
����������
�������

Citation: Tang, Z.; Fu, Z.; Reutskiy, S.

An Extrinsic Approach Based

on Physics-Informed Neural

Networks for PDEs on Surfaces.

Mathematics 2022, 10, 2861. https://

doi.org/10.3390/math10162861

Academic Editors: Fajie Wang, Ji Lin

and Junseok Kim

Received: 4 July 2022

Accepted: 8 August 2022

Published: 11 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Extrinsic Approach Based on Physics-Informed Neural
Networks for PDEs on Surfaces
Zhuochao Tang 1,2, Zhuojia Fu 1,2,3,* and Sergiy Reutskiy 2

1 Key Laboratory of Ministry of Education for Coastal Disaster and Protection, Hohai University,
Nanjing 210098, China

2 Center for Numerical Simulation Software in Engineering and Sciences, College of Mechanics and Materials,
Hohai University, Nanjing 211100, China

3 State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics
and Astronautics, Nanjing 210098, China

* Correspondence: paul212063@hhu.edu.cn

Abstract: In this paper, we propose an extrinsic approach based on physics-informed neural net-
works (PINNs) for solving the partial differential equations (PDEs) on surfaces embedded in high
dimensional space. PINNs are one of the deep learning-based techniques. Based on the training data
and physical models, PINNs introduce the standard feedforward neural networks (NNs) to approxi-
mate the solutions to the PDE systems. Using automatic differentiation, the PDEs information could
be encoded into NNs and a loss function. To deal with the surface differential operators in the loss
function, we combine the extrinsic approach with PINNs and then express that loss function in ex-
trinsic form. Subsequently, the loss function could be minimized extrinsically with respect to the NN
parameters. Numerical results demonstrate that the extrinsic approach based on PINNs for surface
problems has good accuracy and higher efficiency compared with the embedding approach based
on PINNs. In addition, the strong nonlinear mapping ability of NNs makes this approach robust
in solving time-dependent nonlinear problems on more complex surfaces.

Keywords: machine learning; extrinsic; embedding; intrinsic; surfaces; Laplace–Beltrami operator

MSC: 68T07; 65N99; 65M99

1. Introduction

Various applications in science and engineering, as a matter of fact, refer to solutions
of Partial Differential Equations (PDEs) on curved surfaces or more general manifolds. Such
applications include the generation of textures [1] or the visualization of vector fields [2]
in image processing, flows and solidification [3] on surfaces in fluid dynamics and evolving
surfactants [4] on interfaces in biology, etc.

To solve such surface problems, many numerical methods have been put into opera-
tion, including the typical finite difference method (FDM), finite element method (FEM),
finite volume method (FVM), phase field (PF) method, radial basis function (RBF) colloca-
tion method, meshless generalized finite difference method (GFDM), generalized moving
least squares (GMLS) method, etc. Generally, these methods cannot be directly used to han-
dle surface problems because the surface differential operators are defined in tangent space
rather than Euclidean space. In order to effectively map surface operators, Ruuth et al. [5]
put forward the closest point method based on the closest point representation of the surface
and then solved embedded PDEs by standard FDM in Euclidean space; further, Piret [6]
presented the orthogonal gradients method, which extends the closest point method to a
mesh-free version; Hansbo et al. [7] proposed the cut finite element method to solve
PDEs on implicit surfaces via level set methods; Cheung et al. [8] combined the unsym-
metric Kansa method and embedding conditions (or constant-along-normal conditions)

Mathematics 2022, 10, 2861. https://doi.org/10.3390/math10162861 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10162861
https://doi.org/10.3390/math10162861
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3231-1597
https://doi.org/10.3390/math10162861
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10162861?type=check_update&version=2


Mathematics 2022, 10, 2861 2 of 14

to construct an overdetermined system for such surface problems; Chen et al. [9,10] used
the projection matrix and the idea of pseudospectra to approximate the Laplace–Beltrami
operator (also known as surface Laplace operator) only using collocation points on surfaces.
These advanced techniques to map surface operators can be roughly divided into three cate-
gories: intrinsic approaches [11], embedding approaches [12] and extrinsic approaches [13].
Intrinsic treatment aims to impose global or local parameterization [11] on curved surfaces
and then express surface differential operators within new coordinates. The embedding
approach aims to make embedding PDE be the analog of the surface PDE and involve only
the standard Cartesian operators. The extrinsic approach is to express surface operators
in extrinsic form and approximate them extrinsically. In our previous work [14–16], we
have combined the meshless GFDM with an extrinsic approach to solve uring pattern for-
mation problems, anomalous diffusion problems and the heat and mass transfer problems
on surfaces. The extrinsic approach is numerically proved to be a quite effective treatment.

However, traditional numerical methods inevitably need mesh generation or node
generation over the whole computational domain. Additionally, the quality of mesh or node
distribution more or less has an influence on numerical accuracy [17]. On the contrary, there
is no such concept as mesh quality in machine learning methods [18]. In other words, ma-
chine learning methods do not require high-quality meshes, but only require relatively uni-
form data sampling. To overcome the dilemma that conventional neural network methods
lack robustness under the small data regime, Tarkhov et al. [19–22] first introduced the PDE
information into neural network models with single hidden layers to solve various mathe-
matical problems. Based on this, Raissi et al. [23,24] recently developed a series of deep
neural networks based on physical information named physics-informed neural networks
(PINNs). PINNs aim to replace the PDE solution with a feedforward neural network and
take advantage of information from PDEs and initial/boundary conditions to form an opti-
mized system explicitly. This explicit system originates from the information based on train-
ing data and could also be defined as a terminology loss function. By minimizing this
system with respect to the parameters (including weights and biases) defined in NNs, PINNs
could find one NN which best describes the physical model governed by the PDEs [25–27].
To specify the differential operators acting on the variables, PINNs employ the automatic
differentiation technology and classical chain rule. As a matter of fact, Bihlo et al. [28] have
applied PINNs to solve shallow-water equations on the sphere. In that paper, they used the lati-
tude–longitude coordinates; i.e., they imposed one smooth parameterization on sphere and then
expressed the shallow-water equations in latitude–longitude coordinates. Apparently, the same
operation cannot be conducted on more general surfaces. Additionally, Fang et al. [29] first
combined the PINNs with the embedding approach to solve time independent PDEs on surface.
However, they only considered some of the embedding conditions, and the numerical accuracy
can be further improved by applying complete embedding conditions.

In this paper, our main contribution is to propose an extrinsic approach based on the PINNs
to solve surface PDEs on curved surfaces or more general manifolds. Compared with surface-
type intrinsic approach, although our method is related to the ambient dimension rather
than the surface dimension, its capability of handling more complex surfaces makes it more
competitive. In addition, we also combined the embedding approach with PINNs to make
a direct comparison with the extrinsic approach with regard to computational efficiency. We
introduce the complete embedding conditions, which means that more complex optimization
function will be formed, resulting in the inefficiency of the approach. This also shows that
extrinsic approach performs well in computational efficiency.

The remainder of the paper is organized as follows: Section 2 gives details on PDEs
defined on surfaces, introduces the PINNs and describes their implementation. In Section 3,
we demonstrate the effectiveness of PINNs under several numerical examples. In this
section, we first illustrate the convergence results by using different parameters in PINNs
and test the robustness of PINNs by adopting sundry smooth surfaces. In the same section,
we also present a comparison of numerical results by using randomly distributed training
points and points that are quasi-uniformly distributed in 3D space. Further, we explore



Mathematics 2022, 10, 2861 3 of 14

the potential of PINNs for time-dependent nonlinear problems on more general surfaces.
Finally, the conclusions and discussions are summarized in Section 4.

2. Methodology

In this section, a detailed description of surface differential operators involved in PDEs
defined on surfaces, the implementation of physics-informed neural networks and their
extrinsic treatment for solving surface PDEs are presented. In addition, a brief procedure
of PINNs and its distinguishments from other methods are given.

2.1. Continuous Differential Operators on Surfaces and Its Extrinsic Form

The main difference between surface PDEs defined on surfaces and standard PDEs
posed in some bounded domains with flat geometries is that the curvatures of surfaces
play vital roles in physical models governed by the PDEs. We first pay attention to the dif-
ferential operators posed on some sufficiently smooth, connected and compact surface
S ⊂ R with no boundary and dim(S) = d− 1. The dimension d = 3 is taken into con-
sideration for notational simplicity, and any other cases with higher d could be extended
simply. To specify the relationship between surface differential operators and standard
Euclidean differential operators, we denote the unit outward normal vector at any x ∈ S as
n = (nx, ny, nz) and the corresponding projection matrix to the tangent space as

P(x) = (I3 − nnT) ∈ R3×3, (1)

where I is the 3-by-3 identity matrix. Then, the surface gradient operator ∇S could be
defined in terms of the standard Euclidean gradient ∇ via projections as

∇S := P∇, (2)

and similarly, the Laplace–Beltrami operator (also known as surface Laplace operator) ∆S
could be defined as

∆S := ∇S · ∇S. (3)

The Laplace–Beltrami operator could be regarded as a divergence-gradient operator.
By introducing the extrinsic idea and substituting Equation (2) into Equation (3), the ex-
trinsic (Euclidean) form [8] of the surface gradient operator and Laplace–Beltrami operator
acting on any sufficiently smooth function could be derived as

∇Su := ∇u− n∂nu, (4)

∆Su := ∆u− HS∂nu− ∂
(2)
n u. (5)

in which ∂nu = nT∇u, ∂
(2)
n u := nT J(∇u)n and HS = trace

(
J(n)(I− nnT)

)
. Here, J means

the Jacobian operator in Euclidean space. Obviously, Euclidean space is the one we are
most familiar with, and most algorithms are also developed in Euclidean space. Once
the extrinsic (Euclidean) form is obtained, the approximations of surface operators are
conducted naturally. It should be noted here that the Euclidean way is just one of the ex-
trinsic treatments, and this way makes the approximation be implemented in the ambient
dimension rather than the surface dimension.

For better understanding, we give one example to derive the explicit expression of sur-
face differential operators on the unit sphere. Simplifying with the surface
S = x2 + y2 + z2− 1, one could naturally obtain the unit normal vector [x y z]T . Putting
this into Equations (4) and (5), the extrinsic surface differential operators are represented by

∇S =

1− x2 −xy −xz
−xy 1− y2 −yz
−xz −yz 1− z2

∂x
∂y
∂z

 =

 (1− x2)∂x − xy∂y − xz∂z
−xy∂x + (1− y2)∂y − yz∂z
−xz∂x − yz∂y + (1− z2)∂z

, (6)



Mathematics 2022, 10, 2861 4 of 14

∆S = (1− x2)∂xx + (1− y2)∂yy + (1− z2)∂zz − 2xy∂xy − 2xz∂xz − 2yz∂yz − 2x∂x − 2y∂y − 2z∂z. (7)

Once Equations (6) and (7) have been obtained, the approximation for surface opera-
tors defined on smooth surfaces could be expressed using some existing methods. For other
surfaces, the normal information is different, hence the difference in Equations (6) and (7).

2.2. Physics-Informed Neural Networks (PINNs)

The main aim of PINNs is to approximate the solutions to PDEs. Like other numerical
methods, the standard PINNs is derived in standard Euclidean space. In this section,
we focus on introducing the basic idea of PINNs and how it solves PDEs on surfaces
extrinsically. We use the steady state convective diffusion reaction equation(

a∆S −~b · ∇S + c
)

u(x, y, z) = f (x, y, z) (8)

with the certain coefficients a,~b, c as an illustration.
In the PINNs, there are three different ways to construct the approximate solutions

u(x, y, z) to the PDEs [26]. Due to fact that the PDE (8) defined on closed surfaces has
no boundary conditions, the direct construction of the approximate solutions is em-
ployed in this work as an output of neural networks (NN), namely, ũ(x, y, z) = uNN(x; µ),
x ∈ S(µ = {W, B}). The NN, which is parameterized with finitely many weights W
and biases B, acts as a surrogate model of the PDE model to approximate the mapping
from the spatial coordinates to the solutions of equation. One NN usually contains multiple
hidden layers to obtain more accurate solutions. Here, PINNs seek to optimize the NN’s
parameters composed of weights and biases by minimizing the so-called loss function.
Usually, the loss function is defined as the sum of mean squared error from both governing
equations (PDEs) and boundary conditions on the training points. For PDEs defined on sur-
faces without boundary conditions, the loss function is expressed by the NN parameter
µ as

Loss(µ) =
1
N

N

∑
k=1

[(
a∆S −~b · ∇S + c

)
ũ(xk)− f (xk)

]2
, (9)

in which N is the total number of the training points. By substituting Equation (4) and
Equation (5) into Equation (9), the loss function in extrinsic form finally could be derived
under Cartesian coordinate by the NN parameter as

Loss(µ) =
1
N

N

∑
k=1

[(
a(∆− HS∂n − ∂

(2)
n )−~b · (∇− n∂n) + c

)
uNN(xk; µ)− f (xk)

]2
. (10)

As mentioned in Section 1, the embedding approach based on PINNs is also dis-
cussed in this work for comparison with the extrinsic approach. As can be seen in
Equations (4) and (5), the surface operators could be completely equal to the standard oper-
ator with the constraints ∂nu = 0 and ∂

(2)
n u = 0. The constraints are embedding conditions.

Therefore, the loss function in embedding form could be written as

Loss(µ) =
1
N

N

∑
k=1

[(
a∆−~b · ∇+ c

)
uNN(xk; µ)− f (xk)

]2

+
1
N

N

∑
k=1

[∂nuNN(xk; µ)]2 +
1
N

N

∑
k=1

[
∂
(2)
n uNN(xk; µ)

]2
.

(11)

For PINNs, it is easy to add only two constraints to the optimization function as
Equation (11). Although the extrinsic treatment needs many computations, as shown
in Equations (4) and (5), they could be pre-computed for a certain surface before the “train-
ing”, just like Equations (6) and (7) for a unit sphere. Then, the surface operators could be
regarded as some specified operators defined in Euclidean space. Once they have been
obtained, the loss function could be expressed explicitly only using governing equation



Mathematics 2022, 10, 2861 5 of 14

without any constraints. Compared with the embedding treatment having extra constraints,
the loss function in extrinsic form is simpler in the “training” process.

Then, the original problem (8) becomes an optimization problem, namely,

µ∗ = arg min
µ

Loss(µ) (12)

in which the µ∗ represents the optimal parameters.
Herein the automatic differentiation technique and the chain rule are used in loss

function to compute the spatial derivatives of uNN(x; µ). For time-dependent problems,
the approximation could be regarded as uNN(x, t; µ), and the temporal derivative could
be realized in two ways: similar treatment as a spatial derivative and individual time
integration using the method of lines. Then, different optimization algorithms can be used
to solve Equation (12). This optimization process is called “training”. Additionally, we
use multiple sets of initial NN parameters µ in the following numerical examples to avoid
its uncertainty.

2.3. The Procedure of the Extrinsic Approach Based on PINNs

To better understand this extrinsic numerical framework for approximating the surface
PDEs and compare it with traditional numerical methods, pseudocode is demonstrated
in this section. We first give the steps of some methods, involving linear algebra such
as FEM; RBF collocation methods; meshless GFDM; etc. In the implementation of these
methods, the process is more or less divided into five steps briefly: firstly, generate the mesh-
es/collocation points on surfaces; secondly, construct the approximate solutions based
on respective approximation theory; thirdly, form the stiffness matrix or basis matrix
for each mesh/point extrinsically; fourthly, assemble the information on each mesh/point
and then obtain a discrete system with respect to the PDE model on surfaces; lastly, solve
the algebraic system by using linear solver.

Differently, the pseudocode of the extrinsic approach based on PINNs could be sum-
marized in Algorithm 1.

Algorithm 1 The extrinsic approach based on PINNs.

Require: The training datasets including a group of spatial coordinates and the corre-
sponding solutions; the prescribed number of width and depth in NN; the initialized
NN parameters; the convergence tolerance ε and number of iterations Ni;

Ensure: The surrogate NN model with optimized parameters;
1: Construct the NN with initialized parameters;
2: Specify the training sets for governing equation;
3: Specify the loss function in extrinsic form considering the governing equation;
4: repeat
5: n← n + 1, n < Ni;
6: Optimization: compute Equation (12);
7: Update the loss value;
8: until Loss value < ε
9: Determine the optimal parameters;

10: Substitute test datasets and then acquire the posterior error.

The concept of datasets in PINNs is somewhat similar to the that of collocation
points [17]—namely, the PINNs are also meshless. It inherits the advantages of both
meshless and neural network methods. In addition, although the numerical accuracy
of PINNs in the present study on surface PDEs is usually not as high as those of some
collocation methods such as RBF collocation methods, the PINNs is easy implement because
neural networks can directly be used to deal with nonlinear problems without introducing
iterative algorithms. These two advantages over traditional methods make PINNs quite
attractive recently.



Mathematics 2022, 10, 2861 6 of 14

3. Numerical Examples

In this section, several different examples are provided. We first explore the con-
vergence and the accuracy of PINNs for Equation (8) on the unit sphere, and then more
surfaces and nonlinear PDEs are taken into consideration to verify its robustness. To quan-
tify the accuracy and effectiveness of our approximate solutions, we introduce the L2 error
measures as follows.

L2 =

√√√√ N

∑
k=1

(u(xk)− ũ(xk))
2/

√√√√ N

∑
k=1

(u(xk))
2 (13)

where u(xk), ũ(xk) represent the reference solution and approximate solution at the k-th
point. To avoid the uncertainty of different initializations for the network parameters µ and
find an optimal neural network as much as possible, we employed the L-BFGS optimization
method and plot the mean for the solution errors from the 10 runs, which we adopted
as a new metric of convergence. The Xavier initialization and hyperbolic tangent activation
function were taken into consideration, and all the tests were implemented in Python
on laptop with CPU i5-8265U @1.60 GHz and RAM 8.00 GB.

Example 1. Convergence and accuracy test on a unit sphere

In this example, we used Equation (8), and the coefficients were chosen as a = 1,
~b = [1 1 1]T , c = 5, and the reference solution was assembled by trigonometric function,
which is expressed as

u(x, y, z) = sin x sin y sin z. (14)

The force term was simply obtained by substituting the reference solution into the equa-
tion. A total number of 2500 points were chosen to be distributed on the unit sphere,
as shown in Figure 1. Here, we selected N points randomly from these quasi-uniform
points and the corresponding solutions from Equation (14) as training data, and all these
2500 points were regarded as test points to test the convergence of PINNs. As derived above
in Equations (6) and (7), the loss function on this unit sphere could be obtained easily.

Figure 1. Sketch of the quasi-uniform points distributed on the unit sphere: the point sets could be
obtained by using the minimum energy (ME) algorithm [30].



Mathematics 2022, 10, 2861 7 of 14

Since we had no idea of how sensitive PINNs approximations are to surface differ-
entiation operators, we attempted to use various NNs with different numbers of hidden
layers (also known as the depth of the NN; e.g., four hidden layers’ mean depth is five) and
neurons (also known as the width of the NN; e.g., 20 neurons’ mean width is 20). Figure 2
shows the convergence results, and Figure 3 indicates some snapshots of error distribution
by using different parameters. Tables 1 and 2 give some numerical results using smaller
width and depth for solving linear problems on surfaces.

10
1

10
2

10
3

The number of training data

10
-4

10
-3

10
-2

10
-1

10
0

10
1

L
2
 e

rr
o
r

1.9

depth = 4, width = 10

depth = 4, width = 20

depth = 4, width = 50

depth = 4, width = 100

slope

(a)

10
1

10
2

10
3

The number of training data

10
-3

10
-2

10
-1

10
0

10
1

L
2
 e

rr
o
r

2.0

depth = 2, width = 50

depth = 3, width = 50

depth = 4, width = 50

depth = 5, width = 50

slope

(b)

Figure 2. Example 1: Convergence results by using (a) different widths and (b) different depths.

(a) (b)

(c) (d)

Figure 3. Example 1: Random few snapshots of absolute error distribution under width = 50 and
depth = 4 by using (a) 2500 training data points; (b) 1500 training data points; (c) 100 training data points;
(d) 10 training data points.



Mathematics 2022, 10, 2861 8 of 14

Table 1. Example 1: L2 error and CPU time using different depths under width = 50 and 2000 training data.

Depth 2 3 4 5

L2 error 1.12× 10−3 1.41× 10−2 1.34× 10−3 1.21× 10−3

CPU time 19.96 (s) 29.42 (s) 76.65 (s) 102.26 (s)

Table 2. Example 1: L2 error and CPU time using different widths under depth = 4, with 2000 training
data points.

Width 3 5 10 20 50 100

L2 error 4.06× 10−2 1.02× 10−2 1.44× 10−3 1.91× 10−3 1.34× 10−3 1.69× 10−3

CPU time 5.47 (s) 8.54 (s) 17.67 (s) 34.63 (s) 76.65 (s) 152.72 (s)

As seen in Figures 2 and 3, we used, respectively, 2, 3, 4 and 5 hidden layers with 10, 20, 50
and 100 neurons to test convergence and accuracy of PINNs in solving Equation (8). The distri-
bution of error could be affected by many factors, such as the width/depth of NNs, the initial-
izations of NNs and the potential noise of training data. Numerical results converged at around
10−4 ∼ 10−3 with convergence rates of 1.9 and 2.0. Apparently, we could obtain similar results
by using different depths and widths when the number of training data reached 500 or more.
In Table 1, we can see that for linear surface PDEs, a network with one hidden layer works fine,
and it has the advantages of simplicity and speed of operation. In Table 2, we can see that when
using 3 or 5, the numerical accuracy would be reduced to around 10−2. To connect numerical
results in Table 2 with those in Table 1, we further considered the case with depth = 2 and width
= 3, and its L2 error is 0.71. We could summarize that the depth, width and number of training
data indeed influence the numerical results. Additionally, for surface linear problems, using
smaller width and depth is more suitable due to its higher efficiency and for surface nonlinear
problems, width and depth should be increased correspondingly. This shows PINN approxima-
tion has good adaptability to surface differential operators. Furthermore, we particularly plot
the error distribution in Figure 3 to visualize the results, which shows good accuracy of PINNs
for explicitly solving surface PDEs.

In addition, we further compare the extrinsic approach with the embedding approach
both based on the PINNs. As mentioned in Equation (11), the embedding approach needs
other constraints, and in Table 3, one can find that the accuracies of the two techniques show
almost no difference, but the computational time varies a lot. This is because the additional
constraints of embedding conditions make loss function (11) a more non-convex function.
Numerical results prove that PINNs combined with the extrinsic technique is more efficient.

Table 3. Example 1: L2 error and CPU time by using extrinsic and embedding approaches with
different numbers of training data under width = 50 and depth = 4.

N 1000 1500 2000 2500

Extrinsic 1.02 × 10−3 9.88 × 10−4 1.49 × 10−3 9.36 × 10−4

32.70 (s) 65.42 (s) 102.26 (s) 108.66 (s)

Embedding 3.51 × 10−3 4.80 × 10−3 2.17 × 10−3 1.90 × 10−3

113.93 (s) 237.02 (s) 312.26 (s) 418.55 (s)

Example 2. Results on more general surfaces

In this example, we attempted to test the robustness of PINNs by solving PDEs on more
general surfaces, and made a direct comparison by using quasi-uniform distributed training
data and randomly distributed training data as shown in Figure 4. The parametric equations
or implicit expressions of some surfaces used in this or the following example, including
Torus, a constant distance product (CDP) surface, Bretzel2, Orthocircle, Red Blood Cell
(RBC) and tooth surface, are provided as



Mathematics 2022, 10, 2861 9 of 14

(1) Tours:

S =

(
1−

√
x2 + y2

)2
+ z2 − 1

9
; (15)

(2) CDP:

S =
√
(x− 1)2 + y2 + z2

√
(x + 1)2 + y2 + z2

√
x2 + (y− 1)2 + z2√

x2 + (y + 1)2 + z2 − 1.1;
(16)

(3) Bretzel2:

S =
(

x2(1− x2)− y2
)2

+
1
2

z2 − 1
40

; (17)

(4) Orthocircle:

S =
(
(x2 + y2 − 1)2 + z2

)(
(y2 + z2 − 1)2 + x2

)
(
(z2 + x2 − 1)2 + y2

)
− 0.0752

(
1 + 3(x2 + y2 + z2)

)
;

(18)

(5) RBC:

S =


x = 1.15 cos(λ) cos(θ),
y = 1.15 sin(λ) cos(θ), −π ≤ λ ≤ π, −π

2 ≤ θ ≤ π
2 .

z = 0.5 sin(λ)
(
0.24 + 2.3 cos(θ)2 − 1.3 cos(θ)4), (19)

(6) Tooth:

S = x8 + y8 + z8 − (x2 + y2 + z2); (20)

In this test, the coefficients in Equation (8) were set as a = 1,~b = [1 1 1]T , c = 1, and
the reference solution was changed to u(x, y, z) = sin x cos y sin z. We first employed Torus
by using 500 quasi-uniform training data and by using 500 randomly distributed training data
to make a comparison.

(a) (b)

Figure 4. Example 2: Two different selections of training data on Torus: (a) quasi-uniform training
data; (b) random training data generated by combined multiple recursive generator algorithm: red
“*” points are selected training data; black points are test points.

It can be found from Figure 5 that the distribution of training data slightly affected
the numerical results. Although uniform sampling of the training dataset is always good
for results, PINNs are superior to some typical numerical methods to some extent for solv-
ing PDEs on high dimensional surfaces because for PINNs combined with the extrinsic
approach, only training data are required, rather than generating high quality meshes
or regular points. Additionally, the distribution of training data influences the results little.



Mathematics 2022, 10, 2861 10 of 14

(a) (b)

Figure 5. Example 2: Snapshots of absolute error distribution under width = 50 and depth = 4: (a) by
using quasi-uniform training data and (b) by using randomly distributed training data.

In addition, distribution numerical errors and L2 errors on different surfaces are given,
respectively, in Figure 6 and Table 4. The number of training points was chosen as 500,
and the total numbers of points corresponding to CDP, Breztel2, Orthocircle and RBC were
3996, 3690, 4286 and 4000. When dealing with PDEs defined on high-dimensional complex
surfaces, PINNs combined with the extrinsic approach show good stability and robustness.

(a) (b)

(c) (d)

Figure 6. Example 2: Snapshots of absolute error distribution under width = 50 and depth = 4
on various surfaces: (a) CDP, (b) Bretzel2, (c) Orthocircle, (d) RBC.

Table 4. Example 2: L2 error on different surfaces under width = 50 and depth = 4.

Surfaces CDP Bretzel2 Orthocircle RBC

L2 error 1.18 × 10−3 1.51 × 10−3 4.20 × 10−3 2.37 × 10−3

Example 3. Nonlinear PDEs on surfaces

In order to confront a more complicated model on different surfaces, the nonlinear
model is considered in this example. The governing equation is



Mathematics 2022, 10, 2861 11 of 14

(
a∆S −~b · ∇S + c

)
u(x, y, z) + g(u) = f (x, y, z). (21)

Herein g(u) = u2 is the nonlinear term, the exact solution was set to u = ex+y sin(z)
and the parameters were a = 1,~b = 0, c = 0. Similarly, the loss function in extrinsic form
could be expressed as Equation (10).

We again performed the convergence analysis for this nonlinear model on a unit
sphere, as exhibited in Figure 7. Apparently, compared with the results in Example 1,
the numerical results of the nonlinear model are not accurate enough when the depth
or width is too small. This means when the number of layers or the number of neurons is
too small, the complex nonlinear behavior cannot be perfectly captured in spite of good
nonlinear mapping capabilities of neural networks. As the width and depth increase,
the numerical results show convergence similarly to the linear problems. We also plot
the distribution of absolute error on the unit sphere and tooth surface under depth = 4
and width = 50, as shown in Figure 8, which indicates again that the PINNs combined
with extrinsic approach perform well not only for linear problems but also for nonlinear
problems on surfaces.

10
1

10
2

10
3

The number of training data

10
-6

10
-4

10
-2

10
0

L
2
 e

rr
o

r

depth = 4, width=10

depth = 4, width=20

depth = 4, width=50

(a)

10
1

10
2

10
3

The number of training data

10
-6

10
-4

10
-2

10
0

L
2
 e

rr
o

r

depth=2,width=50

depth=3,width=50

depth=4,width=50

(b)

Figure 7. Example 3: Convergence results by using (a) different widths and (b) different depths.

(a) (b)

Figure 8. Example 3: Snapshots of absolute error distribution under width = 50 and depth = 4
for nonlinear problems on (a) a unit sphere and (b) tooth surface.

Example 4. Time-dependent nonlinear PDEs on surfaces

In this example, a time-dependent nonlinear convective diffusion reaction equation
on a unit sphere is considered as



Mathematics 2022, 10, 2861 12 of 14

∂u
∂t

=
(

a∆S −~b · ∇S + c
)

u(x, y, z, t) + g(u) + f (22)

in which g(u) = u2 and a = 1,~b = 0, c = 0. The exact solution is given as u = ex+y+z sin(t).
Differently from the traditional methods combined with some time integration methods,
the variable t in this example is considered as an individual variable, just like the spatial
variable in the loss function, i.e.,

Loss(µ) =
1
N

N

∑
k=1

[
∂tuNN(xk, tk; µ)− (a∆S −~b · ∇S + c)uNN(xk, tk; µ)− g(ũ)− f (xk)

]2
(23)

We plot the distribution of absolute error on the unit sphere at t = 0.1 as illustrated
in Figure 9. The L2 error is 1.65× 10−3 using 2500 points with time increment ∆t = 0.01.
When considering the continuous time models, the original Equation (22) becomes a 4D
problem. We found that PINNs has a good ability to approximate high-dimensional
problems, which can be well combined with an extrinsic approach.

Figure 9. Example 4: Distribution of absolute error under width = 50 and depth = 4 for time-
dependent nonlinear problems (22) on the unit sphere.

4. Conclusions and Discussions

In this work, the extrinsic approach based on PINNs is proposed and shows good per-
formance and potential in the solutions of linear or nonlinear partial differential equations
(PDEs) on surfaces embedded in high dimensional space. We could conclude from the first
example that PINNs converge rapidly at the beginning of the increasing number of train-
ing points due to the dominant effect of the discretization error, and the solution will
not be obviously improved with the further increase in the number of training points
due to the dominant effect of optimization error. The second and third examples show
that PINNs, as combinations of machine learning and differential equations, will not lose
accuracy as the dimensionality (shape) increases in complexity; and will remain stable
regardless of the distribution of training data or the complexity of the problem, as long
as the data provided are accurate enough and the depth/width is large enough. This
indicates the PINNs have good stability and robustness. In addition, we also compared
the embedding approach based on PINNs with the extrinsic approach; the extrinsic ap-
proach based on PINNs showed better accuracy and used less computational time.

As a matter of fact, PDEs on curved surfaces or manifolds involve applications in biological
pattern formation. In [31] and the references therein, it is proved that the geometry and
specifically curvature play vital roles in biological pattern formation on curved surfaces. To
deal with those surfaces composed of scatter points in realistic problems, two additional
techniques, surface reconstruction [32,33] and the pseudospectral approach [9,16], could be
further considered. Additionally, although the continuous time models are fine, they still face
a dilemma when dealing with long simulations and large amounts of data, so there is a need



Mathematics 2022, 10, 2861 13 of 14

to introduce other techniques [34]. We revealed the potential of an extrinsic approach based
on PINNs for surface problems in this work and leave the long simulations on complicated
surfaces to our future work.

Author Contributions: Conceptualization, Z.F.; methodology, Z.F. and Z.T.; software, Z.T.; validation,
Z.F., Z.T. and S.R.; writing—original draft preparation, Z.T.; writing—review and editing, Z.F. and
S.R. All authors have read and agreed to the published version of the manuscript.

Funding: The work described in this paper was supported by the National Science Funds of China (grant
number 12122205), Fundamental Research Funds for the Central Universities (grant number B220203018)
and the Six Talent Peaks Project in Jiangsu Province of China (grant number 2019-KTHY-009).

Data Availability Statement: The data that support the findings of this study are available from the cor-
responding author (Z.F.) upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Witkin, A.; Kass, M. Reaction-Diffusion Textures. ACM Siggraph Comput. Graph. 1995, 25, 299–308. [CrossRef]
2. Diewald, U.; Preusser, T. Anisotropic diffusion in vector field visualization on Euclidean domains and surfaces. IEEE Trans. Vis.

Comput. Graph 2000, 6, 139–149. [CrossRef]
3. Myers, T.G.; Charpin, J.P.F. A mathematical model for atmospheric ice accretion and water flow on a cold surface. Int. J. Heat

Mass Transf. 2004, 47, 5483–5500. [CrossRef]
4. Xu, J.J.; Zhao, H.K. An Eulerian Formulation for Solving Partial Differential Equations Along a Moving Interface. J. Sci. Comput.

2003, 19, 573–594. [CrossRef]
5. Ruuth, S.J.; Merriman, B. A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys.

2008, 227, 1943–1961. [CrossRef]
6. Piret, C. The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary

surfaces. J. Comput. Phys. 2012, 231, 4662–4675. [CrossRef]
7. Hansbo, P.; Larson, M.G.; Zahedi, S. A cut finite element method for coupled bulk-surface problems on time-dependent domains.

Comput. Methods Appl. Mech. Eng. 2016, 307, 96–116. [CrossRef]
8. Cheung, K.C.; Ling, L. A Kernel-Based Embedding Method and Convergence Analysis for Surfaces PDEs. SIAM J. Sci. Comput.

2018, 40, A266–A287. [CrossRef]
9. Chen, M.; Ling, L. Kernel-based collocation methods for heat transport on evolving surfaces. J. Comput. Phys. 2019, 405, 109166.

[CrossRef]
10. Chen, M.; Ling, L. Kernel-Based Meshless Collocation Methods for Solving Coupled Bulk–Surface Partial Differential Equations.

J. Sci. Comput. 2019, 81, 375–391. [CrossRef]
11. Floater, M.S.; Hormann, K. Surface Parameterization: A Tutorial and Survey; Springer: Berlin/Heidelberg, Germany, 2005.
12. Macdonald, C.B.; Ruuth, S.J. The implicit closest point method for the numerical solution of partial differential equations

on surfaces. SIAM J. Sci. Comput. 2010, 31, 4330–4350. [CrossRef]
13. Marcelo, B.; Li-Tien, C.; Stanley, O.; Guillermo, S. Variational Problems and Partial Differential Equations on Implicit Surfaces. J.

Comput. Phys. 2001, 174, 759–780.
14. Tang, Z.; Fu, Z.; Chen, M.; Ling, L. A localized extrinsic collocation method for Turing pattern formations on surfaces.

Appl. Math. Lett. 2021, 122, 107534. [CrossRef]
15. Tang, Z.; Fu, Z.; Sun, H.; Liu, X. An efficient localized collocation solver for anomalous diffusion on surfaces. Fract. Calc. Appl.

Anal. 2021, 24, 865–894. [CrossRef]
16. Tang, Z.; Fu, Z.; Chen, M.; Huang, J. An efficient collocation method for long-time simulation of heat and mass transport

on evolving surfaces. J. Comput. Phys. 2022, 463, 111310. [CrossRef]
17. Fu, Z.; Tang, Z.; Xi, Q.; Liu, Q.; Gu, Y.; Wang, F. Localized Collocation Schemes and Their Applications. Acta. Mech. Sin. 2022,

38, 422167.
18. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef]
19. Tarkhov, D.A.; Vasilyev, A.N. New Neural Network Technique to the Numerical Solution of Mathematical Physics Problems. I:

Simple Problems. Opt. Mem. Neural Netw. 2005, 14, 59–72.
20. Tarkhov, D.A.; Vasilyev, A.N. New Neural Network Technique to the Numerical Solution of Mathematical Physics Problems II:

Complicated and Nonstandard Problems. Opt. Mem. Neural Netw. 2005, 14, 97–122.
21. Tarkhov, D.; Vasilyev, A.N. Semi-Empirical Neural Network Modeling and Digital Twins Development; Academic Press: Cambridge,

MA, USA, 2019.
22. Antonov, V.; Tarkhov, D.; Vasilyev, A. Unified approach to constructing the neural network models of real objects Part 1.

Math. Methods Appl. Sci. 2018, 41, 9244–9251. [CrossRef]

http://doi.org/10.1145/127719.122750
http://dx.doi.org/10.1109/2945.856995
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.06.037
http://dx.doi.org/10.1023/A:1025336916176
http://dx.doi.org/10.1016/j.jcp.2007.10.009
http://dx.doi.org/10.1016/j.jcp.2012.03.007
http://dx.doi.org/10.1016/j.cma.2016.04.012
http://dx.doi.org/10.1137/16M1080410
http://dx.doi.org/10.1016/j.jcp.2019.109166
http://dx.doi.org/10.1007/s10915-019-01020-2
http://dx.doi.org/10.1137/080740003
http://dx.doi.org/10.1016/j.aml.2021.107534
http://dx.doi.org/10.1515/fca-2021-0037
http://dx.doi.org/10.1016/j.jcp.2022.111310
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1002/mma.5205


Mathematics 2022, 10, 2861 14 of 14

23. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks: A Deep Learning Framework for Solving
Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. J. Comput. Phys. 2018, 378, 686–707. [CrossRef]

24. Raissi, M.; Yazdani, A.; Karniadakis, G.E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations.
Science 2020, 367, 1026–1030. [CrossRef]

25. Jagtap, A.D.; Kharazmi, E.; Karniadakis, G.E. Conservative physics-informed neural networks on discrete domains for conserva-
tion laws: Applications to forward and inverse problems. Comput. Methods Appl. Mech. Eng. 2020, 365, 113028. [CrossRef]

26. Pang, G.; Lu, L.; Karniadakis, G.E. fPINNs: Fractional Physics-Informed Neural Networks. SIAM J. Sci. Comput. 2019,
41, A2603–A2626. [CrossRef]

27. Mao, Z.; Jagtap, A.D.; Karniadakis, G.E. Physics-informed neural networks for high-speed flows. Comput. Methods Appl. Mech.
Eng. 2020, 360, 112789. [CrossRef]

28. Bihlo, A.; Popovych, R.O. Physics-informed neural networks for the shallow-water equations on the sphere. J. Comput. Phys.
2022, 456, 111024. [CrossRef]

29. Fang, Z.; Zhan, J. A physics-informed neural network framework for PDEs on 3D surfaces: Time independent problems.
IEEE Access 2019, 8, 26328–26335. [CrossRef]

30. Hesse, K.; Sloan, I.H.; Womersley, R.S. Numerical integration on the sphere. In Handbook of Geomathematics; Springer: Berlin/Hei-
delberg, Germany, 2010.

31. Krause, A.L.; Ellis, M.A.; Van Gorder, R.A. Influence of curvature, growth, and anisotropy on the evolution of Turing patterns
on growing manifolds. Bull. Math. Biol. 2019, 81, 759–799. [CrossRef]

32. Zhao, H.K.; Osher, S.; Fedkiw, R. Fast surface reconstruction using the level set method. In Proceedings of the IEEE Workshop
on Variational and Level Set Methods in Computer Vision, Vancouver, BC, Canada, 13 July 2001; pp. 194–201.

33. Liu, S.; Wang, C.C. Quasi-interpolation for surface reconstruction from scattered data with radial basis function. Comput. Aided
Geom. Des. 2012, 29, 435–447. [CrossRef]

34. Gorbachenko, V.I.; Lazovskaya, T.V.; Tarkhov, D.A.; Vasilyev, A.N.; Zhukov, M.V. Neural network technique in some inverse
problems of mathematical physics. In Proceedings of the International Symposium on Neural Networks, St. Petersburg, Russia,
6–8 July 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 310–316.

http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1126/science.aaw4741
http://dx.doi.org/10.1016/j.cma.2020.113028
http://dx.doi.org/10.1137/18M1229845
http://dx.doi.org/10.1016/j.cma.2019.112789
http://dx.doi.org/10.1016/j.jcp.2022.111024
http://dx.doi.org/10.1109/ACCESS.2019.2963390
http://dx.doi.org/10.1007/s11538-018-0535-y
http://dx.doi.org/10.1016/j.cagd.2012.03.011

	Introduction
	Methodology
	Continuous Differential Operators on Surfaces and Its Extrinsic Form
	Physics-Informed Neural Networks (PINNs)
	The Procedure of the Extrinsic Approach Based on PINNs

	Numerical Examples
	Conclusions and Discussions
	References

