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Abstract: A large amount of contaminants enter marine systems with river runoff, so the purpose
of the study is to model the transport of suspended particles in the estuary area. To describe
hydrodynamic and hydrophysical processes, the mathematical model of the suspended particles
transport was used, supplemented by a three-dimensional mathematical model of hydrodynamics,
used to calculate the fields of the aquatic environment movement velocity vector, and equation for
calculating the variable density. The approximation of the equations for calculating the velocity field
by spatial variables is based on the splitting schemes for physical processes with fluid volume of
the control areas, which allows for us to consider the complex geometry of the coastline and the
bottom. The suspended particles transport model is approximated using splitting schemes for two-
dimensional and one-dimensional problems. Numerical experiments were carried out to simulate
the aquatic environment movement in the estuary area, the multicomponent suspension deposition,
as well as mixing of waters in the mouth, taking into account the different density of the aquatic
environment. The used models and methods allow to significantly improve the accuracy of modeling
suspended particle transport and consider the factors influencing the studied processes.

Keywords: mathematical modeling; 3D hydrodynamics model; suspended particles transport model;
fluid volume of the control areas method; splitting difference schemes; difference schemes with
weights; Upwind Leapfrog difference schemes
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1. Introduction

In recent decades, pollution of the planet’s water resources has become increasingly
threatening. This situation is mainly related to human activity, which lead to the fact that a
significant amount of pollutants enters aquatic ecosystems, and subsequent resuspension,
caused by natural or human-made situations contributes to secondary pollution. All
this negatively affects the production and destruction processes in aquatic ecosystems.
The study of the natural mechanisms of hydrodynamic processes, taking into account the
variability of meteorological conditions, makes it possible to choose a strategy to minimize
damage from water pollution or prevent pollution of the aquatic ecosystem.

In the Russian Federation, scientific research on the creation and research of complex
marine systems mathematical models has more than half a century history. Many scientists
actively researched the issue of optimal exploitation of water resources, the development
of models for the transport of contaminants in water bodies and the study of assessing
their impact on the biological resources of a water body. In the work of Matishov G.G. [1],
the water exchange between the Black and Azov seas on the basis of long-term ship ob-
servations of the Azov–Black Sea basin is being investigated. In the work of Ilyichev V.G.,
the evolutionary stable characteristics of the Azov Sea are investigated with variations in
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the flow of the Don River [2]. The development and research of basic spatially heteroge-
neous pollutant transport mathematical models of a continuous type for different types of
pollutant sources, including areal, point and linear, in terms of action—instantaneous and
continuous, are described in the article by Berlyand M.E. [3].

Despite a significant number of publications, many effects related to spatial hetero-
geneity of the environment, interspecies interaction, hydrodynamic characteristics of the
environment, temperature and oxygen conditions, salinity, and other characteristics were
not included in the models of the hydrobiological processes of the reservoir. Accounting for
these effects can make a significant contribution to improving the accuracy of forecasts of
dangerous natural and human-made phenomena. The widely used models of hydrodynam-
ics and biological kinetics are often subjected to processes of linearization, simplification,
and idealization. At the same time, some of the factors that can affect the spatial distri-
bution of the researched processes are neglected, which, in turn, can affect the accuracy
of mathematical modeling of the researched objects and phenomena. Simplification of
the parametrization of mathematical models, the use of ordinary differential equations in
the formulation of the Cauchy problem, a point description of the researched processes
are fundamentally incorrect in systems in which the homogeneity of space is significantly
violated, which was noted in the Svirezhev Yu.M. and Logofet D.O. work [4].

The results of an experimental study of the process of solid particles gravitational
settling in a wide range of Reynolds numbers are presented in the works [5,6]. The authors
of these works compared the obtained experimental data with the data on the particle
settling rate calculated for based on the Stokes formula at different concentrations of
particles, liquid density and Reynolds number. In this case, the results of experimental
studies obtained at low concentrations of particles (less than 7.5%) are consistent with the
theoretical data obtained by the Stokes formula. As the concentration of particles increases,
contradictions are observed between the experimental and theoretical results, which can be
explained by the ability of particles to coagulate; therefore, when clustered, the particles
settle at a higher rate. In this case, the greater the concentration of particles, the more
intense the process of coagulation, and, consequently, the rate of deposition increases.

In the work of Tishkin V.F., Gasilov V.A., and others, modern methods of mathemati-
cal modeling are used to study turbulent mixing and the development of hydrodynamic
instabilities [7]. The calculation results obtained using qualitative models of hydrodynamic
processes are widely used to study hydrophysical processes, which significantly improves
the accuracy of their predictive modeling. Klaven A.B. in their work carried out experimen-
tal studies on the basis of hydraulic modeling of the channel process and the movement
of river flows [8]. Cea L., Vazquez-Cendon M.E. engaged in mathematical modeling of
the convective flow movement when calculating the transport of dissolved substances in
it. The shallow water equation was used in this case [9]. The work of Li S., Duffy C.J. is
devoted to the mathematical modeling of the hydrodynamics of shallow water and the
transport of contaminants [10]. In this case, unstructured grids were used to discretize the
continuous problem. Kang S., Sotiropoulos F. developed methods and tools for numerical
modeling of three-dimensional turbulent free surface flow [11]. The study of the effect of
turbulence on the transfer of individual particles in the form of a load in a river bed with a
gravel layer was the goal of the work of scientists Paiement-Paradis G., Marquis G., Roy A.
Paiement-Paradis G. [12]. Pu J.H., Shao S.D., Huang Y.F. in their work [13] described the
numerical and experimental studies of turbulence in shallow flows with an open channel.
Hou J. with co-authors have developed a conservative mathematical model of hydrody-
namics, numerically implemented on unstructured grids for shallow water flows, taking
into account important factors affecting the nature of the studied processes, including
wind stress, evaporation, complex bathymetry of the reservoir [14]. The numerical experi-
ments on simulation of particle-laden flows are described in [15]. Lambert B., Weynans L.,
Bergmann M. propose the Navier–Stokes equations for incompressible flow and partitioned
volume penalization-discrete element method solver for ellipsoidal particle motion. Un-
structured Cartesian grid three-dimensional hydrodynamic model coupled with a laterally
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averaged model for estuaries in [16]. Chen XJ. proposes the methods for shallow water
models, which solve unsteady Reynolds-averaged Navier–Stokes equations. Experiments
were carried out with an idealized estuary case which has a large basin and two narrow
tributaries. In the work [17] Bradford S.F. describes the model based on Navier–Stokes
equations with using of a modified sigma coordinate transformation. This model allows us
to simulate free surface flows and is used for simulating fluid–structure interactions.

A study of the current achievements of Russian and foreign scientists in the field of
mathematical modeling of aquatic ecology processes has shown that the mathematical
models that are part of the software systems used to predict changes in the state of aquatic
ecosystems when natural and technogenic phenomena occur in them do not take into
account important factors that have a significant impact on the nature of the course of the
processes under study. Simplifying hydrodynamic models does not consider turbulent
exchange, the Coriolis force, the complex geometry of the coastline and the bottom, wind
stresses and friction against the bottom, wind and surge phenomena, evaporation, and river
flows. In the coastal areas of shallow water bodies, salt and fresh waters mix and there
is a significant difference in depths. The problem of constructing discrete analogs of the
developed mathematical models with the property of stability arises when modeling the
hydrophysical processes of shallow water bodies. The hydrophysical processes can be de-
scribed by non-stationary and spatially non-homogeneous mathematical models, including
a 3D model of the hydrodynamic processes of a reservoir, models for the transport of salts,
heat, and suspension, which can be represented as systems of nonlinear partial differential
equations. Such problems can be solved based on the methods for solving diffusion-
convection equations. Another urgent task in the construction of mathematical models of
hydrodynamics for the prediction of storm events, the transport of pollutants, and other
dangerous natural and human-made phenomena is the development of difference schemes
under the condition that convective transport prevails over diffusion transport [18–21].
When modeling hydrodynamic processes in channel systems, large values of grid Péclet
numbers arise, therefore, the accuracy of convective transport modeling decreases. It is
also necessary to use models that consider changes in the density of the medium due to a
significant change in salinity. Such systems are difficult to model, as re-suspension occurs
and the structure of the bottom changes dynamically due to sedimentation. Standard
difference schemes do not work. In this paper, methods of mathematical modeling are
proposed that allow to improve the accuracy of modeling the listed processes.

The purpose of this work is to build a three-dimensional non-stationary hydrodynam-
ics model coupled with the model of multicomponent suspended matters transport, as well
as to develop effective methods for the numerical implementation of these problems. In this
work, proposed hydrodynamics model which considers evaporation and precipitation as in
the continuity equation, and in the motion equations, along with the complex shape of the
coastline, the Coriolis force, wind stress and friction on the bottom, which has a complex
relief, etc. This model based on 3D Navier–Stokes equations and the continuity equation for
an water medium with variable density. The particles diameter, the difference between the
particle density and the liquid density and the dynamic medium viscosity consider in the
model of multicomponent suspended matters transport. In the numerical implementation
of hydrophysics models, which can be reduced to problems of the diffusion-convection
type, a developed difference scheme is used. A proposed difference scheme is an optimized
scheme based on the Standard Leapfrog and Upwind Leapfrog schemes. The modified
difference scheme contains weight coefficients equal to 2/3 and 1/3. When calculating the
coefficients, the order of the approximation error was minimized. If the grid Péclet number
is sufficiently large, it becomes difficult to construct a difference scheme of a high order of
accuracy in the mathematical modeling of hydrophysical processes in reservoirs with com-
plex bathymetry. Such cases arise when modeling water flows in river beds. The method
of filling of rectangular cells with a material medium, in particular, with a liquid, is used
to improve the smoothness and accuracy of the approximation of solving hydrodynamic
problems in a region of complex shape. The above methods help to improve the accuracy
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of numerical simulation of hydrodynamic processes in a region of complex shape. As an
illustrative example of the proposed methods using, the problem of transporting suspended
matter from the riverbed to the sea in the estuary areas is solved.

2. Materials and Methods
2.1. Problem Statement

To predict natural and human-made hazards, system of initial-boundary value prob-
lems was constructed, which includes the equations of hydrodynamics, multicomponent
suspended matters transport and variable density.

2.1.1. Hydrodynamics Model

The considered mathematical model of the hydrodynamics of the estuary area in-
cludes [22]:

• equations of motion (Navier–Stokes equations):

∂u
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+ v
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• continuity equation for variable density:

∂ρ

∂t
+

∂(ρu)
∂x

+
∂(ρv)

∂y
+

∂(ρw)

∂z
= 0, (2)

where V = {u, v, w} is water flow velocity vector for the studied shallow water body
[m/s], ρ is the aquatic environment density [kg/m3], P is the pressure [Pa], g is the
acceleration of gravity [m/s2], µ and ν are components of the turbulent exchange
coefficient (horizontal and vertical, respectively) [m2/s], and t is time [s], x, y and z
are the values of distances in spatial coordinate directions [m].

The system (1) and (2) is considered under the following boundary conditions:

• at the entrance: u = u0, v = v0, (∂P/∂n) = 0, (∂V/∂n) = 0;
• coastal zone and bottom: ρµ(∂u/∂n) = −τx, ρµ(∂v/∂n) = −τy, (V, n) = 0, (∂P/∂n) = 0;
• upper bound: ρµ(∂u/∂n) = −τx, ρµ(∂v/∂n) = −τy, w = −ω − (ρg)−1(∂P/∂t),

(∂P/∂n) = 0.
where n is the normal vector directed inside the computational domain, ω is the
evaporation rate of liquid, and τx and τy are components of the tangential stress.

On the free surface, we set the tangential stress as:
{

τx, τy
}

= ρaCds|w|
{

wx, wy
}

,
where Cds = 0.0026, where w is a vector of the wind speed relative to the water [m/s];
ρa is the density of the atmosphere [kg/m3]; Cds is surface resistance coefficient, which
can be set in the range 0.0016–0.0032. For definiteness, we assume that it depends on the
wind speed.

The tangential stress vector for the bottom, considering the movement of water, is
set as:

{
τx, τy

}
= ρCdb|V|{u, v}, Cdb = gn2/h1/3, where h is the depth of the studied

reservoir [m]. The coefficient of roughness n=0.04 is set according to Manning. Consider
that n ∈ [0.025, 0.2].
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2.1.2. Model of Transport of Multicomponent Suspended Matters

Transport of suspended multicomponent particles is described using the diffusion-
convection equation of the following form:

∂cr

∂t
+

∂(ucr)

∂x
+

∂(vcr)

∂y
+

∂((w + ws,r)cr)

∂z
=

=
∂

∂x

(
µ

∂cr

∂x

)
+

∂

∂y

(
µ

∂cr

∂y

)
+

∂

∂z

(
ν

∂cr

∂z

)
+ Fr, (3)

where cr, ws,r are the concentration and the speed of sedimentation of r-th fraction of
suspension, respectively, [mg/L], [m/s]; Fr is a function that sets the intensity of the
distribution of sources of r-th fraction of suspension [mg/(L·s)].

Equation (3) is considered under the following boundary conditions:

• on the free surface: (∂cr/∂z) = 0;
• near the bottom surface: ν(∂cr/∂z) = −ws,rcr;
• on the lateral boundary: (∂cr/∂n) = 0, if (V, n) ≥ 0 and ν(∂cr/∂n) = (V, n)cr,

if (V, n) < 0.

The process of particle settling occurs according to the laws of falling bodies in a
medium that resists their movement. When settling, the particles first move rapidly,
and then the frictional resistance force of the medium and the force of gravity are balanced,
and the particles acquire a constant speed and settle evenly.

As parameters that have a significant impact on the rate of sedimentation of suspen-
sion, we can distinguish:

• particle diameter (the diameter is greater, the particle settling rate is greater);
• the difference between the particle density and the liquid density (the difference in

densities is greater, the settling rate is higher);
• dynamic medium viscosity (the dynamic medium viscosity is lower, the particle

settling rate is higher).

The constant settling rate can be determined by the formula (Stokes’ law):

ws,r =
gd2

r (ρV,r − ρ)

18η
,

where dr is the diameter of the deposited r-th fraction particle [m], ρV,r is the density of the
deposited r-th fraction particle [kg/m3], ρ is the density of the medium [kg/m3], η is the
dynamic medium viscosity [Pa·s].

It should be noted that the use of Stokes’ law is possible only within certain limits.
The upper limit is determined by the moment of transition from suspension to colloidal
solutions, when the particles of the dispersed phase have a size of 0.1–0.5 η, and also
considers the effect of Brownian motion, which does not prevent particle settling.

The upper limit of the use of the Stokes’ law is characterized by the numerical indicator
of the Reynolds criterion Re ≈ 2. In the event that the resistance of the medium is
proportional to the square of the velocity and Re > 2, then the following formula is used to
calculate the particle settling velocity:

ws,r =

√
4gdr(ρV,r − ρ)

3ρζ
,

where ζ is the medium hydraulic resistance coefficient. At 2 < Re < 500, the value of the
resistance coefficient ζ = 18.5/Re0.6, and in the case of 500 < Re < 1500, the resistance
coefficient is ζ = 0.44.

Almost always, the sedimentation rate in a liquid medium is determined by the
numerical value of the Reynolds criterion with a preliminary determination of the value
of the Archimedes criterion. Even in coarse suspensions, as a rule, there are a sufficient
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number of particles for which Re < 2. Thus, they have a low settling rate, which can be
determined from Stokes’ law.

2.1.3. Equation of Variable Density

The standard formula is used to calculate the density of the aquatic environment:

ρ =

(
1−

R

∑
r=1

Vr

)
ρ0 +

R

∑
r=1

VrρV,r, cr = VrρV,r, (4)

where Vr, ρV,r are the volume fraction and density of r-th fraction of suspension, ρ0 is the
density of fresh water under normal conditions, and R is number of fractions.

The density is found from Equation (4). The found solution is substituted into the
system of motion Equations (1) and the continuity Equation (2). In the absence of impurity,
the continuity equation looks like div(V) = 0. The solution of the system of Equation (1) is
found taking into account Equation (2).

2.2. Approximation of Hydrodynamics Equations

Introduce a uniform grid for approximation of the 3D hydrodynamics mathematical
model (1)–(2):

wh =
{

tn = nτ, xi = ihx, yj = jhy, zk = khz; n = 0, Nt, i = 0, Nx, j = 0, Ny, k = 0, Nz;

Ntτ = T, Nxhx = lx, Nyhy = ly, Nzhz = lz
}

,

where τ is the time step; hx, hy, hz are the space step; Nt is the number of time layers; T
is the upper bound in time; Nx, Ny, Nz are the number of nodes in space; lx, ly, lz are the
characteristic dimensions of the computational domain.

The method of splitting by physical processes is used. In this case, the hydrodynamic
model is transformed into three subproblems [23–25]. The components of the water flow
velocity vector will be calculated on the basis of the first subproblem of the diffusion-
convection type selected in the process of splitting. For calculations on the intermediate
time layer, we will use the following equations:

ũ− u
τ

+ u
∂ū
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∂ū
∂y

+ w
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)
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, (5)

w̃− w
τ

+ u
∂w̄
∂x

+ v
∂w̄
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+ w
∂w̄
∂z

=
∂
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(
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)
+

∂
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(
µ
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∂y

)
+

∂

∂z

(
ν

∂w̄
∂z

)
+ g,

where V = {u, v, w} is the velocity vector with components in the previous time layer.
In Equation (5), we introduced the notation ũ, ṽ, w̃ are the components of the velocity vector
in the intermediate time layer; ū = σũ + (1− σ)u, σ ∈ [0, 1] is the weight of the scheme.

To solve the second subproblem (calculation of pressure), the equation is used:

∂2P
∂x2 +

∂2P
∂y2 +

∂2P
∂z2 =

ρ̂− ρ

τ2 +
1
τ

(
∂(ρ̂ũ)

∂x
+

∂(ρ̂ṽ)
∂y

+
∂(ρ̂w̃)

∂z

)
, (6)

where ρ̂ and ρ are distribution of the density of the aquatic environment on the current and
previous time layers, respectively.

Equality (6) is based on the Poisson equation.
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When solving the third subproblem, obtained as a result of splitting into physical
processes, the water flow velocity is determined in a new time layer using the formulas:

û− ũ
τ

= −1
ρ̂

∂P
∂x

,
v̂− ṽ

τ
= −1

ρ̂

∂P
∂y

,
ŵ− w̃

τ
= −1

ρ̂

∂P
∂z

, (7)

where û, v̂, ŵ are the components of the velocity vector at the current time layer.
Formula (7) are of explicit type and are easy to implement.
The degree of cell “fullness” in the implementation of the calculation algorithms is

indicated oi,j,k and is determined on the basis of the pressure of the water column on the
bottom of the considered cell (i, j, k). According to the expression from [26], the degree of
cell filling is determined as follows:

oi,j,k =
Pi,j,k + Pi−1,j,k + Pi,j−1,k + Pi−1,j−1,k

4ρghz
. (8)

The position of the free surface is determined by the pressure of the liquid column
based on Formula (8). If the liquid is not in a state of weightlessness, this method of calcu-
lating the level elevation function guarantees the conservation of the amount of substance.

From the total hydrodynamic pressure P(x, y, z, t), two components can be condition-
ally distinguished the pressure of the liquid column or hydrostatic pressure and the excess
pressure over hydrostatic pressure:

P(x, y, z, t) = p(x, y, z, t) + ρ0gz, (9)

where ρ0gz is the hydrostatic pressure of the undisturbed fluid, p is the excess pressure
over hydrostatic pressure.

Using (9), three subproblems (5)–(7) will be written in the forms:
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and
û− ũ

τ
= −1

ρ̂
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,
v̂− ṽ

τ
= −1

ρ̂

∂p
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ŵ− w̃

τ
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, (12)

Note that the term g(ρ0/ρ− 1) in the last equation from (10) describes buoyancy or
the Archimedes force.

The separation of two components from the pressure is caused by computational
expediency. The calculation of problem (11) is computationally expensive because the
operator is ill-conditioned. The pressure is calculated in two steps:

• first step: the pressure is calculated in the hydrostatic approximation (without taking
into account vertical movement and depth stratification) based on two-dimensional
subproblem;

• second step: the pressure excess over the hydrostatic pressure is found.
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Such an approach for calculating the hydrodynamics of shallow reservoirs can sig-
nificantly reduce computational costs. Note that p, in contrast to P, practically does not
change with depth.

Applying the balance method, modified by introducing fill factors, an approximation
of the hydrodynamic problem is implemented, as a result of which the calculation of the
water flow velocity field is calculated.

2.3. Approximation of the Suspended Particles Transport Model

We approximate by an equation of the diffusion-convection type for the three-
dimensional case:

∂c
∂t

+ u
∂c
∂x

+ v
∂c
∂y

+ w
∂c
∂z

=
∂

∂x

(
µ

∂c
∂x

)
+

∂

∂y

(
µ

∂c
∂y

)
+

∂

∂z

(
ν

∂c
∂z

)
. (13)

Equation (13) is an analog of Equation (3) for the one-component suspension. (Using
the example of Equation (13), an approximation of Equations (3) and (10)–(12) is consid-
ered.)

A grid (uniform rectangular) ωτ was used for calculations. The time step τ was used
for discretization:

ωτ =
{

tn = nτ, n = 0, Nt, Ntτ = T
}

.

For Equation (13), the splitting schemes into a two-dimensional and one-dimensional
problem are used [27,28]:

cn+1/2 − cn

τ
+ u

∂c̄
∂x

+ v
∂c̄
∂y

=
∂

∂x

(
µ

∂c̄
∂x

)
+

∂

∂y

(
µ

∂c̄
∂y

)
, (14)

cn+1 − cn+1/2

τ
+ w

∂c̃
∂z

=
∂

∂z

(
ν

∂c̃
∂z

)
, (15)

where cn, cn+1/2, and cn+1 are the values of the concentration fields of a one-component
suspension on the current time layer tn, on the intermediate time layer tn+1/2, and on
the next time layer tn+1, respectively, c̄ and c̃ are the values of the concentration field
of a one-component suspension on a certain intermediate layer located on the segment
t ∈

[
tn, tn+1/2

]
, c̄ = σxycn+1/2 +

(
1− σxy

)
cn, c̃ = σzcn+1 + (1− σz)cn+1/2, where σxy and

σz are the weights of the scheme in problems (14) and (15), respectively.
Solve a model problem of the form (10). When organizing calculations, a grid is used

in the form:

wh =
{

xi = ihx, yj = jhy; i = 0, Nx, j = 0, Ny; Ntτ = T, Nxhx = lx, Nyhy = ly
}

,

where hx, hy, τ are the space and time steps, respectively, Nx, Ny, Nt are the upper bounds
in time and space, respectively. Denote the characteristic dimensions of the computational
domain in the directions of the axes Ox, Oy in the following way: lx, ly.

Set the volume of fluid (VOF) of the areas located near the cell using the coeffi-
cients q0, q1, q2, q3, q4. The filling of the area D0 is determined by the coefficient q0:{

x ∈ (xi−1/2, xi+1/2), y ∈ (yj−1/2, yj+1/2)
}

, q1 − D1 : D0 ∩ {x ≥ xi},
q2 − D2 : D0 ∩ {x ≤ xi}, q3 − D3 : D0 ∩

{
y ≥ yj

}
, q4 − D4 : D0 ∩

{
y ≤ yj

}
.

Denote Ωm m = 0, 4 the parts of the areas Dm that are filled. Calculate the coefficients
qm based on the works [29]:

(qm)i, j =
SΩm

SDm

, (q0)i, j =
oi, j + oi+1, j + oi+1, j+1 + oi, j+1

4
, (q1)i, j =

oi+1, j + oi+1, j+1

2
,
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(q2)i, j =
oi, j + oi, j+1

2
, (q3)i, j =

oi+1, j+1 + oi, j+1

2
, (q4)i, j =

oi, j + oi+1, j

2
.

Let the boundary condition have the form ∂c
∂n = αnc + βn. Discretization the convec-

tion and diffusion operators is calculated on the basis of [29]:

(q0)i,ju
∂c
∂x
' (q1)i,jui+1/2,j

ci+1,j − ci,j

2hx
+ (q2)i,jui−1/2,j

ci,j − ci−1,j

2hx
,

(q0)i,j
∂

∂x

(
µ

∂c
∂x

)
' (q1)i,jµi+1/2,j

ci+1,j − ci,j

h2
x

− (q2)i,jµi−1/2,j
ci,j − ci−1,j

h2
x

−

−
∣∣∣(q1)i,j − (q2)i,j

∣∣∣µi,j
αxci,j + βx

hx
.

Approximation of model (14) is based on a difference scheme modified by specifying a
combination of Standard Leapfrog and Upwind Leapfrog schemes. In this case, the values
of the weight coefficients of the linear combination used in the difference scheme can be
calculated on the basis of minimizing the order of the approximation error, as was done
in [18,29]. This difference scheme increases the accuracy of the hydrodynamic problems
numerical solution for large values of the grid Péclet number (in the range from 2 to
20) [29]. Additionally, the approximation of model (14) considers the function values of
filling the cells of the computational domain [18]. Equation (15) is solved by the elimination
method [28].

2.4. Determination of the Optimal Scheme Weight

Consider the one-dimensional diffusion-convection equation:

∂q
∂t

+ u
∂q
∂x

= µ
∂2q
∂x2 , u = const, µ = const, 0 < x < L, t > 0, (16)

with an initial distribution q(x, 0) = q0(x) and boundary conditions q(0, t) = 0, q(L, t) = 0,
t > 0.

Let us find a solution to the problem of the form (16) in the class of functions
q(x, t) ∈ C2((0, L)) ∩ C([0, L]) ∩ C1((0, ∞)) ∩ C([0, ∞)).

For the function q(x, t), set the sum of the Fourier series (finite, in complex form)
according to the formula:

q(x, t) =
N

∑
m=−N

Cm(t) exp(jωmx), (17)

where ω = π
L , m is the number of the harmonic, Cm(t) = 2

L

L∫
0

q(x, t) exp(−jωmx)dx is the

complex amplitude of m-th harmonic, j =
√
−1.

The sum of the components of different frequencies is written on the right side of For-
mula (17). When constructing a numerical solution, consider a grid (uniform, rectangular),
define it as a set of the following form: ωh =

{
xi = ih; i = 0, N; Nh = L

}
. When setting

the grid, the following parameters were used: h, N – step and the number of nodes in the
spatial coordinate. Discretization of Equation (16) using the introduced grid allows us to
pass to an equation of the form:

∂q
∂t

= −(Λq)i, define (Λq)i = u
qi+1 + qi−1

2h
+ µ
−qi+1 + 2qi − qi−1

h2 ,

qi =
N

∑
m=−N

Cm exp
(

jπmi
N

)
.
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Note that the eigenvalues of the operator (Λq)i can be found by the formula:

λm = −
(

2µ
1− cos

(
πm
N
)

h2 + ju
sin
(

πm
N
)

h

)
. (18)

Consider a space-time grid ω = ωh × ωτ by introducing an additional time grid
ωτ =

{
tn = nτ, n = 0, Nt, Ntτ = T

}
, where τ, Nt is the step and number of nodes in time,

respectively. To approximate Equation (16) with respect to a time variable, we will use
scheme with weight:

Cn+1
m − Cn

m
τ

= −λm

(
σCn+1

m + (1− σ)Cn
m

)
or Cn

m =

(
1− χm

1 + χmσ

)
Cn−1

m , (19)

where Cn+σ
m = σCn+1

m + (1− σ)Cn
m, σ ∈ [0, 1] is the weight of the scheme, χm = λmτ.

Let us find the value of the weight σ of the scheme, at which the error of the numerical
solution is minimal. The value of the error at the n-th time layer, in terms of the exact value
Cm(tn) and the approximate value of the function Cn

m, can be expressed in terms of the
following function:

ψn
m = Cn

m − Cm(tn),

or

ψn
m =

(
1− χm

1 + χmσ

)
ψn−1

m + Cm

(
tn−1

)(
1− χm

1 + χmσ
− exp(−χm)

)
,

where Cm(tn) = Cm
(
tn−1) exp(−χm).

The estimate of the error in the numerical solution of the problem (16) based on [18]:

|ψn
m| ≤ max

k=0,n−1

∣∣∣Cm

(
tk
)∣∣∣∣∣∣∣((1− exp(−χm))σ +

1− exp(−χm)− χm

χm

)∣∣∣∣. (20)

It is obvious that the approximation error with respect to the time variable on the i-th
layer does not exceed max

m
|ψn

m|.
Let us introduce the notation:

z1,m = 1− exp(−χm), z2,m =
1− exp(−χm)− χm

χm
.

Then, taking into account (20) and Parseval’s theorem, we obtain:

‖Ψn‖2 =
N

∑
m=−N

|ψn
m|

2 ≤
N

∑
m=−N

max
k=0,n−1

∣∣∣Cm

(
tk
)∣∣∣2|z1,mσ + z2,m|2 =

=
N

∑
m=−N

max
k=0,n−1

∣∣∣Cm

(
tk
)∣∣∣2[((Re z1,m)

2 + (Im z1,m)
2
)

σ2+

+2(Re z1,m Re z2,m + Im z1,m Im z2,m)σ + (Re z2,m)
2 + (Im z2,m)

2
]
.

Consider the function:

sm(χm, σ) =
N

∑
m=1

max
k=0,n−1

∣∣∣Cm

(
tk
)∣∣∣2[((Re z1,m)

2 + (Im z1,m)
2
)

σ2+

+2(Re z1,m Re z2,m + Im z1,m Im z2,m)σ + (Re z2,m)
2 + (Im z2,m)

2
]
.

To find min
σ
|sm(χm, σ)|, we define the extremum points of the function sm(χm, σ) by

the variable σ:
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∂sm(χ, σ)

∂σ
= 2

N

∑
m=1

max
k=0,n−1

∣∣∣Cm

(
tk
)∣∣∣2[((Re z1,m)

2 + (Im z1,m)
2
)

σ+

+(Re z1,m Re z2,m + Im z1,m Im z2,m)] = 0. (21)

From (21) obtain:

σ = −

N
∑

m=1
max

k=0,n−1

∣∣∣Cm

(
tk
)∣∣∣2(Re z1,m Re z2,m + Im z1,m Im z2,m)

N
∑

m=1
max

k=0,n−1

∣∣Cm
(
tk
)∣∣2((Re z1,m)

2 + (Im z1,m)
2
) . (22)

The above reasoning allows us to determine the optimal value of the scheme weight σ
at which the error in the numerical solution of problem (16) is minimal.

3. Results of Numerical Experiments

Software package in C++ for the numerical solution of problem (1)–(4) was devel-
oped. This software considers such physical parameters as: turbulent exchange, complex
bathymetry, the influence of wind and friction on the bottom surface of the study area,
and the presence of a significant density gradient in the aquatic environment. The software
package allows us to calculate three-dimensional water flow velocity fields based on the
model (1) and (2), the model of transport of suspended particles (3) and the model of trans-
port of suspended particles, taking into account the movement of the aquatic environment
(1)–(4).

3.1. Numerical Implementation of the Hydrodynamic Model

In the numerical implementation of the model (1) and (2) based on the developed
software package, the following functions associated with the calculation are performed:

• water flow velocity fields, while pressure will not be considered;
• hydrostatic pressure, which in the numerical implementation of the considered mathe-

matical model can be used as an initial approximation when calculating the values of
the hydrodynamic pressure function at the nodes of the computational domain of the
considered uniform rectangular grid;

• hydrodynamic pressure;
• fields of water flow velocity in the three-dimensional case.

Consider modeling the movement of the aquatic environment using a test problem.
The uniform rectangular grid 100 × 100 × 40 computational nodes is introduced. The pa-
rameters of the computational domain are: 50 × 50 × 4 (length, width and depth are
determined). The horizontal steps were 0.5 m, the vertical—0.1 m. The calculations were
carried out for a time interval of 1 min with a time step of 0.25 s. The input data for the
calculation according to model (1) and (2): pressure is 1.29 Pa, water density is 1000 kg/m3,
the horizontal and vertical components of the turbulent exchange coefficient are 0.01 m2/s
and 0.0005 m2/s, respectively, and the acceleration of gravity is 9.81 m/s2.

Determine the geometry of the computational domain using a depth map (Figure 1).
In Figure 1, legend on the right the depth values in meters are shown.

Figure 2 shows a numerical experiment based on the developed software package.
The color reflects the values of the water flow velocity vector (three-dimensional case).
A part of the computational area, the estuary area, has been identified. The calculations
were carried out on the basis of the developed software package for various time intervals:
15 s, 30 s, 45 s and 1 min.
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Figure 1. Depth map of the computational domain.

(a) (b)

(c) (d)

Figure 2. Dynamics of water flow changes in the estuary area. (a) time interval is 15 s; (b) time
interval is 30 s; (c) time interval is 45 s; (d) time interval is 1 min.

The considered scenario (Figure 2) allows us to observe the complex dynamics of
the water flow movement process in process of time, which is quite typical for the re-
searched phenomena.

The developed software package allows us to predict the appearance of flooding and
drainage areas in the estuary area of the river.

3.2. Suspended Particle Transport Modeling

Describe the software implementation of the suspension transport model for the test
problem of hydrophysics of the estuary area, in which the process of sedimentation of
two fractions with different properties and characteristics is studied. For fraction A, set
the deposition rate to 2.4 mm/s. Let the percentage of fraction A in dusty particles be
36%. In this case, we set the sedimentation rate of fraction B to 1.775 mm/s. Let the
percentage of fraction B be 64%. Computational domain parameters: length 1 km; width
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720 m. In the experiment, the horizontal and vertical steps were 10 and 1 m, respectively.
The calculated interval within the considered experiments was 2 h. In the framework of
the described experiment, the suspension source is placed at a distance of 5.5 m from the
bottom. Determine the average flow velocity in the area with the suspension source, its
value is 0.075 m/s.

Build graphs of changes in the granulometric composition of the bottom. We will set
different initial concentrations of suspended particles (Figure 3). As part of the experiment,
we believe that a horizontal axis passes through the dredging area, directed along the
current. On the vertical axis of Figure 3a,b show the depth of the reservoir (m). Let us
direct the Oz axis down vertically. The level of bottom sediments (in mm) is plotted along
the vertical Oz axis directed vertically upwards (Figure 3c,d). During the experiment,
the concentrations of fraction A in water were determined (Figure 3a). Figure 3b shows the
change in the concentration values of the second fraction (fraction B) in water. Within the
framework of the experiment, the percentage composition of fractions A and B in bottom
sediments was calculated (Figure 3c,d).

(a) (b)

(c) (d)

Figure 3. Dynamics of water flow changes in the estuary area. (a) concentrations of fraction A in
the water; (b) concentrations of fraction B in the water; (c) concentration of fraction A in bottom
sediments; (d) concentration of fraction B in bottom sediments.

The scenario approach allows us to study the dynamics of changes in the geometry
and granulometric composition of the bottom. The software package allows us to model
the process of formation of sediments and structures of complex shape, to analyze the
transport of suspended matter in a shallow water body, including the estuary area. The de-
veloped software package allows us to study the effect of hydrophysical processes on
hydrobiocenoses, control the level of water pollution, and also determine the trophic status
of a reservoir.
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3.3. Numerical Implementation of a Hydrophysical Model with Significant Density Gradient in the
Aquatic Environment

Consider the results of software implementation of numerical solution of the math-
ematical model of estuary area hydrodynamics in the form (1)–(4). This model is charac-
terized by of a significant density gradient of the aquatic environment. Define the input
data: flow speed is 0.2 m/s; deposition rate is 2.042 mm/s (by Stokes); fresh water density
under normal conditions is 1000 kg/m3; suspension density is 2700 kg/m3. Let the volume
fraction of the suspension is 1/17. Define the calculation area. Consider that its length and
width is 50 m; the depth is 2 m. In the calculations, horizontal and vertical steps were used,
their values were 0.5 and 0.1 m. The time step was set equal to 0.25 s. The time interval
was 5 min.

Analyze the results of a numerical experiment of suspended matter transport for the
following scenario: we believe that there is a significant gradient in the density of the aquatic
environment in the area under consideration. The results obtained are shown in Figures 4
and 5, where the density is reflected on the right in the cross section of the computational
domain by the xOz plane. Consider that this plane is located in the center, while y = 25 m.
Figures 4 and 5 show the values of the suspended matter concentration averaged over depth
on the left. The calculated interval was 1 min and 5 min after the start of the computational
experiment. Figures 4 and 5 allow to study the hydrophysical processes of the estuary area,
including the transport of suspended matter, the vertical sections on the right show the
change in the concentration of suspended matter. Consider that the layers of the aquatic
environment are stratified. The density of the aquatic environment changes dynamically
over time.

(a) (b)

Figure 4. The movement of water and suspended matter in the mouth area after 1 min. (a) concentra-
tion of suspended matter; (b) water density.

The software package developed on the basis of the proposed mathematical mod-
els of hydrodynamics and suspension transport has a fairly wide range of applications.
The developed software allows us to analyze the transport of suspensions lighter than
water, and with appropriate parameterization allows us to predict the spatial change in the
concentrations of heavy impurities in a shallow water body.
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(a) (b)

Figure 5. The movement of water and suspended matter in the mouth area after 5 min. (a) concentra-
tion of suspended matter; (b) water density.

4. Discussion

After analyzing the existing models and methods intended for modeling hydrody-
namic processes and suspension transfer, it was found that the developed complex of 4D
mathematical models allows us to increase the accuracy of modeling the processes under
study. Many existing models are developed to simulate hydrodynamic processes in deep
water bodies and cannot be used for coastal systems that are characterized by a large
difference in depths, salinity, significant influence of winds and river runoff. The proposed
model of hydrodynamics is more accurate than the known ones, since it considers the
bathymetry of the bottom surface, surge phenomena. When constructing a mathematical
model of the hydrophysics of the estuary area, important factors were considered that affect
the nature of the researched processes, including wind stresses and friction on the bottom,
turbulent exchange, the Coriolis force, evaporation, etc.

For calculations, schemes were used that consider the filling of the cells [28]. The method
of volume of fluid (VOF) of rectangular cells with a material medium (liquid) was applied
in order to improve the accuracy of calculations.

An estimate of the accuracy of solving the hydrophysics problem of the estuary area
for different computational grids (for different discretization parameters) is obtained. As a
result, it was found that the relative error of the solution with stepwise approximation of
the boundaries can reach up to 70%. The development of the proposed numerical method
for solving the problem described in the study allows us to reduce the calculation error
to 6%. Thickening the computational grid by a factor of 2–8 horizontally and vertically is
less efficient, because does not provide such a result. If the central-difference scheme is
used to construct a discrete analogue of the considered problem of impurity transport in
a shallow water body, researchers have the problem of loss of accuracy if the grid Péclet
number takes large values. The problem can be solved by grid thickening, which is often
not efficient enough and significantly increases the computational work. Let us take a
simple example. In the numerical implementation of the three-dimensional problem of
diffusion-convection, a decrease in the Péclet number by 2 times entails the need to reduce
the steps in spatial variables by 2 times, and by 4 times for the time step. It is easy to
determine that this will lead to an increase in labor intensity by 32 times. On the other hand,
the indicated problem can be solved by developing a new class of difference schemes. In the
framework of the study, a modified difference scheme is used to discretize the proposed
model of hydrophysics of the mouth area in the case of large values of the grid Péclet
number. The scheme takes into account the cell occupancy function [18]. It is based on the
Upwind Leapfrog and Standard Leapfrog schemes known in the literature, it is their linear
combination of a special type. The novelty of the developed scheme is that it includes
weight coefficients calculated by minimizing the approximation error.
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This difference scheme, when solving diffusion-convection problems, practically does
not have grid viscosity and, as a consequence, more accurately describe the behavior of
the solution in the case of large grid Péclet numbers, and also preserves the smoothness
of the solution at the interface when solving hydrodynamic problems with a complex
shape of the boundary surface (no oscillations associated with the stepwise approximation
of the boundaries). The use of these schemes in solving hydrodynamic allows us to
describe more accurately the dynamics of the aquatic environment in estuary areas, then
the classical schemes.

The software package is implemented on the basis of a difference scheme with the
optimal value of the weight parameter, which made it possible to increase the time step in
comparison with the classical approaches.

5. Conclusions

The paper proposes: a three-dimensional hydrodynamics model of estuary areas for
calculating 3D fields of the water flow velocity vector, as well as a model of the transport of
particles of a multicomponent suspension. The approximation of the continuous problem
of calculating the water bodies velocity field in terms of spatial variables is based on the
balance method taking into account the occupancy factors of the calculated cells, which
allows us to consider the complex geometry of the coastline and thereby increase the
modeling accuracy. The approximation of the model of the transport of suspended particles
based on schemes of splitting into a two-dimensional and one-dimensional problems.
The discretization of the developed mathematical models based on the difference scheme
obtained as a result of a linear combination of the Upwind and the Standard Leapfrog
difference schemes with weight coefficients obtained from the condition of minimizing
the order of approximation error. For the numerical implementation of the considered
hydrophysics models, which allows us to calculate three-dimensional velocity fields of
the water bodies, to study the sedimentation process of suspended particles, including in
the case of a multicomponent suspension, and also to predict the dynamics of the water
movement process in the estuary area in the case of a significant density gradient of the
water medium.
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