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Abstract: In this paper, we present an easily accessible approach to finding a suitable shape parameter
in the shifted surface spline for function interpolation. We aim at helping more readers, including
mathematicians and non-mathematicians, to use our method to solve practical problems. Hence,
some highly complicated mathematical theorems and definitions are avoided. The major requirement,
as in our previous approach, that the data points should be evenly spaced in the domain is also
relaxed. This means that the data points are purely scattered without restrictions. The drawback is
that the shape parameter thus obtained is not exactly the same as the theoretically predicted optimal
value, which can always be achieved by using our previous rigorous approach. However, experiments
show that the gap is quite small and the final interpolation errors thus obtained are satisfactory.
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1. Introduction
In the field of radial basis functions (RBF), one of the most frequently used basis

functions is the shifted surface spline, defined by

h(x) :=

{
(−1)dme(|x|2 + c2)

λ
2 , λ ∈ Z+, λ odd, m = λ

2 if n is odd,
(−1)m(|x|2 + c2)

λ
2 log (|x|2 + c2)

1
2 , λ ∈ Z+, λ even, m = 1 + λ

2 if n is even,
(1)

where x ∈ Rn, c > 0, |x| stands for the Euclidean norm of x, log denotes the natural loga-
rithm, dme denotes the smallest integer not less than m, and λ, c are constants determined
by the user. The latter are called shape parameters and greatly influence the quality of the
approximation. From the viewpoint of computation, for even dimensions, λ should be as
small as possible. Hence, we will let it be two in this paper whenever possible, especially
in the experiment. As for c, its choice is a challenge. If this problem remains unsolved,
the power of this radial function will be greatly limited.

The function h(x) defined in Equation (1) is obtained from the fundamental solution
of the iterated Laplacian by the shifting |x| → (|x|2 + c2)1/2, with c > 0 (Dyn [1] and
Yoon [2,3]). Its generalized Fourier transform is

ĥ(ξ) = l(λ, n)|ξ|−λ−nK̃ n+λ
2
(c|ξ|), (2)

where l(λ, n) is a constant depending on λ, n (see Luh [4]), and K̃ν(t) := tνKν(t), Kν

being the modified Bessel function of the second kind (Abramowitz et al. [5]). This Fourier
transform will be needed in our main theorem. Moreover, it shows that, from the viewpoint
of the Fourier transform, the well-known multiquadrics are simply a type of shifted surface
spline, because they share the same Fourier transform as in Equation (2).

For odd dimensions, h(x) is generally called the multiquadric. For multiquadrics,
the choice of the shape parameter c has been dealt with by the author ([6]). In this paper,
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we will focus on even dimensions. Hereafter, whenever referring to Equation (1), we will
mean h(x) for even dimensions only.

One of the main advantages of the RBF approach for function interpolation is that
it is mesh-free. For any set of scattered data points (x1, f (x1)), . . . , (xN , f (xN)), where
x1, . . . , xN are arbitrary points in Rn and f (x1), . . . , f (xN) are arbitrary real numbers, one
can always find a unique interpolator of the form

s(x) :=
N

∑
j=1

cjh(x− xj) + p(x) (3)

interpolating these data points, where c1, . . . , cN are constants to be determined and p is a
polynomial of degree ≤ m− 1. The only requirement for the data points is that x1, . . . , xN
should be polynomially nondegenerate; that is, the only polynomial that vanishes at
x1, . . . , xN is the zero polynomial. The detailed theory can be seen in Wendland [7] and
Buhmann [8].

When using Equation (1), we already have a theoretically rigorous and practically
useful method to choose the optimal shape parameter c contained in h, as introduced in
Luh [4]. However, there is a severe restriction in [4] that the interpolation centers x1, . . . , xN
should be evenly spaced in a simplex. This, to some extent, means that meshes are still
needed. Moreover, the function domain must be a simplex. In this paper, we completely
discard the two requirements and develop a new approach for finding a suitable c.

2. Materials and Methods

In order to make this paper self-contained, without overly referring to the compli-
cated theory in [4], next, we recall its main results as in the following subsection.

2.1. The Orthodox Approach

Two definitions governing the distribution of the interpolation points are needed.

Definition 1. Let E be an n-dimensional simplex in Rn with vertices v1, . . . , vn+1 (see, e.g., [9]).
For any point x ∈ E, its barycentric coordinates are the non-negative numbers λ1, . . . , λn+1
satisfying

x =
n+1

∑
i=1

λivi,
n+1

∑
i=1

λi = 1.

Now, we need a parameter, called the degree, which indicates the amount of interpola-
tion points in the domain. The larger the degree is, the more points are used.

Definition 2. For any natural number k, the corresponding domain points of E of degree k are the
evenly spaced points with barycentric coordinates

(k1/k, k2/k, . . . , kn+1/k) with k1 + · · ·+ kn+1 = k.

As pointed out in Luh [4], the number of such points is equal to the dimension of Pn
k ,

the space of n-variate polynomials of degree less than or equal to k. In this subsection, we
use N to denote this number. Thus, N := dimPn

k .
Two constants involved in the main theorem should be defined here.

Definition 3. Let h be as in Equation (1). The constants ρ and ∆0 are defined as follows.

(a) Suppose n− λ > 3. Let q := d n−λ−3
2 e, the smallest integer not less than n−λ−3

2 . Then,

ρ := 1 +
q

2m + 3
and ∆0 :=

(2m + 2 + q)(2m + 1 + q) · · · (2m + 3)
ρ2m+2 .
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(b) Suppose n− λ ≤ 1. Let q := −d n−λ−3
2 e. Then,

ρ := 1 and ∆0 :=
1

(2m + 2)(2m + 1) · · · (2m− q + 3)
.

(c) Suppose 1 < n− λ ≤ 3. Then, ρ := 1 and ∆0 := 1.

The approximated functions lie in the so-called native space Ch,m. We refer to Luh,
Madych and Nelson [10–12] and Wendland [7] for its definition. For such functions, we
have the following main theorem describing the upper bound for the interpolation error.

Theorem 1. Let h be as in Equation (1). For any positive number b0, there exist positive constants
δ0, c1, C, ω, 0 < ω < 1, completely determined by h and b0, such that, for any n-dimensional
simplex Q0 of diameter b0, any f ∈ Ch,m, and any 0 < δ ≤ δ0, there exists a number r satisfying
the property that 1

3C ≤ r ≤ b0, and, for any n-dimensional simplex Q of diameter r, Q ⊆ Q0, there
is an interpolating function s(·) as defined in Equation (3) such that

| f (x)− s(x)| ≤ c1
√

δ(ω)
1
δ ‖ f ‖h (4)

for all x in Q, where C is defined by

C := max
{

8ρ′,
2

3b0

}
, ρ′ :=

ρ

c
,

where ρ and c appeared in Definition 3 and Equation (1), respectively. The function s(·) interpolates
f at x1, . . . , xN , which are evenly spaced points of degree k− 1 on Q as defined in Definition 2,
with k = d r

δ e. Here, ‖ f ‖h is the h-norm of f in the native space.
The numbers δ0, c1 and ω are given by δ0 := 1

3C(m+1) , where m appeared in Equation (1),

c1 :=
√

l(λ, n)(2π)
1
4
√

nαnc
λ
2
√

∆0
√

3C
√
(16π)−1

where λ is as in Equation (1), l(λ, n) appeared in Equation (2), αn is the volume of the unit ball in

Rn, and ∆0 was defined in Definition 3; ω :=
( 2

3
) 1

3C .

Remark 1. The key to understanding this result is to grasp the parameter δ. Although δ is not
explicitly defined, it is, in concept, similar to the well-known fill distance, which describes the spacing
of the data points. In other words, the smaller δ is, the more data points are used in the domain.

The upper bound provided in Formula (4) of Theorem 1 still cannot be used directly to
choose a suitable shape parameter c because the dependence of ‖ f ‖h on c is not transparent.
We must further introduce a function space, Eσ, which is a subset of the native space Ch,m.

Definition 4. For any σ > 0, define

Eσ := { f ∈ L2(Rn) :
∫
| f̂ (ξ)|2e

|ξ|2
σ dξ < ∞},

where f̂ denotes the classical Fourier transform of f and the integral is the general integral. For each
f ∈ Eσ, its norm is

‖ f ‖Eσ :=
{∫
| f̂ (ξ)|2e

|ξ|2
σ dξ

} 1
2
.

In the preceding definition, f ∈ L2(Rn) means that f 2 is integrable.
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For all f ∈ Eσ and δ > 0, if the parameter b0 is fixed, the essential part in the upper
bound of Formula (4) depending on c will become

MN(c) :=



√
8ρc

λ−n−1
4 supξ∈Rn

{
|ξ| 1+n+λ

4 e
c|ξ|

2 −
|ξ|2
2σ

}( 2
3
) c

24ρδ

if c0 ≤ c ≤ c1,

√
2

3b0
c

1+λ−n
4 supξ∈Rn

{
|ξ| 1+n+λ

4 e
c|ξ|

2 −
|ξ|2
2σ

}( 2
3
) b0

2δ

if c1 ≤ c < ∞

(5)

where c0 := 24ρ(m + 1)δ and c1 := 12ρb0. If b0 is not fixed, we have

MN(c) :=
√

8ρ · c
λ−n−1

4 sup
ξ∈Rn

{
|ξ|

1+n+λ
4 e

c|ξ|
2 −

|ξ|2
2σ

}(
2
3

) c
24ρδ

, c ∈ [c0, ∞). (6)

The optimal value of c minimizes the function MN. Although there is a restriction
c ≥ c0, it is harmless since c0 is usually very close to zero. In order to offer the reader an
insight into this approach, we present in Figures 1 and 2 two MN curves for Cases 1 and
2 in Luh [4]. Note that with the same fill distance δ, the MN function values for n = 4
are larger than those of n = 2. It shows that for higher dimensions, more data points are
needed in order to obtain a sharper MN curve. In fact, MN curves are very informative,
as we shall see later.

10.0 10.5 11.0 11.5 12.0
c

1.8´10-6

1.85´10-6

1.9´10-6

1.95´10-6

2  ́  10-6

MNHcL

Graph of the MN function with ∆=0.006

Figure 1. Here, n = 2, λ = 2, σ = 1, and b0 = 1.

6 8 10 12 14 16
c

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

MNHcL

Graph of the MN function with ∆=0.006

Figure 2. Here, n = 4, λ = 2, σ = 1, and b0 = 1.
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2.2. The Unorthodox Approach

The reader may be frustrated by the complexity of Theorem 1 and the definition of
MN(c). In fact, this is not a serious issue, as will be explained in this subsection. As the
inventor of this theory, the author knows that some restrictions can be relaxed, and this
will greatly reduce the effort required. In Theorem 1, the parameter b0 is used simply to
control the size of the interpolation domain Q. Hence, one can try to let it be the diameter
of the domain only. The shape of the domain is also not important. One can let it be of any
shape, e.g., a cube. The parameter δ can be considered to be the widely used fill distance
defined by

δ = δ(Q, X) := sup
x∈Q

inf
i=1,...,N

‖x− xi‖,

where Q is the domain and X = {x1, . . . , xN} is the set of sample points. In fact, one
can even drop the restriction of the fill distance and consider that δ is merely a positive
parameter inversely proportional to the amount of data points. Then, we completely discard
the severe restriction that the sample points be evenly spaced in a simplex, as defined by
Definition 2. In other words, the sample points are allowed to be arbitrarily scattered in the
domain. The definition of the MN functions remains unchanged as in Equations (5) and (6).
All these form the so-called unorthodox approach.

In this paper, the shape parameter c is chosen by the unorthodox approach. Based on
the principles introduced in Section 2.1 and the strategies introduced in this subsection,
namely Section 2.2, we have a new set of criteria of choosing c, as introduced in the next
two subsections.

2.3. b0 Fixed

For f ∈ Eσ, there are two cases.

Case 1. 1 + λ− n ≥ 0 For any domain of diameter b0 > 0 and positive δ < b0
2(m+1) , if 1 + λ−

n ≥ 0, the optimal choice of c ∈ [c0, ∞) is c∗ ∈ [c0, c1], which minimizes MN(c) in Equation (5)
on [c0, c1]. Here, λ, n, and m are defined as in Equation (1).

Reason: In this case, MN(c) is increasing on [c1, ∞). Hence, its minimum value is attained
in [c0, c1].

The following case happens only when n ≥ 4.

Case 2. 1 + λ− n < 0 For any domain of diameter b0 > 0 and positive δ < b0
2(m+1) , if 1 +

λ− n < 0, the optimal choice of c ∈ [c0, ∞) is either c∗ ∈ [c0, c1] or c∗∗ ∈ [c1, ∞), depending
on MN(c∗) ≤ MN(c∗∗) or MN(c∗∗) ≤ MN(c∗), where c∗ and c∗∗ minimize MN(c) in Equa-
tion (5) on [c0, c1] and [c1, ∞), respectively. Here, λ, n, and m are defined as in Equation (1).

Reason: In this case, MN(c) may not be monotonic on both [c0, c1] and [c1, ∞).

2.4. b0 Not Fixed

If the domain is unbounded and hence the sample points can be located in a
bounded geometric object of arbitrarily large diameter b0, then MN(c) defined by Equa-
tion (6) applies. Since such MN(c) is not a monotonic function, one should find c∗ that
minimizes MN(c) for c ∈ [c0, ∞) by using appropriate software, such as Mathematica or
Matlab. Note that we never decrease b0 because it will worsen the error bound.

3. Results

We perform a two-dimensional experiment in the unit square Ω = {(x, y)| 0 ≤
x ≤ 1, 0 ≤ y ≤ 1}. It is shown in Madych [13] that a function f (x) = e−c̃‖x‖2

belongs to Eσ

if σ > 2c̃. The parameter σ greatly affects the behavior of the MN function MN(c). Here,
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we choose σ = 1/10 and c̃ = 1/21. Hence, the approximated function is f (x) = e−‖x‖
2/21

for x ∈ Ω. The radial function defined in Equation (1) is chosen to have λ = 2. Thus,
m = 1 + λ/2 = 2 and the interpolating function s is of the form Equation (3), where p
is a two-dimensional polynomial of degree m− 1 = 1. Then, we adopt the unorthodox
approach to find a suitable shape parameter c.

The first step is to analyze the MN curves. The constant ρ appearing in Equation (5) is
only one by Definition 3, and the domain diameter b0 is

√
2. With these understandings,

we can now present the needed MN curves, as in Figures 3–7.

11 12 13 14
c

0.100

0.102

0.104

0.106

0.108

MN(c)
MN curve for �=0.05

Figure 3. Here, n = 2, λ = 2, σ = 1/10, and b0 =
√

2.

13 14 15 16
c

0.0335

0.0340

0.0345

0.0350

0.0355

0.0360

MN(c)
MN curve for �=0.04

Figure 4. Here, n = 2, λ = 2, σ = 1/10, and b0 =
√

2.

16 17 18 19
c

0.004

0.005

0.006

0.007

0.008

0.009

MN(c)
MN curve for �=0.03

Figure 5. Here, n = 2, λ = 2, σ = 1/10, and b0 =
√

2.
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16 17 18 19
c

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

MN(c)
MN curve for �=0.02

Figure 6. Here, n = 2, λ = 2, σ = 1/10, and b0 =
√

2.

16 17 18 19
c

4.×10-11

6.×10-11

8.×10-11

1.×10-10

1.2×10-10

1.4×10-10

MN(c)
MN curve for �=0.01

Figure 7. Here, n = 2, λ = 2, σ = 1/10, and b0 =
√

2.

These figures clearly show that as δ decreases, the optimal values of c move to 12b0 =
16.97 ≈ 17 and are fixed there. It strongly suggests that one should choose c = 17 to make
the interpolation. This method of choosing c is very reliable for the orthodox approach,
as we saw in Luh [4], where the theoretically predicted optimal value coincides exactly
with the experimentally optimal one. However, for the unorthodox approach, it is expected
to lose some accuracy due to the removal of some severe restrictions.

In order to measure the quality of the approximation, we adopt the root-mean-square
error defined by

RMS :=

√√√√ M

∑
i=1
| f (xi, yi)− s(xi, yi)|2/M,

where (xi, yi), i = 1, . . . , M, are test points evenly spaced in the domain Ω. The number
M is always chosen to be larger than the number of the randomly spaced data points
(interpolating centers) N. In this section, we use Nt and Nd to denote M and N, respectively.
We point out that the randomly spaced points are generated by the Mathematica command
RandomPoint. The condition number of the interpolating matrix for establishing s is
denoted by COND. As is well known, the condition number for RBF interpolation may be
quite large. In order to cope with the problem of ill-conditioning, the arbitrarily precise
computer software Mathematica is used. There are always enough effective digits for the
calculations. For example, if COND = 1E20, we adopt at least forty effective digits to
the right of the decimal point for each step of the calculation. Hence, the results obtained
are reliable. As for the crucial parameter δ contained in the MN function, we regard it as
simply an indicator of the number of data points and it is inversely proportional to the data
amount. When plotting the MN curves, the δs can be arbitrarily chosen, as long as their
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corresponding curves show clearly the trend of the optimal c values. The experimental
results are presented in Tables 1–6, where the optimal value of c is marked by the symbol ∗.

Table 1. Nd = 10, Nt = 441.

c 1 17 30 50 70

RMS 6.9× 10−4 5.3× 10−4 6.5× 10−4 1.9× 10−4 9.9× 10−5

COND 4.7× 105 1.5× 1015 6.4× 1016 3.3× 1017 1.8× 1017

c 90∗ 120 150 180 210

RMS 6.5× 10−5 1.8× 10−4 1.8× 10−3 2.3× 10−4 2.6× 10−4

COND 1.8× 1017 3.4× 1017 2.0× 1018 3.4× 1017 1.3× 1017

Table 2. Nd = 50, Nt = 441.

c 1 10∗ 17 30 50

RMS 3.2× 10−6 1.9× 10−7 1.2× 10−6 6.3× 10−5 3.9× 10−5

COND 9.2× 1012 9.0× 1018 1.0× 1019 1.1× 1019 7.7× 1018

c 70 90 120 150 180

RMS 2.0× 10−4 2.9× 10−4 4.3× 10−4 9.4× 10−3 6.2× 10−3

COND 7.5× 1019 1.8× 1019 5.0× 1018 2.6× 1019 5.0× 1019

c 210

RMS 2.7× 10−3

COND 2.1× 1019

Table 3. Nd = 100, Nt = 441.

c 1 10∗ 17 30 50

RMS 4.4× 10−7 3.7× 10−7 5.6× 10−6 8.1× 10−5 1.1× 10−4

COND 1.9× 1019 4.3× 1019 2.2× 1019 4.4× 1019 2.7× 1019

c 70 90 120 150 180

RMS 1.6× 10−4 1.4× 10−4 6.4× 10−4 1.4× 10−3 2.2× 10−3

COND 6.0× 1019 1.8× 1019 7.4× 1018 2.5× 1019 1.8× 1019

c 210

RMS 3.7× 10−3

COND 2.3× 1019

Table 4. Nd = 200, Nt = 441.

c 0.2 0.4 0.6 0.8 1

RMS 2.8× 10−5 3.4× 10−6 6.7× 10−7 1.7× 10−7 1.3× 10−8

COND 4.1× 1014 8.3× 1017 4.3× 1020 1.3× 1020 4.3× 1019

c 2.2∗ 10 17 30 50

RMS 3.5× 10−9 8.8× 10−8 1.8× 10−6 1.9× 10−4 1.5× 10−3

COND 6.9× 1019 1.4× 1020 1.7× 1019 2.9× 1020 1.2× 1020

c 70 90 120 150 210

RMS 1.6× 10−4 2.1× 10−3 7.2× 10−4 6.0× 10−4 9.9× 10−3

COND 7.4× 1019 4.0× 1020 1.1× 1020 5.5× 1019 2.6× 1020



Mathematics 2022, 10, 2844 9 of 10

Table 5. Nd = 400, Nt = 676.

c 0.2 0.4 0.6 0.8 1

RMS 5.4× 10−6 2.2× 10−7 2.8× 10−8 3.1× 10−8 7.1× 10−9

COND 4.1× 1015 1.1× 1020 3.5× 1021 9.0× 1020 2.1× 1020

c 2∗ 10 17 30 50

RMS 4.1× 10−9 5.7× 10−7 4.7× 10−6 8.4× 10−5 4.2× 10−4

COND 1.2× 1020 7.3× 1020 4.5× 1019 1.0× 1020 1.2× 1020

c 70 90 120 150 210

RMS 1.2× 10−4 5.7× 10−4 8.9× 10−4 3.1× 10−3 9.1× 10−3

COND 1.1× 1020 2.4× 1020 2.5× 1020 4.9× 1020 2.3× 1020

Table 6. Nd = 800, Nt = 961.

c 0.2 0.4 0.6 0.8 1

RMS 3.7× 10−7 1.2× 10−8 1.7× 10−9 6.0× 10−9 1.5× 10−9

COND 7.5× 1017 3.6× 1021 1.3× 1021 8.0× 1021 5.5× 1020

c 4∗ 10 17 30 50

RMS 1.0× 10−9 5.4× 10−7 2.3× 10−5 2.7× 10−5 1.5× 10−4

COND 2.3× 1020 2.2× 1022 7.6× 1020 3.4× 1020 8.3× 1020

c 70 120 150 180 210

RMS 4.4× 10−4 4.5× 10−3 1.4× 10−3 2.3× 10−2 7.4× 10−3

COND 6.0× 1021 2.8× 1021 1.2× 1021 9.7× 1020 1.3× 1021

In this experiment, the most time-consuming step in solving the linear system for
each c value took less than one second, even though forty effective digits were adopted for
each calculation.

4. Discussion

We emphasize that our theory is reliable only when enough data points are used,
and the choice of the shape parameter is determined by a series of MN curves, not only
one, as stated in the third paragraph of Section 3. Moreover, our prediction may not be so
accurate as in the orthodox rigorous approach of Luh [4]. These two traits can be clearly
seen in these tables. However, whenever enough data points are used, our predictions are
always near the experimentally optimal values and the RMSs thus obtained are satisfactory.

Note that as the number of data points increases, the RMS does seem to improve
whenever the optimal c is chosen. However, if c is fixed, say c = 120 or 210, the RMS
does not improve as Nd increases. This shows that increasing the number of data points is
meaningful only when the shape parameter is well chosen. It may challenge the traditional
concept of the convergence order based on the number of data points.

5. Conclusions

As a final conclusion, we believe that the approach presented in this paper is feasible
and has greatly reduced the effort required in using the highly complicated Theorem 1
needed for the orthodox approach presented in [4]. For pure mathematicians, who insist on
absolute theoretical rigor, the approach in [4] is recommended. For applied mathematicians
and non-mathematicians, who emphasize practical usefulness, we strongly suggest the
method presented in this paper because it is much simpler and more useful.
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