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Abstract: The nonrelativistic treatment of the Varshni–Shukla potential (V–SP) in the presence of
magnetic and Aharanov–Bohm fields is carried out using the asymptotic iteration method (AIM). The
energy equation and wave function are derived analytically. The energy levels are summed to obtain
the partition function, which is employed to derive the expressions for the thermomagnetic properties
of the V–SP. These properties are analyzed extensively using graphical representations. It is observed
that in the various settings of the analysis, the system shows a diamagnetic characteristic, and the
specific heat capacity behavior agrees with the recognized Dulong–Petit law, although some slight
anomaly is observed. This irregular behavior could be attributed to a Schottky anomaly. Our findings
will be valuable in a variety of fields of physics, including chemical, molecular and condensed matter
physics, where our derived models could be applied to study other diatomic molecules and quantum
dots, respectively.

Keywords: Schrödinger equation; Varshni–Shukla potential; magnetic field; Aharanov–Bohm field;
topological defect

MSC: 81V17; 81V19; 81V55; 81Vxx; 82D99

1. Introduction

Topology plays a very important role in modifying the physical properties of diverse
quantum systems. This concept is a crucial topic in research areas such as gravitation theory
and condensed matter physics. The investigation of quantum systems in the presence of
the impact of gravitational field has been a subject of profound interest for more than
ten decades now [1]. Topological defects emerge in gravitation as monopoles, strings
and walls [2–5]. Condensed matter physics presents these defects, such as vortices in
superconductors or superfluids [2,6], domain walls in magnetic materials [7], solitons in
quasi-one-dimensional polymers [4] and dislocations or disclinations in disordered solids
or liquid crystals [5]. The alteration in the topology of a system presented by a linear defect
such as a disclination in an elastic solid or a cosmic string in spacetime has strong effects
on the physical properties of the medium [6,8]. In this area of research, the hydrogen atom,
for example in curved spacetimes, has been considered [1]. When an atom is subjected to a
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gravitational field, it is impacted by its interaction with the local curvature in addition to
the topology of the spacetime [5].

In order to study how these defects affects quantum systems or related physical phe-
nomena, potential models are usually adopted to depict such physical systems. In the
numerous papers published extensively, the attention has been paid to exactly solvable
models, particularly the harmonic oscillator, Cornell and Kratzer potentials whose nonrel-
ativistic treatment is easily obtained [5,7]. Apart from an attempt by Nwabuzor et al. [9]
and Edet and Ikot [10] to study multiparamater exponential-type models, the literature is
still lacking in this direction. Hence, no study has been able to investigate the effects of
these defects on molecules and quantum dots using exponential-type potentials. At the
present time, not only have topological defects’ effects on physical systems been probed,
some effects related to the magnetic field, Rashba effect, Aharanov–Bohm field, Dresslhauss
effects, etc. have also been studied. It has been pointed out that these fields also play
very relevant roles in modifying the behavior of certain quantum systems [11–17]. Of note
among these is the elimination of degeneracy by the magnetic field [18]. Moreover, of late,
it has been found that the Aharanov–Bohm (AB) field plays such roles when introduced to a
system [11,17,18]. Interestingly, some studies focusing on the effects of these perturbations
have been presented by several authors [14,16,19–23]. Rampho et al. [24] studied in the
presence of magnetic and AB fields the spectra of energy of distance molecules. Edet et
al. [25] probed at finite temperature the magnetic susceptibility of Hellmann’s potential
and the properties of the heat AB flux and the field of magnetism. Karayer [26] analyzed
the effects of the magnetic and AB fields on the energy spectra of the spatially varying
mass interacting with the superposition of a Morse potential and a Coulomb potential.
The effects of the AB and magnetic fields on the Shannon information entropy have been
scrutinized by Edet and Ikot [27].

Following a well-established path by these studies, this study seeks to investigate the
effects of perturbing external fields on the thermodynamic and magnetic properties of V–SP.
It is therefore our goal in this paper to solve the 2D SE with perturbations with the Varshni–
Shukla potential as an interaction potential using the asymptotic iteration method (AIM).
The obtained energy is used to study the thermal and magnetic properties, considering the
effects of the perturbations. This study is inspired by the fact that there exist possibilities of
using the vibrational spectroscopy of diatomic molecules as an (approximate) probe for
topological defects in the cosmos, although probes in this direction have been proposed
earlier, for example, using Rydberg atoms [5], Lamb shifts [3,5] and shifts in energy of
hydrogen atoms [1].

In view of this, this paper is organized in the following order. In Section 2, the
solutions of the SE with the Varshni–Shukla potential are presented. The thermomagnetic
and transport properties of the system are presented in Section 3. In Section 4, concluding
remarks and a future outlook are presented.

2. Theory and Solutions

In this section, the model adopted for our study is discussed. Our choice of the Varshni–
Shukla potential is motivated by the basic function it plays in modern physics [28–31].
This model has been employed to study scattering states in relativistic and nonrelativistic
studies [28–30]. Some studies have also pointed out that this potential can to describe the
2-body energy portion of multibody condensed matter [28]. Very recently, Inyang et al. [32]
studied quarks with this model. The model under consideration is given as follows:
V(r) = p− pqe−δr/r, where p and q are adjustable potential parameters, δ is the screening
parameter and r the interparticle distance. Assuming there is a disclination or topological
defect in this region, the disclination is explained using the line element ds2 = dr2 +
α2r2dφ2 + dz2 [6], where 0 < α < 1 signifies the deficit of angle and has a relationship
with the linear mass density µ̃ of the string using α = 1− 4µ̃ [3]. One can see that the
azimuthal angle is expressed in the range 0 ≤ φ ≤ 2π [9]. For a particle charged and whose
motion is limited to the region of the V–SP under the collective influence of the AB flux
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and an external magnetic field with topological defect, the SWE for this case is defined in
the following form [10]:[

1
2µ

(
ih̄~∇α −

e
c
~Aα

)2
+ p− pqe−δr

r

]
Ψ(r, ϕ) = EnmΨ(r, ϕ), (1)

where Enm signifies the energy level, µ is the particle’s mass, ~Aα = ~BṼ(r)φ̂/α+φAB/(2πr)φ̂
is the vector potential with Ṽ(r) = e−δr/(1− e−δr], ~B is the magnetic field and −AB repre-
sents the additional magnetic flux (AB effect) [33]. Here, Ψ(r, ϕ) is the wave function which
can be written in cylindrical coordinates as Ψ(r, ϕ) = eimϕRnm(r)/

√
2πr, where m denotes

the magnetic quantum number. Inserting this wave function and the vector potential into
Equation (1), we arrive at the following radial second-order differential equation:

d2Rnm(r)
dr2 +

2µ

h̄2

{
Enm −Ve f f (r)

}
Rnm(r) = 0, (2)

where Ve f f (r) is the effective potential and is given by

Ve f f (r) = V(r) +
h̄ωcβ0Ṽ(r)

r
+

µω2
c Ṽ2(r)

2
+

h̄2m̃
2µr2 , (3)

where ωc = e~B/(µc) is the cyclotron frequency, β0 = m/α2 + ξ/α and m̃ = (m/α +
ξ)2 − 1/4 are integers with ξ = φAB/φ0 and φ0 = hc/e is the flux’s quantum number.
Equation (3) is not exactly solvable due to the presence of a centrifugal term. Therefore, we
employ the Greene and Aldrich approximation [34] to overcome the centrifugal term. This
approximation is given by 1/r2 = δ2/(1− e−δr)2. We point out here that this approximation
is only valid for small values of the screening parameter η. Therefore, by using the Greene
and Aldrich approximation and introducing a new variable t = e−δr, Equation (3) can be
written as

d2Rnm(t)
dt2 +

1
t

dRnm(t)
dt

− P0t2 − P1t + P2

t2(1− t2)
Rnm(t) = 0, (4)

where P0 = εnm + Λ0 + Λ2, P2 = 2εnm + Λ0 − Λ1, P2 = εnm + m̃ with εnm = 2µ(Enm −
a)/(h̄2η2), Λ0 = 2µab/(h̄2η), Λ1 = 2µωc/(h̄2ηβ̃) and Λ2 = µ2ω2

c /(h̄2η2). In order to
solve Equation (4), we have to transform differential Equation (4) into a form solvable
by a standard mathematical technique. Hence, we take the radial wave function of the
form Rnm = tϑ(1− t)g fnm(t), where g =

√
εnm + m̃ and ϑ =

√
Λ1 + Λ2 + m̃ + 1/4 + 1/2.

On substitution of the ansatz into Equation (4), we obtain the following hypergeometric
differential equation:

d2 fnm(t)
dt2 − λ0(t)

d fnm(t)
dt

− s0(t) fnm(t) = 0, (5)

where λ0(t) = [(2ϑ + 2g + 1)t − (2ϑ + 1)]/t(1− t) and s0(t) = (ϑ + g)2 − (εnm + Λ0 +
Λ2)/t(1− t). Equation (5) is a more suitable second-order homogeneous linear differential
equation, the solution of which can be achieved by using the well-known asymptotic
iteration method [10,35]. The asymptotic feature of the method for sufficiently large
k is given as sk(t)/λk(t) = sk−1(t)/λk−1(t) = γ(t) with λk(t) = λ′k−1(t) + sk−1(t) +
λ0(t)λk−1(t) and sk(t) = s′k−1(t) + s0(t)λk−1(t). This, in principle, is referred to as the
recurrence relation [35]. In accordance with the asymptotic iteration method [33,36], the
equation we seek can be obtained from the roots of the following Equation [35]:

δk =

∣∣∣∣ λk(t) sk(t)
λk+1(t) sk+1(t)

∣∣∣∣ = 0, for k = 0, 1, 2, . . . , n. (6)
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By using the quantization condition given in Equation (6), we arrive at the following eigen-
values expressions (ϑ±0 , ϑ±1 , ϑ±2 , . . . , ϑ±n ) = −(g±

√
P0,−1− g±

√
P0,−2− g±

√
P0, . . . ,

−n− g±
√

P0). Then, the energy Enm eigenvalues is given by

Enm = Q0 −Q1
[Q2 − (n + g)2]2

(n + g)2 , (7)

where Q0 = h̄2δ2m̃/2µ + p, Q1 = h̄2δ2/8µ and Q2 = 2µpq/h̄2δ + µ2ω2
c /h̄2δ2 − m̃. Then,

the wave function Rnm(t) is given by Rnm(t) = (−1)nNnmΓ(2ϑ + 1 + n)/Γ(2ϑ + 1)tϑ(1−
t)ϑ

2 F1(−n, 2(ϑ + g) + n; 2ϑ + 1; t), where Γ(:) is the gamma function and 2F1(:) is the hyper-
geometric function.

3. Magnetotransport and Thermal Properties of Varshni–Shukla Potential (V–SP)

In order to evaluate the thermal, magnetic and transport properties of the Varshni–
Shukla potential, it is required that the energy level accessible be summed; on doing this,
the partition function is obtained. Virtually all the aforementioned properties depend on
the partition. This would mean that on successful evaluation of the partition function, the
magnetotransport and thermal properties are derived. From Equation (7), the partition
function Z(β) of the Varshni–Shukla potential for a finite temperature T, can be derived
by utilizing the Boltzmann statistics as Z(β) = ∑n e−βEn , where n = 0, 1, 2 . . . nmax is the
vibrational quantum number and β = 1/kBT with kB is the Boltzmann constant [37–39].
Here, nmax signifies the upper bound vibration quantum number and can be obtained by
setting ∂En/∂n = 0, which is given by nmax = −g±

√
Q2. On conversion of the summation

to an integral and using the transformation y = Q2/(n + Q3)− (n + Q3), the partition
function of the Varshni–Shukla potential in magnetic and AB fields with topological defects
is obtained as follows:

Z(β) =

√
π

2
e−βQ0

[
Er f i

[√
Q1y1

√
β
]
− Er f i[

√
Q1βy2]

2
√

Q1β

−
e−4Q1Q2 Er f i

[√
Q1β(4Q2 + y2

1)
]
− Er f i

[√
Q1β(4Q2 + y2

2)
]

2
√

Q1β

, (8)

where y1 = Q2/Q3 − Q3 and y2 = Q2/(nmax + Q3) − (nmax + Q3). This expression
represents the classical partition function. The reason is that the PF does not contain
quantum corrections [37]. The PF is graphically analyzed in Figure 1. In these plots,
the partition function (PF) is plotted as a function of the magnetic field, AB field, and
topological defect, respectively. It is observed that in Figure 1a, the PF increases as the
magnetic field increases for various values of the temperature. When the PF is plotted
against the AB field as shown in Figure 1b, it is noticed to move slowly; thereafter, a sharp
increase is noticed for different values of the temperature of 50 k−1 (green curve), 100 k−1

(blue curve) and 150 k−1 (red curve). In Figure 1c, we notice that the plot of PF against
topological defect decreases and later converges at a point.
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Figure 1. (a) Plot of partition function Z(β) as a function of magnetic field |~B|(T) with different
values of β and fixed values of α = 0.4 and ξ = 6. (b) Plot of Z(β) as a function of ξ for different
values of β and fixed values of |~B| = 4T and α = 0.4. (c) Z(β) plot as a function of α for different
values of β and fixed values of |~B| = 6T and ξ = 6. For all three plots, β = 50 k−1 (green curve),
100 k−1 (blue curve) and 150 k−1 (red curve) and the maximum vibrational quantum nmax is fixed at
nmax = 100, p = q = 0.15 and δ = 0.005.

In what follows, all thermodynamic and magnetic properties of the Varshni–Shukla
potential in the presence of the AB and magnetic fields with topological defect, such as the
free energy, mean energy, the entropy, specific heat, magnetization, magnetic susceptibility
and the persistent current, can be obtained from the partition function Z(β).

3.1. Free Energy

In this section, we discuss the free energy F(β) = − ln Z(β)/β [40] of the system. The
free energy as a function of the magnetic field, AB field, and topological defect are shown
in Figure 2. In Figure 2a, it is observed that the free energy decreases as the magnetic field
increases for different values of the temperature. In the plot of the free energy against
the AB field (Figure 2b), it is observed that as the AB field decreases, the free energy
decreases, for different values of the temperature. In Figure 2c, the free energy increases
as the topological defect increases, which exhibits saturation. In line with the stability
criterion, which suggests that a system is stable if its Helmholtz energy is minute [41,42], a
close observation of the numerical values on the scale of our plots in Figure 2 shows that
the free energy satisfies this criterion.

Figure 2. (a) Free energy F(β) as a function of: (a) |~B|(T) for different values of β; (b) ξ for same
different values of β; (c) α for different values of β. For all three plots, β = 50 k−1 (green curve),
100 k−1 (blue curve) and 150 k−1 (red curve); all other parameters are the same as in Figure 1.

3.2. Entropy

In this section, we study the entropy S(β) = ln Z(β)− β
∂ ln Z

∂β
[38] of the Varshni–

Shukla potential. In Figure 3, the entropy is plotted as a function of the magnetic field
(a), AB field (b), and topological defect (c). In Figure 3a, the entropy is seen to decrease
as the magnetic field is increased. A similar trend is noticed in Figure 3c, where the
entropy is plotted against the AB field. In the plot of the entropy against the topological
defect, an increase in entropy is seen when the topological defect increases. The physical
interpretation of this result is that the applied magnetic field makes the magnetic moments
of the system able to lower the energy, thereby leading to a lower entropy state where it
is magnetized. In this case, the entropy decreases as the magnetic field increases, at least
when it is able to give away entropy to its environment. This effect is very important in
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magnetic refrigeration because the opposite is also true: a paramagnetic material tends to
absorb entropy as the field is decreased.

Figure 3. Plot of entropy S(β) as a function of |~B|(T) (a), ξ (b) and α (c) for different values of
β = 50 k−1 (green curve), 100 k−1 (blue curve) and 150 k−1 (red curve); all other parameters are the
same as in Figure 1.

3.3. Internal or Mean Energy

In this section, we analyze the internal energy U(β) = −∂ ln Z(β)

∂β
[39] of the system.

In Figure 4, the average energy is plotted as a function of the magnetic field (a), AB field (b)
and topological defect (c). In Figure 4a, the average energy decreases as the magnetic field
increases for different values of temperature. In Figure 4b, the average energy is seen to
have a linear decrease as the AB field increases. We noticed in Figure 4c, that the average
energy increases as the topological defect increases.

Figure 4. Plot of mean energy U(β) as a function of magnetic field |~B|(T) (a), AB field ξ (b) and
topological defect α (c) for different values of β = 50 k−1 (green curve), 100 k−1 (blue curve) and
150 k−1 (red curve); all other parameters are the same as in Figure 1.

3.4. Heat Capacity

In this section, we study the heat capacity C(β) = β2 ∂2 ln Z(β)

∂β2 [39] of the Varshni–

Shukla potential. In Figure 5, the specific heat capacity is plotted as a function of the
magnetic field, AB field, and topological defect. We observe a similar trend of increase in
specific heat capacity as both the magnetic and AB fields are increased. In the plot of the
specific heat capacity against the topological defect, a shape increase is noticed followed
by a decrease as the topological defect increases. Generally, it is seen that the specific
heat capacity exhibits an irregular behavior, which is almost contrary to the fundamental
Dulong–Petit law [43]. This anomaly could be attributed to the Schottky anomaly which
appears over a small range of temperatures [7,44]. The observation of this Schottky anomaly
indicates that there are small numbers of discrete energy levels dominating the behavior of
the system, and the spacing between these energy levels can be quantified [7,44,45]. This
anomaly may be attributed to the presence of the topological defect.
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Figure 5. Specific heat capacity as a function of (a) magnetic field |~B|(T), (b) AB field ξ and topological
defect α (c) for different values of β = 50 k−1 (green curve), 100 k−1 (blue curve) and 150 k−1 (red
curve); all other parameters are the same as in Figure 1.

3.5. Magnetotransport Properties

In Figure 6, the magnetization M(β) = β−1Z−1(β)
∂Z(β)

∂~B
is plotted against |~B| (a) , ξ

(b) and α (c) for different values of β. In Figure 6a, the magnetization is plotted as a function
of the magnetic field, AB field, and topological defect with different values of temperature.
Careful observation shows a decrease in magnetization as the magnetic field increases. A
similar trend is noticed when the magnetization is plotted as a function of the topological
defect. In the plot of the magnetization against the AB field, an increase in magnetization is
seen as the AB field is increased. A decreasing magnetization with rising temperature is
generally observed here. The reason for this decrease in magnetization with a temperature
increase is attributed to the fact that the thermal disorder (kT) increases and opposes the
magnetic dipoles of the system to align with the applied magnetic field, which leads to a
decreased magnetization.

Figure 6. Plot of magnetization as function of (a) magnetic field |~B|(T), (b) AB field ξ and topological
defect α (c) for different values of β = 50 k−1 (green curve), 100 k−1 (blue curve) and 150 k−1 (red
curve); all other parameters are same as in Figure 1.

3.5.1. Magnetic Susceptibility

In Figure 7, the magnetic susceptibility χ(β) =
∂M(β)

∂~B
[7] is plotted as a function

of the magnetic field ~B(T), AB field ξ, and topological defect α (c) for different values
of β = 50 k−1 (green curve), 100 k−1 (blue curve) and 150 k−1 (red curve). A decrease
in magnetic susceptibility is observed as the magnetic field increases, which exhibit a
diamagnetic behavior as shown in Figure 7a. In Figure 7b, a linear decrease in the magnetic
susceptibility is observed as the AB field is increased. In Figure 7c, an increase in the
magnetic susceptibility is noticed when the topological defect increases with different
values of the temperature.
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Figure 7. Magnetic susceptibility χ(β) as a function of (a) |~B|(T) for different values of β and the
same fixed values as in Figure 1a, (b) ξ for different values of β and the same fixed values as in
Figure 1b, (c) α different values of β and the same fixed values as in Figure 1c. For all three plots,
β = 50 k−1 (green curve), 100 k−1 (blue curve) and 150 k−1 (red curve); the maximum vibrational
quantum nmax and other parameters are same as in Figure 1.

3.5.2. Persistent Current

In Figure 8, the persistent current I(β) = − ∂F(β)
∂φAB

[11] is plotted as a function of the

magnetic field |~B| (a), AB field ξ (b), and topological defect α (a) for different values of
β = 50 k−1 (green curve), 100 k−1 (blue curve) and 150 k−1 (red curve). In Figure 8a, a
linear increase is observed in the persistent current as the magnetic field increases with
different values of temperature and this indicates a saturation point. In Figure 8b, a
similar trend is noticed in the persistent current as the AB field is increased. In Figure 8c,
a decrease is noticed in the persistent current when the topological defect increases for
various temperatures. We note here that our understanding of the persistent current of
exponential-type potential systems such as the V–SP is far from complete, especially at
finite temperatures. We note here again that the persistent current can change its flux’s
period and sign (diamagnetic or paramagnetic) as a function of temperature, features
that can be attributed to a changing confinement of the system and the presence of the
topological defect. This work presents the properties of the persistent current of the V–SP
which could be relevant for the interpretation of experiments on persistent currents in such
molecular systems.

Figure 8. Persistent current I(β) as a function of: (a) |~B|(T) for different values of β and the same
fixed values as in Figure 1a, (b) ξ for different values of β and the same fixed values as in Figure 1b,
(c) α different values of β and the same fixed values as in Figure 1c. For all three plots, β = 50 k−1

(green curve), 100 k−1 (blue curve) and 150 k−1 (red curve); the maximum vibrational quantum nmax

and other parameters are same as in Figure 1.

4. Conclusions

The effects of the magnetic and AB fields and the topological defect (TD) on the
magnetic, transport and thermodynamic properties of the Varshni–Shukla potential (V-SP)
were analyzed. The AIM was used to derive the energy equation and wave function. The
summation of the accessible energy levels was used to obtain the partition function, which
was utilized to derive the magnetotransport and thermal properties of the V–SP model.
An extensive graphical analysis was carried out to show the effects of the perturbations
and topological defect on the thermomagnetic properties. From this study, we find that the
defects and external fields contributed to transforming the thermomagnetic and transport
properties of the model. Moreover, the thermal and magneto-transport properties were
highly sensitive to the magnetic and AB fields and the TD. For instance, in chemical
and condensed matter physics, several potential models (such as the exponential-type
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potential considered in our study) have been adopted to study the energy spectra and
thermodynamics properties of diatomic molecules and GaAs quantum dot, respectively,
by several researchers. In view of the foregoing, our results could be applied to study
such systems highlighted above, bearing in mind the effects of external fields, which were
hitherto not considered.
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