speed and accuracy and
applied it to engineering optimization problems. Abd et al. [52] proposed an energy-aware
model to enhance the arithmetic optimization algorithm to improve the search capability of
the algorithm and used it for the job scheduling problem of fog computing.

Support vector machines (SVMs) were originally proposed by Vapnik et al. [53]. As a
machine learning algorithm based on statistical learning theory, SVMs have shown many
unique advantages in solving small-sample, nonlinear, and high-dimensional pattern recog-
nition problems and have been successfully applied to pattern recognition [54], medical
applications [55], and photovoltaic power generation prediction [56], among other fields.
Although SVMs have many advantages in practice, the selection of their internal parame-
ters has a certain degree of influence on the classification performance and the fitting effect
of SVM models, and these parameters will negatively affect the generalization performance
of SVMs if they are not selected appropriately. Therefore, it is a challenge to select the best
model for SVM and find the appropriate internal parameters. Therefore, the proposed
algorithm is used for the selection of internal parameters of support vector machines to
verify the practical performance of IAOA.

Although AOA has been applied to many aspects, in terms of the algorithm itself,
one of the reasons why AOA is prone to local optima and slow convergence during the
search process is that the updates of individuals in AOA are only searched around a
single global best position. According to Jamil et al. [57], this makes the search strategy
highly selective, and other individuals relying on this single centrally guided position
update may not be guaranteed to converge to the global best position. Therefore, in this
paper, dynamic inertia weights are used to enhance the convergence speed of AOA, and
dynamic probability coefficients and triangular mutation strategies are used to enhance
the ability of AOA to jump out of the local optimum. The experimental results show
that the proposed algorithm’s convergence accuracy, convergence speed, and stability are
significantly improved, and IAOA has excellent classification accuracy in the optimization
of support vector machine parameters.

The main structure of this paper is as follows: in Section 2, the basic AOA algorithm
is introduced; Section 3 introduces the IAOA algorithm; Section 4 presents the results,
comparison, and analysis of the experiments; Section 5 presents the application of IAOA in
support vector machine parameter optimization; and Section 6 concludes the work and
presents future research directions.

2. Basic AOA

The basic AOA utilizes multiplication and division operators for global exploration
and addition and subtraction operators for local exploitation.
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2.1. Math Optimizer Accelerated (MOA) Function

AOA selects the search phase (whether to execute global exploration or local exploita-
tion) by MOA. A random number r1 (a random number between 0 and 1) is selected, and if
r1 > MOA(t), then global exploration is executed; otherwise, local exploitation is executed.
The mathematical model of MOA is shown in Equation (1):

MOA(t) = Min + t× (
Max−Min

T
) (1)

where t is the current number of iterations, T is the maximum number of iterations, and Max
and Min are the maximum and minimum values of the mathematical optimizer acceleration
function, respectively.

2.2. Global Exploration

In this stage, AOA mainly uses two search strategies (division search strategy and
multiplication search strategy) to find a better candidate solution. A random number
r2 is drawn from [0, 1], and if r2 < 0.5, the division strategy is executed; otherwise, the
multiplication strategy is executed. The mathematical expression of the search is shown in
Equation (2):

x(t + 1) =
{

best(x)÷ (MOP(t) + ε)× L, r2 < 0.5
best(x)×MOP(t)× L, otherwise

(2)

MOP(t) = 1− t1/α/T1/α (3)

L = (UB− LB)× µ + LB (4)

where x(t + 1) denotes the position of t + 1 iterations, best(x) denotes the position of the
best individual among the current candidate solutions, ε is a small integer preventing the
denominator from being 0, UB and LB denote the upper and lower bounds of the search
space, respectively, µ is the control parameter for adjusting the search process, MOP(t) is
the mathematical optimization rate coefficient, and α denotes the sensitivity parameter for
iterative development accuracy.

2.3. Local Exploitation

In this stage, AOA mainly uses subtractive search strategy and additive search strategy
for exploitation calculation. If r3 < 0.5 (r3 is a random number between 0 and 1) the
subtractive search strategy is used; otherwise, the additive search strategy is used. Its
search mathematical expression is shown in Equation (5):

x(t + 1) =
{

best(x)−MOP(t)× L, r3 < 0.5
best(x) + MOP(t)× L, otherwise

(5)

The pseudo code of AOA is shown below.

3. Our Proposed IAOA
3.1. Dynamic Inertia Weights

Inertia weights were originally proposed by Shi and Eberhart, and larger inertia
weights are beneficial for global exploration and smaller inertia weights are beneficial for
local exploitation [58]. Therefore, in this paper, an inertia weight that decreases nonlinearly
and exponentially with the number of iterations is introduced, and inertia weights with
dynamic coefficients are introduced to improve the search efficiency of the AOA Algorithm
1, which in turn speeds up the convergence of the algorithm. The introduction of dynamic
coefficients can improve the flexibility of the inertia weights, and then in the application
of the improved algorithm can be perturbed to improve the flexibility of the optimal
individual, so as to reduce to a certain extent the degree of the algorithm into the local
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optimum due to the location update method guided only around the current optimal
individual. The dynamic inertia weights are shown in Equation (6):

w(t) = c ∗ wbegin(
wbegin

wend
)

1/(1+t/T)
(6)

where the maximum and minimum values of wbegin and wend inertia weights, c are random
values that vary dynamically around value 1. Where the sum of dynamic inertia weights is
introduced to Equations (2) and (5), its updated formula becomes Equations (7) and (8):

x(t + 1) =
{

w(t) ∗ best(x)÷ (MOP(t) + ε)× L, r2 < 0.5
w(t) ∗ best(x)×MOP(t)× L, otherwise

(7)

x(t + 1) =
{

w(t) ∗ best(x)−MOP(t)× L, r3 < 0.5
w(t) ∗ best(x) + MOP(t)× L, otherwise

(8)

Algorithm 1: AOA

1.Set population size N, the maximum number of iterations T.
2.Set up the initial parameters t = 0, α, µ.
3.Initialize the positions of the individuals xi (i = 1, 2, . . . , N).
4.While (t < T)
5. Update the MOA using Equation (1) and the MOP using Equation (3).
6. Calculate the fitness values and Determine the best solution.
7. For i = 1, 2, . . . , N do
8. For j = 1, 2, . . . , Dim
9. Generate the random values between [0, 1] (r1, r2, r3).
10. If r1 > MOA
11. Update the position of x(t + 1) using Equation (2).
12. Else
13. Update the position of x(t + 1) using Equation (5)
14. End if
15. End for
16. End for
17. t = t + 1.
18.End while
19.Return the best solution (x)

3.2. Dynamic Coefficient of Mutation and Triangular Mutation Strategy

Referring to the “mutation” operation in the genetic algorithm, this paper uses a
dynamic mutation probability coefficient that increases with the number of iterations so
that individuals have a certain chance to enter other search spaces for searching, thus
effectively expanding the search range and enhancing the ability of the algorithm to jump
out of the local optimum. The dynamic mutation probability coefficient is shown in
Equation (9). The triangular mutation strategy [59] makes full use of the information of
individuals in the population, so that the information of individuals crosses each other,
thus enhancing the diversity of the population and preventing the algorithm from falling
into a local optimum in the search process. One of the triangular mutation formulas is
shown in Equation (10):

p = 0.2 + 0.5 ∗ t/T (9)

X(t) = (Xr1 + Xr2 + Xr3)/3 + (t2 − t1) ∗ (Xr1 − Xr2)+
(t3 − t2) ∗ (Xr2 − Xr3) + (t1 − t3) ∗ (Xr3 − Xr1)

(10)

where p denotes the mutation probability coefficient, which gradually increases with the
number of iterations, and in the late stage of the algorithm, individuals in the population
have a greater probability of entering other spatial searches, which in turn reduces the
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probability of the algorithm falling into a local optimum. Xr1, Xr2, and Xr3 denote the
three randomly selected individuals, (t2 − t1), (t3 − t2), and (t1 − t3) denote the weights
of the perturbed part. The triangular mutation strategy is similar to the cross mutation
of a genetic algorithm, which makes the information of random individuals cross-fused
with each other. This strategy is helpful to prevent the update of individuals only around
a single local best position, thus enhancing the algorithm’s ability to jump out of local
minima. The pseudo-code and flowchart of IAOA are shown in Algorithm 2 and Figure 1.

Algorithm 2: IAOA

1.Set population size N, the maximum number of iterations T.
2.Set up the initial parameters t = 0, α, µ.
3.Initialize the positions of the individuals xi (i = 1, 2, . . . , N).
4.While (t < T)
5. Update the w(t) using Equation (6)
6. Update the MOA using Equation (1) and the MOP using Equation (3).
7. Calculate the fitness values and Determine the best solution.
8. For i = 1, 2, . . . , N do
9. For j = 1, 2, . . . , Dim
10. Generate the random values between [0, 1] (r1, r2, r3).
11. If r1 > MOA
12. Update the position of x(t + 1) using Equation (7).
13. Else
14. Update the position of x(t + 1) using Equation (8)
15. End if
16. Calculate the p using Equation (9)
17. if p > rand
18. Update the position of x(t + 1) using Equation (10).
19. end if
20. End for
21. End for
22. t = t + 1.
23.End while
24.Return the best solution(x)Mathematics 2022, 10, x FOR PEER REVIEW 7 of 21 
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4. Benchmark Test Function Numerical Experiments and Results
4.1. Experimental Conditions

The environment configuration for this experimental simulation is: 64-bit Win10
operating system; Intel (R) Core (TM) i7-1065G7 CPU with 1.30 GHz; 16 G memory; and
the simulation software is MatlabR2019b. This experiment selects six benchmark test
functions for experimental test comparison, among which the algorithms compared in this
experiment are GA [2], GWO [10], PSO [11], HHO [13], WOA [14], SOA [16], and AOA [34].
For all the tested functions, the population size of the algorithm is 30 and the number of
iterations is 500.

4.2. Benchmark Test Functions and Algorithm Parameters

In this experiment, the six benchmark test functions selected are shown in Table 1.
Among them, f 1 − f 3 are single-mode test functions, and f 4 − f 6 are multimode test
functions. Table 2 shows the parameter settings of all the comparison algorithms.

Table 1. Benchmark test functions.

Formula Dim Range Fmin

f1(x) =
n
∑

i=1
x2

i
30/100/200 [−100, 100] 0

f2(x) = max(|xi|, 1 ≤ i ≤ n) 30/100/200 [−100, 100] 0

f3(x) =
n
∑

i=1
(bxi + 0.5c)2 30/100/200 [−100, 100] 0

f4(x) = 1
4000

n
∑

i=1
x2

i −∏n
i=1 cos( xi√

i
) + 1 30/100/200 [−600, 600] 0

f5(x) = π
n {10 sin(πy1) +

n−1
∑

i=1
(y1 − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2}

+
n
∑

i=1
u(xi, 10, 100, 4)

yi = 1 + xi+1
4 , u(xi, a, k, m) =


k(xi −m)m, xi > a
−a, xi < a
k(−xi −m)m, xi < −a

30/100/200 [−50, 50] 0

f6(x) = 0.1{sin2(3πxi)
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]}

+
n
∑

i=1
u(xi, 5, 100, 4)

30/100/200 [−50, 50] 0

Table 2. Algorithm parameter settings.

Algorithm Parameter Setting

GA Pm = 0.2, Pc = 0.6
GWO a linearly decreased from 2 to 0
PSO ω linearly decreased from 0.9 to 0.4, c1 = 2, c2 = 2

HHO q ∈ [0, 1]; r ∈ [0, 1]; E0 ∈ [−1, 1]; E1 ∈ [0, 2]; E ∈ [−2,2]
WOA a linearly decreased from 2 to 0, r1 ∈ [0, 1], r2 ∈ [0, 1]
SOA r1 ∈ [0, 1], r2 ∈ [0, 1]
AOA r1 ∈ [0, 1], r2 ∈ [0, 1], r3 ∈ [0, 1], u = 0.5, α = 5
IAOA wbegin = 0.9, wend = 0.4, c ∈ [0.95, 1.05]

4.3. Comparison and Analysis of Experimental Results

To evaluate the performance of the proposed IAOA, numerical experimental simulation
tests are performed for all compared algorithms. To avoid the effect of randomness on the
test results, each algorithm was run 30 times independently for each test function (Dim = 30),
and the mean value of each algorithm with standard deviation was recorded. These data
indicators generally reflect the strength of the algorithm’s optimization capability. The mean
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value reflects the optimization accuracy of the algorithm, and the standard deviation reflects
the stability performance of the algorithm. The average running time of each algorithm for
each test function is also recorded, which reflects the running complexity of the algorithm.
Table 3 provides the test data of all eight algorithms. To evaluate the high-dimensional
performance of IAOA, all comparison algorithms are tested in 100 and 200 dimensions, and
the test conditions are the same as in 30 dimensions. Only the dimensionality of the test
function is changed, and the mean value and standard deviation of the test are recorded.
Table 4 records the test data of all algorithms in high-dimensional conditions.

Table 3. Test data.

Function Indext
Algorithms

GA GWO PSO HHO WOA SOA AOA IAOA

f 1 (Dim = 30)
Mean 3.17 × 10−5 1.89 × 10−27 3.27 × 10−155 5.52 × 10−94 1.06 × 10−74 5.09 × 10−12 2.58 × 10−10 0.00 × 10+0

Std 7.39 × 10−5 3.54 × 10−27 1.79 × 10−154 3.01 × 10−93 3.19 × 10−74 7.42 × 10−12 1.41 × 10−9 0.00 × 10+0

Time 0.1851 s 0.3617 s 0.1343 s 0.1972 s 0.1514 s 0.2589 s 0.1919 s 0.2003 s

f 2 (Dim = 30)
Mean 2.42 × 10−3 8.91 × 10−7 3.01 × 10−87 1.03 × 10−49 5.13 × 10+1 5.62 × 10−3 2.85 × 10−2 0.00 × 10+0

Std 3.20 × 10−3 5.89 × 10−7 1.65 × 10−86 3.51 × 10−49 2.89 × 10+1 1.24 × 10−2 1.86 × 10−2 0.00 × 10+0

Time 0.0767 s 0.3224 s 0.1521 s 0.2533 s 0.1474 s 0.2557 s 0.2063 s 0.2110 s

f 3 (Dim = 30)
Mean 1.36 × 10−5 8.15 × 10−1 1.37 × 10+0 2.14 × 10−4 3.22 × 10−1 3.22 × 10+0 3.14 × 10+0 0.00 × 10+0

Std 2.50 × 10−5 3.99 × 10−1 2.85 × 10−1 2.93 × 10−4 1.82 × 10−1 5.18 × 10−1 2.40 × 10−1 0.00 × 10+0

Time 0.0802 s 0.3300 s 0.1386 s 0.3144 s 0.1218 s 0.2586 s 0.1777 s 0.1981 s

f 4 (Dim = 30)
Mean 1.66 × 10−4 2.22 × 10−3 1.78 × 10−2 0.00 × 10+0 3.23 × 10−3 2.24 × 10−2 1.67 × 10−1 0.00 × 10+0

Std 2.76 × 10−4 5.94 × 10−3 6.37 × 10−2 0.00 × 10+0 1.77 × 10−2 2.88 × 10−2 1.41 × 10−1 0.00 × 10+0

Time 0.0972 s 0.1931 s 0.1013 s 0.2854 s 0.1209 s 0.1533 s 0.1472 s 0.1831 s

f 5 (Dim = 30)
Mean 1.22 × 10−4 1.11 × 10−1 2.38 × 10−1 4.04 × 10−6 3.26 × 10−2 4.97 × 10−1 7.30 × 10−1 9.42 × 10−33

Std 2.40 × 10−4 6.52 × 10−2 3.82 × 10−2 6.63 × 10−6 2.31 × 10−2 1.14 × 10−1 3.37 × 10−2 2.78 × 10−48

Time 0.1999 s 0.4851 s 0.3792 s 0.9107 s 0.3688 s 0.4361 s 0.4050 s 0.6291 s

f 6 (Dim = 30)
Mean 5.13 × 10−5 6.20 × 10−1 1.02 × 10+0 6.12 × 10−5 5.94 × 10−1 2.08 × 10+0 2.83 10+0 1.35 × 10−32

Std 1.00 × 10−4 2.39 × 10−1 2.05 × 10−1 8.38 × 10−5 3.00 × 10−1 2.46 × 10−1 1.08 × 10−1 5.57 × 10−48

time 0.1896 s 0.3792 s 0.2763 s 0.7032 s 0.2942 s 0.2982 s 0.2891 s 0.4713 s

Table 4. High-dimensional test data.

Function Indext
Algorithms

GA GWO PSO HHO WOA SOA AOA IAOA

f 1 (Dim = 100) Mean 3.12 × 10−5 1.59 × 10−12 2.08 × 10−175 2.18 × 10−87 3.99 × 10−72 2.27 × 10−5 2.53 × 10−2 0.00 × 10+0

Std 6.05 × 10−5 9.86 × 10−13 0.00 × 10+0 8.44 × 10−87 1.54 × 10−71 3.07 × 10−5 1.01 × 10−2 0.00 × 10+0

f 2 (Dim = 100) Mean 2.26 × 10−3 8.70 × 10−1 2.30 × 10−96 8.18 × 10−50 7.44 × 10+1 6.96 × 10+1 9.10 × 10−2 0.00 × 10−0

Std 2.27 × 10−3 8.54 × 10−1 2.85 × 10−98 2.56 × 10−49 2.23 × 10+1 1.53 × 10+1 1.50 × 10−2 0.00 × 10+0

f 3 (Dim = 100) Mean 2.57 × 10−5 1.04 × 10+1 1.58 × 10+1 2.84 × 10−4 4.42 × 10+0 1.87 × 10+1 1.80 × 10+1 0.00 × 10+0

Std 4.65 × 10−5 9.39 × 10−1 8.71 × 10−1 4.84 × 10−4 9.99 × 10−1 4.70 × 10−1 6.91 × 10−1 0.00 × 10+0

f 4 (Dim = 100) Mean 2.99 × 10−4 1.50 × 10−3 0.00 × 10+0 0.00 × 10+0 0.00 × 10+0 2.72 × 10−2 5.58 × 10+2 0.00 × 10+0

Std 4.54 × 10−4 5.83 × 10−3 0.00 × 10+0 0.00 × 10+0 0.00 × 10+0 5.54 × 10−2 7.89 × 10+1 0.00 × 10+0

f 5 (Dim = 100) Mean 1.14 × 10−4 2.74 × 10−1 5.64 × 10−1 2.77 × 10−6 4.66 × 10−2 8.04 × 10−1 9.01 × 10−1 4.71 × 10−33

Std 1.89 × 10−4 7.50 × 10−2 7.12 × 10−2 3.86 × 10−6 1.58 × 10−2 8.75 × 10−2 2.63 × 10−2 7.08 × 10−49

f 6 (Dim = 100) Mean 6.46 × 10−5 6.67 × 10+0 9.67 × 10+0 2.00 × 10−4 3.09 × 10+0 9.30 × 10+0 9.95 × 10+0 1.35 × 10−32

Std 1.81 × 10−4 4.60 × 10−1 2.81 × 10−1 3.43 × 10−4 8.95 × 10−1 2.77 × 10−1 7.06 × 10−2 2.83 × 10−48

f 1 (Dim = 200) Mean 1.37 × 10−5 1.24 × 10−7 3.34 × 10−190 3.85 × 10−96 3.89 × 10−71 1.15 × 10−3 1.38 × 10−1 0.00 × 10+0

Std 1.91 × 10−5 6.41 × 10−8 0.00 × 10+0 1.28 × 10−95 1.32 × 10−70 1.01 × 10−3 1.82 × 10−2 0.00 × 10+0

f 2 (Dim = 200) Mean 3.13 × 10−3 2.63 × 10+1 2.34 × 10−96 7.07 × 10−48 7.80 × 10+1 9.39 × 10+1 1.28 × 10−1 0.00 × 10+0

Std 3.17 × 10−3 5.71 × 10+0 1.13 × 10−98 1.96 × 10−47 1.91 × 10+1 2.45 × 10+0 1.27 × 10−2 0.00 × 10+0

f 3 (Dim = 200) Mean 3.13 × 10−5 2.86 × 10+1 3.12 × 10+1 7.83 × 10−4 1.10 × 10+1 4.26 × 10+1 4.17 × 10+1 0.00 × 10+0

Std 1.03 × 10−4 1.93 × 10+0 6.88 × 10−1 1.21 × 10−3 4.03 × 10+0 8.86 × 10−1 7.20 × 10−1 0.00 × 10+0

f 4 (Dim = 200) Mean 8.96 × 10−5 5.04 × 10−3 0.00 × 10+0 0.00 × 10+0 0.00 × 10+0 2.76 × 10−2 2.37 × 10+3 0.00 × 10+0

Std 1.60 × 10−4 1.33 × 10−2 0.00 × 10+0 0.00 × 10+0 0.00 × 10+0 5.48 × 10−2 4.92 × 10+2 0.00 × 10+0

f 5 (Dim = 200) Mean 7.37 × 10−5 5.55 × 10−1 8.54 × 10−1 1.70 × 10−6 6.61 × 10−2 9.20 × 10−1 1.01 × 10+0 2.36 × 10−33

Std 1.57 × 10−4 7.86 × 10−2 3.57 × 10−2 2.34 × 10−6 2.88 × 10−2 5.59 × 10−2 1.16 × 10−2 3.54 × 10−49

f 6 (Dim = 200) Mean 3.38 × 10−5 1.70 × 10+1 1.98 × 10+1 1.97 × 10−4 6.44 × 10+0 2.11 × 10+0 2.00 × 10+1 1.35 × 10−32

Std 6.18 × 10−5 7.08 × 10−1 7.96 × 10−2 3.49 × 10−4 2.16 × 10+0 1.58 × 10+0 1.78 × 10−2 2.83 × 10−48
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Based on the data in Table 3, it can be seen that the proposed algorithm can find the
theoretical optimum on single-mode functions f 1 − f 3 for both the mean value and the
standard deviation, and the other comparison algorithms fail to achieve the best results;
therefore, IAOA is very competitive in single-mode function finding. On multimode
functions f 4 − f 6, the mean and standard deviations of IAOA are ranked in the best
position compared with other comparison algorithms, so IAOA is also very competitive
in multimode function finding. In terms of running time comparison, IAOA does not
have a significant advantage, but it has a significant improvement in seeking accuracy and
stability, so its increased time complexity is acceptable. Based on the data in Table 4, it can
be seen that IAOA is more competitive than other algorithms in terms of mean accuracy
and standard deviation accuracy in the high-dimensional case, and the improved algorithm
IAOA has excellent search performance in the high-dimensional case.

In addition, to evaluate the convergence performance of the proposed algorithms,
Figure 2 shows the convergence plots of all algorithms for the six benchmark test functions
(Dim = 30). From these convergence plots, it can be seen that IAOA converges to the global
optimum faster than the other compared algorithms, which indicates that IAOA has a more
powerful global search capability and has a faster convergence rate.
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5. Support Vector Machine (SVM) Parameter Optimization

The choice of parameters within the SVM is sensitive, and these parameters include
penalty factors and kernel function parameters. Therefore, finding the optimal parameters is
the key to improving the generalization ability of the SVM model. The traditional approach
is to use a simple grid search, but this method is very slow and does not provide satisfactory
results due to the large number of parameter combinations [60]. Another approach is the
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optimization of the parameters inside the SVM by metaheuristic algorithms. For example,
Samadzadegan et al. [61] used a genetic algorithm to optimize the support vector machine
and used it for a multi-classification problem; Bao et al. [62] used an improved Particle
Swarm Algorithm to optimize the parameters of the support vector machine and achieved
better classification results than grid search; Eswaramoorthy et al. [63] used the Gray Wolf
Optimization algorithm to optimize the internal parameters of the support vector machine
and achieved better classification accuracy. Although several metaheuristics have been
applied to experiments on support vector machine parameter optimization, according to
the “no free lunch” [64] theorem, there is no one optimization algorithm that can solve all
optimization problems. Different datasets also affect the accuracy of SVM classification,
and different metaheuristic algorithms for internal parameter search of SVMs for different
datasets often lead to more satisfactory results, so the algorithm proposed in this paper is
meaningful for support vector machine parameter optimization.

5.1. SVM Model and Classification Experimental Procedure

SVM is a typical machine learning algorithm for classification models. SVM achieves
data classification by mapping low-dimensional vectors into a high-dimensional space
and establishing optimal hyperplanes. By choosing a suitable kernel function, the linearly
indistinguishable problem is transformed into a linearly divisible problem in the high-
dimensional space. The SVM maps the input samples into the high-dimensional feature
space by mapping functions α(x), kernel functions k(xi, xj) = α(xi)·α(xj), and according to
the Lagrangian duality, the nonlinear support vector machine is transformed into solving
the following convex quadratic programming problem:

min
α

1
2

M
∑

i=1

M
∑

j=1
αiαjyiyjk(xi, xj)−

M
∑

i=1
αi

s.t.
M
∑

i=1
αiyj = 0

0 ≤ αi ≤ C, i = 1, 2, . . . , M

(11)

where αi is the Lagrangian multiplier. Using the quadratic programming method and
the KKT condition, the special solution of the Lagrange multiplier is obtained, and the
classification decision function is shown below:

f (x) = sign(
M

∑
i=1

α∗i yik(x, xi) + b∗) (12)

The kernel function is usually chosen as the radial basis function (RBF), and its
expression is shown below:

K(x, xi) = exp(−
∣∣∣∣∣∣x− xi

∣∣∣∣∣∣2/2g2) (13)

Obviously, in SVM parameter optimization, the penalty factor C and the kernel func-
tion parameter g have a great influence on the optimal model building of SVM. In this
paper, IAOA is used to optimize the SVM parameters, and the penalty factor C and the
kernel function parameter g are combined in an optimization search, and the classification
accuracy of the training set is selected as the fitness function to evaluate the optimal (C,
g) combination. The IAOA-SVM classification model is constructed, and its flowchart is
shown in Figure 3.
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5.2. SVM Classification Test

To prevent the classification model from having too low generalization ability, we
use 10-fold cross-validation, dividing the dataset into 10 parts, selecting one part in turn
as the test set and the remaining nine parts as the training set to train the model and
derive the accuracy of classification in the validation set. This process is performed for a
total of 10 tests, and the average of the classification accuracy is finally obtained. In this
experimental test, 18 datasets from the UCI Machine Learning Repository [65] were selected
for classification testing. Specific information on the number of instances, features, and
classes of these datasets is shown in Table 5. The IAOA method optimized SVM parameters
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were experimentally compared with the methods GA [2], GWO [10], PSO [11], HHO [13],
WOA [14], SOA [16], and AOA [34] optimized SVM parameters using the 18 datasets, and
for each dataset, the mean and standard deviation of 10 test validations were recorded
for each method, thus verifying the different optimization performance of the different
optimization methods. The search range of each optimization method was set to [10−6, 100]
and the number of populations was set to 20. The parameters of each algorithm were set in
accordance with Table 2.

Table 5. UCI dataset.

Dataset Features Instances Classes

Balance 4 625 3
Breast cancer 9 277 2

DNA 180 2000 3
German 24 1000 2

glass 9 214 6
Heart 13 303 2

Ionosphere 34 351 2
Iris 4 150 3
zoo 16 101 7

Letter 16 5000 26
Liver 6 345 2
Vote 16 435 2

Waveform 21 5000 2
Pima 8 768 3

Segment 18 2310 7
Sonar 60 208 2
Wine 13 178 3

Vehicle 18 846 4

Classification accuracy (Number of correct classification results in the test sample/Number
of test set samples) is the main metric to evaluate the performance of SVM parameter opti-
mization, and Table 6 gives the accuracy, standard deviation, and accuracy ranking of the
classification results for all algorithms for each dataset. Boxplot charts of the classification
accuracy for all datasets are given in Figure 4 to evaluate the overall performance of all
methods in a more visual way.

According to the results in Table 6, it can be seen that the accuracy of IAOA’s clas-
sification results on all 18 datasets is ranked first on nine of them, which has obvious
advantages in classification accuracy, and the accuracy of IAOA is equally competitive on
the remaining nine datasets. For example, on the datasets DNA, German, and vote, IAOA’s
accuracy is ranked in the top position. In addition, IAOA has a small standard deviation on
all datasets, which shows the stability of the algorithm. In summary, IAOA has excellent
classification accuracy and high stability; therefore, IAOA has strong practical performance.
A line in the middle of the box plot indicates the median of the data, which reflects the
average level of the data. The upper and lower lines of the box indicate the upper and
lower quartiles of the data, which means that the box contains 50% of the data. Therefore,
the width of the box reflects the fluctuation level of the data. There is a line above and
below the box, sometimes representing the maximum and minimum values. The red “+”
indicates outliers, which reflect abnormal data. It can be observed from Figure 4 that IAOA
has good classification accuracy, as well as less fluctuation and fewer outliers, such as
Figure 4d,e,g,h,j,l–n,r. Therefore, IAOA has a strong competitive edge in the experiments of
support vector machine parameter optimization.
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Table 6. Classification results.

Algorithm GA GWO PSO HHO

Dataset Avg ± std Rank Avg ± std Rank Avg ± std Rank Avg ± std Rank

Balance 97.10 ± 2.72 4 96.77 ± 3.72 8 97.10 ± 3.38 5 96.94 ± 4.06 7
Breast cancer 75.93 ± 7.86 7 78.52 ± 9.37 5 74.81 ± 9.85 8 78.52 ± 8.15 4

DNA 75.15 ± 19.58 7 93.94 ± 2.86 1 55.76 ± 4.56 8 91.21 ± 11.56 4
German 75.70 ± 5.50 7 78.60 + 3.60 1 74.60 ± 3.44 8 78.30 ± 4.14 5

glass 77.62 ± 8.11 4 77.14 ± 10.72 6 77.14 ± 7.71 7 77.62 ± 7.46 3
Heart 88.33 ± 7.24 1 85.33 ± 3.58 6 84.33 ± 4.73 8 87.67 ± 4.46 2

Ionosphere 93.71 ± 8.06 8 97.71 ± 2.25 2 94.57 ± 4.56 7 97.43 ± 2.5 3
Iris 97.33 ± 4.66 5 97.33 ± 3.44 3 96.67 ± 4.71 7 98.00 ± 3.22 2
zoo 93.00 ± 10.59 6 97.00 ± 4.83 1 85.00 ± 15.09 8 94.00 ± 6.99 4

Letter 88.21 ± 2.90 4 88.07 ± 1.78 6 87.93 ± 2.27 7 88.21 ± 3.30 5
Liver 75.00 ± 6.08 8 76.76 ± 9.85 7 76.76 ± 5.96 6 77.06 ± 6.47 5
Vote 94.65 ± 6.21 8 96.51 ± 3.51 2 94.65 ± 4.39 7 96.74 ± 2.50 1

Waveform 86.97 ± 5.35 8 89.39 ± 3.98 2 87.88 ± 3.71 7 89.09 ± 2.12 3
Pima 78.42 ± 5.27 7 79.21 ± 3.44 5 77.76 ± 3.94 8 79.34 ± 3.40 4

Segment 97.73 ± 1.92 5 97.27 ± 1.39 8 97.58 ± 2.49 6 97.73 ± 1.29 3
Sonar 90.53 ± 7.77 4 92.63 ± 5.66 2 87.37 ± 13.63 8 93.16 ± 7.04 1
Wine 98.82 ± 2.48 6 98.82 ± 2.48 7 98.24 ± 3.97 8 100.00 ± 0.00 1

Vehicle 84.09 ± 7.73 4 83.86 ± 5.91 5 83.41 ± 4.42 7 85.23 ± 5.59 2

Algorithm WOA SOA AOA IAOA

Dataset Avg ± std Rank Avg ± std Rank Avg ± std Rank Avg ± std Rank

Balance 97.26 ± 2.85 3 97.42 ± 1.56 2 96.94 ± 3.60 6 97.58 ± 2.97 1
Breast cancer 79.26 ± 8.04 3 79.26 ± 5.00 2 77.41 ± 6.40 6 79.63 ± 6.11 1

DNA 90.30 ± 13.54 6 92.27 ± 4.82 2 90.91 ± 6.06 5 91.52 ± 6.71 3
German 78.50 ± 3.10 2 78.30 ± 3.27 4 77.70 ± 3.59 6 78.40 ± 2.41 3

glass 76.67 ± 8.23 8 77.62 ± 5.52 2 77.62 ± 12.10 5 78.10 ± 5.59 1
Heart 87.33 ± 4.39 3 86.33 ± 4.57 4 85.33 ± 6.70 7 86.00 ± 6.05 5

Ionosphere 96.57 ± 2.95 5 97.14 ± 3.56 4 96.57 ± 3.76 6 98.00 ± 2.71 1
Iris 96.67 ± 3.51 8 97.33 ± 4.66 6 97.33 ± 3.44 4 98.67 ± 4.22 1
zoo 94.00 ± 8.43 5 96.00 ± 5.16 2 95.00 ± 5.27 3 93.00 ± 6.75 7

Letter 87.71 ± 1.50 8 88.57 ± 2.69 2 88.57 ± 3.55 3 88.79 ± 2.23 1
Liver 78.24 ± 4.64 2 79.41 ± 7.07 1 78.24 ± 6.82 3 77.94 ± 6.39 4
Vote 95.12 ± 7.31 5 96.05 ± 2.91 4 94.88 ± 4.63 6 96.28 ± 1.63 3

Waveform 88.48 ± 4.30 5 88.79 ± 4.69 4 88.03 ± 4.19 6 89.55 ± 2.62 1
Pima 79.87 ± 3.10 2 79.47 ± 4.69 3 79.08 ± 4.74 6 80.13 ± 4.45 1

Segment 97.73 ± 1.64 4 98.03 ± 1.61 1 97.88 ± 2.39 2 97.42 ± 1.76 7
Sonar 90.00 ± 9.75 5 92.11 ± 10.89 3 88.42 ± 8.15 7 88.95 ± 5.79 6
Wine 99.41 ± 1.86 2 99.41 ± 1.86 3 99.41 ± 1.86 4 99.41 ± 1.86 5

Vehicle 83.64 ± 4.77 6 84.77 ± 4.55 3 83.41 ± 6.25 8 86.36 ± 4.15 1
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5.3. Handwritten Number Recognition Based on SVM Parameter Optimization

Recognition of handwritten numbers [66] has a wide range of applications in our social
life. For example, banking, postal service, e-commerce, etc. However, unlike print, the
recognition of handwriting is much higher than that of print because handwriting varies
from person to person and its arbitrariness is greater. For this reason, this paper applies the



Mathematics 2022, 10, 2875 16 of 20

proposed algorithm to support vector machine parameter optimization so that it can be
applied to handwritten number recognition.

Eighty handwritten number images are selected as the training set, and each number
has eight images. One of the training set sample images is shown as in Figure 5. A total
of 160 handwritten number images of various shapes were selected as the test set, with
16 images for each number. The test set sample images are shown in Figure 6.
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Handwriting Numeral Recognition Experiment

The handwritten number recognition experiment is mainly divided into the following
steps: First, the training set images and the test set images are preprocessed in a stan-
dardized way: each image is inverse-colored and converted into a binary image; then, the
largest region containing digits in the binary image is intercepted, and the intercepted
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region is converted into a standard 16×16 pixel image. Next, IAOA-SVM is constructed,
RBF is selected as the kernel function, and the best combination of penalty factor and
kernel function parameters (C, g) is found by using IAOA for SVM parameter search with
the input training set images. Finally, the best training model is constructed using the
best (C, g) combination, the input test set images, and the test set images are tested for
classification. The algorithm IAOA proposed in this paper is compared with other methods
(GA [2], GWO [10], PSO [11], HHO [13], WOA [14], SOA [16], AOA [34]) in numerical
experiments to verify the practical performance of the algorithm proposed in this paper
by comparing the accuracy rate in handwritten number recognition. Other test conditions
are consistent with Section 5.3. Among them, Table 7 records the accuracy of handwritten
number recognition for all algorithms after optimizing the SVM parameters and the best
combination of penalty factor and kernel function parameters (C, g).

Table 7. Accuracy rate of handwritten digit recognition.

Parameters/Algorithms GA GWO PSO HHO WOA SOA AOA IAOA

C 1.0054 4.7506 98.2224 1.5743 11.0905 1.00 × 10−6 36.1315 53.5288
g 0.0100 0.0001 7.7435 0.0052 3.92 × 10−4 1.00 × 10−6 1.81 × 10−4 0.0109

Accuracy 98.375 96.875 100 99.375 96.875 88.75 98.75 100

The data in Table 7 show that the accuracy of IAOA and PSO is the highest in handwrit-
ten number recognition, which has obvious advantages compared with other algorithms,
and the accuracy of IAOA has obvious improvement compared with AOA. Therefore,
the algorithm proposed in this paper is more competitive in support vector machine pa-
rameter optimization and more applicable to handwritten number recognition, and the
improvement of the AOA algorithm in this paper is meaningful and more practical ability.

6. Conclusions

To address the shortcomings of the basic AOA, an improved arithmetic optimization
algorithm is proposed in this paper. Through the comparison of six benchmark functions,
the proposed algorithm has a significant improvement in convergence speed, convergence
accuracy, and the ability to jump out of the local optimum compared with AOA, and in
the later experiments of support vector machine parameter optimization, the algorithm
has excellent classification accuracy and has stronger practical ability. In the subsequent
research, the algorithm is considered to be applied to more practical fields, such as feature
selection, wireless sensor network node localization, and image segmentation.
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