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Abstract: In this study, a dimensionally nonlinear evolution equation, which is the integrable shallow
water wave-like equation, is investigated utilizing the Hirota bilinear approach. Lump solutions are
achieved by its bilinear form and are essential solutions to various kind of nonlinear equations. It has
not yet been explored due to its vital physical significant in various field of nonlinear science. In order
to establish some more interaction solutions with some novel physical features, we establish collision
aspects between lumps and other solutions by using trigonometric, hyperbolic, and exponential
functions. The obtained novel types of results for the governing equation includes lump-periodic,
two wave, and breather wave solutions. Meanwhile, the figures for these results are graphed. The
propagation features of the derived results are depicted. The results reveal that the appropriate
physical quantities and attributes of nonlinear waves are related to the parameter values.

Keywords: shallow water wave-like scalar equation; Hirota bilenear method; breather wave solution;
lump-periodic solution; two-wave solution

MSC: 35A08; 35A09; 35A25

1. Introduction

Nonlinear models have a pleasant features to comprehend so many physical prob-
lems, and researchers consider research in nonlinear fields as one of the most significant
constraints for comprehending the universe. The study of a variety of nonlinear partial dif-
ferential equations is essential for the mathematical modeling of complicated time-varying
phenomena. As a result, during the past few decades, one of the most delightful and
exciting fields of research has been the examination of results to the aforementioned aspects,
as well as the associated problem of constructing closed form wave solutions to a wider
group of nonlinear equations. Solitary wave solutions with a closed form provide more
report about those instances. As a result, a large number of mathematicians and physical
researchers have worked hard to find closed form wave solutions for nonlinear PDEs,
as well as a kind of powerful and adapted approaches [1–14].

Nonlinear PDEs can generate a large variety of solutions. Lump solutions are rational
function solutions that have been empirically investigated in all directions [15–22]. Lump
solutions are among the most important results for nonlinear PDEs [22–26]. Lump solutions
occur in several non-integrable equations. Moreover, several studies have shown that
collision aspects between lumps and other forms of solutions to nonlinear equations
exist [25–32].

Moreover, lump solutions to mathematical equations are required for understanding
the qualitative features of many occurrences and processes in several disciplines of natural
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science. Lump solutions of nonlinear differential equations graphically depict and explain
a variety of sophisticated nonlinear phenomena, such as the spatial localization of transfer
processes, the existence of peaking regimes, and the multiplicity or absence of steady
states under various situations. Furthermore, simple solutions are frequently utilized
as particular examples highlighting key notions of a theory that allow for mathematical
exposition in many courses. Many equations in physics, chemistry, and biology have
empirical parameters or empirical functions, which should be noted. Exact solutions enable
researchers to develop and carry out studies to identify these parameters or functions by
setting adequate natural conditions [33–37].

However, as far as we are aware, breather and lump-periodic wave solutions have
not been investigated for the shallow water wave-like scalar equation [38]. The most
significant processes in the world are described using nonlinear equations. It continues
to be a basic issue in applied mathematics and physics to find innovative approximate
or precise solutions to nonlinear equations. To achieve this, many approaches must be
used. One of the most prominent analytical methods for resolving nonlinear equations is
the Hirota transformation technique. We are motivated to construct a unique lump-like
solution for the shallow water wave-like scalar equation supplied by [38]:

φt + φx +
3
2

φφxt −
3
2

φxφt +
1
2

φ2φt = 0, (1)

because of the lasting character of lump solutions and their power to grasp a wide spectrum
of nonlinear events in the cross-field.

Shallow-water wave equations are a collection of hyperbolic partial differential equa-
tions that describe fluid flow beneath a pressure surface. When the horizontal length scale
is substantially larger than the vertical length scale, the Navier–Stokes equations are depth-
integrated to create the water wave equations. As a result, the fluid’s vertical velocity scale
is thought to be less significant than its horizontal velocity scale according to the principle
of conservation of mass. The momentum equation demonstrates that vertical pressure
gradients are virtually hydrostatic and that horizontal pressure gradients are caused by the
displacement of the pressure surface, indicating that the horizontal velocity field is constant
throughout the fluid’s depth. The vertical velocity can be taken out of the equations using
vertical integration. This leads to the derivation of the shallow-water equations [39].

The rest of the paper is arranged as follows: The next part concentrates on the breather
wave solution. The Lump-periodic solutions of the governing equation are constructed
in Section 3. In Section 4, the two-wave solutions have been established in Section 5, the
physical interpretation of the obtained results has been given in Section. In Section 6,
concluding remarks are provided.

2. Breather Wave Solution

Here, a class of breather wave solutions is provided.
Assume that

φ(x, t) = 3(ln ψ)x. (2)

Inserting Equation (2) into (1), provides [38]:

2ψ(ψxt + ψxx)− 9ψxtψxx + ψx(9ψxxt − 2(ψt + ψx)) = 0. (3)

Consider:

ψ(x, t) = γ1 cos(ϑ0(tv0 + x)) + γ2e(ϑ1(ε0t+x)) + e−ϑ1(ε0t+x). (4)
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Inserting Equation (4) into (3) yields the following set of equations:

− 36γ2ε0ϑ4
1 + 8γ2ε0ϑ2

1 − 9γ2
1ϑ4

0v0 − 2γ2
1ϑ2

0v0 − 2γ2
1ϑ2

0 + 8γ2ϑ2
1 = 0,

9γ1ε0ϑ3
1ϑ0 − 2γ1ε0ϑ1ϑ0 − 9γ1ϑ1ϑ3

0v0 − 2γ1ϑ1ϑ0v0 − 4γ1ϑ1ϑ0 = 0,

9γ1ε0ϑ2
1ϑ2

0 + 2γ1ε0ϑ2
1 + 9γ1ϑ2

1ϑ2
0v0 − 2γ1ϑ2

0v0 − 2γ1ϑ2
0 + 2γ1ϑ2

1 = 0,

− 9γ1γ2ε0ϑ3
1ϑ0 + 2γ1γ2ε0ϑ1ϑ0 + 9γ1γ2ϑ1ϑ3

0v0 + 2γ1γ2ϑ1ϑ0v0 + 4γ1γ2ϑ1ϑ0 = 0,

9γ1γ2ε0ϑ2
1ϑ2

0 + 2γ1γ2ε0ϑ2
1 + 9γ1γ2ϑ2

1ϑ2
0v0 − 2γ1γ2ϑ2

0v0 − 2γ1γ2ϑ2
0 + 2γ1γ2ϑ2

1 = 0.

(5)

Simplifying Equation (5), provides the following solutions:
(I): As

ε0 =
2
(
9ϑ2

0 − 2
)

81ϑ2
0ϑ2

1 + 4
, v0 = −

2
(
9ϑ2

1 + 2
)

81ϑ2
0ϑ2

1 + 4
, γ2 = −

γ2
1ϑ2

0
4ϑ2

1
,

we get

ψ1(x, t) = −
γ2

1ϑ2
0e

(
ϑ1

(
2t(9ϑ2

0−2)
81ϑ2

0ϑ2
1+4

+x

))

4ϑ2
1

+ e

(
−ϑ1

(
2t(9ϑ2

0−2)
81ϑ2

0ϑ2
1+4

+x

))
+ γ1 cos

(
ϑ0

(
x−

2t
(
9ϑ2

1 + 2
)

81ϑ2
0ϑ2

1 + 4

))
.

Consequently,

φ1(x, t) =

3

− γ2
1ϑ2

0e

ϑ1

 2t(9ϑ2
0−2)

81ϑ2
0ϑ2

1+4
+x


4ϑ1

− ϑ1e

(
−ϑ1

(
2t(9ϑ2

0−2)
81ϑ2

0ϑ2
1+4

+x

))
− γ1ϑ0 sin

(
ϑ0

(
x− 2t(9ϑ2

1+2)
81ϑ2

0ϑ2
1+4

))

− γ2
1ϑ2

0e

ϑ1

 2t(9ϑ2
0−2)

81ϑ2
0ϑ2

1+4
+x


4ϑ2

1
+ e

(
−ϑ1

(
2t(9ϑ2

0−2)
81ϑ2

0ϑ2
1+4

+x

))
+ γ1 cos

(
ϑ0

(
x− 2t(9ϑ2

1+2)
81ϑ2

0ϑ2
1+4

)) . (6)

(II): As

ϑ1 =

√
2

3
, ε0 =

9ϑ2
0 − 2

9ϑ2
0 + 2

, v0 = − 4
9ϑ2

0 + 2
, γ2 =

1
8
(−9)γ2

1ϑ2
0,

we obtain

ψ2(x, t) = e

(
− 1

3

√
2

(
t(9ϑ2

0−2)
9ϑ2

0+2
+x

))
− 1

8
9γ2

1ϑ2
0e

1
3

√
2

(
t(9ϑ2

0−2)
9ϑ2

0+2
+x

)
+γ1 cos

(
ϑ0

(
x− 4t

9ϑ2
0 + 2

))
.

Consequently,

φ2(x, t) =

3

− 1
3

√
2e

(
− 1

3

√
2

(
t(9ϑ2

0−2)
9ϑ2

0+2
+x

))
− 3γ2

1ϑ2
0e

1
3
√

2

 t(9ϑ2
0−2)

9ϑ2
0+2

+x


4
√

2
− γ1ϑ0 sin

(
ϑ0

(
x− 4t

9ϑ2
0+2

))
e

(
− 1

3

√
2

(
t(9ϑ2

0−2)
9ϑ2

0+2
+x

))
− 1

8 9γ2
1ϑ2

0e
1
3

√
2

(
t(9ϑ2

0−2)
9ϑ2

0+2
+x

)
+ γ1 cos

(
ϑ0

(
x− 4t

9ϑ2
0+2

)) . (7)

3. Lump-Periodic Solution

Here, a class of lump-periodic wave solutions is provided.
Consider:

ψ(x, t) = τ2 cos(tϑ4 + xϑ3) + τ1 cosh(tϑ2 + xϑ1) + τ3 cosh(tϑ6 + xϑ5). (8)
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Inserting Equation (8) into (3) yields the following set of equations:

− 9τ2
1 ϑ2ϑ3

1 + 2τ2
1 ϑ2

1 + 2τ2
1 ϑ2ϑ1 − 2τ2

2 ϑ2
3 − 9τ2

2 ϑ3
3ϑ4 − 2τ2

2 ϑ3ϑ4 + 2τ2
3 ϑ2

5 − 9τ2
3 ϑ3

5ϑ6 + 2τ2
3 ϑ5ϑ6 = 0,

9τ1τ2ϑ3ϑ4ϑ2
1 + 2τ1τ2ϑ2

1 + 9τ1τ2ϑ2ϑ2
3ϑ1 + 2τ1τ2ϑ2ϑ1 − 2τ1τ2ϑ2

3 − 2τ1τ2ϑ3ϑ4 = 0,

− 9τ1τ2ϑ2ϑ3ϑ2
1 + 4τ1τ2ϑ3ϑ1 + 9τ1τ2ϑ2

3ϑ4ϑ1 + 2τ1τ2ϑ4ϑ1 + 2τ1τ2ϑ2ϑ3 = 0.

− 9τ1τ3ϑ5ϑ6ϑ2
1 + 2τ1τ3ϑ2

1 − 9τ1τ3ϑ2ϑ2
5ϑ1 + 2τ1τ3ϑ2ϑ1 + 2τ1τ3ϑ2

5 + 2τ1τ3ϑ5ϑ6 = 0.

9τ1τ3ϑ2ϑ5ϑ2
1 − 4τ1τ3ϑ5ϑ1 + 9τ1τ3ϑ2

5ϑ6ϑ1 − 2τ1τ3ϑ6ϑ1 − 2τ1τ3ϑ2ϑ5 = 0,

9τ2τ3ϑ5ϑ6ϑ2
3 − 2τ2τ3ϑ2

3 + 9τ2τ3ϑ4ϑ2
5ϑ3 − 2τ2τ3ϑ4ϑ3 + 2τ2τ3ϑ2

5 + 2τ2τ3ϑ5ϑ6 = 0,

9τ2τ3ϑ4ϑ5ϑ2
3 + 4τ2τ3ϑ5ϑ3 − 9τ2τ3ϑ2

5ϑ6ϑ3 + 2τ2τ3ϑ6ϑ3 + 2τ2τ3ϑ4ϑ5 = 0.

(9)

Simplifying Equation (9), provides the following solutions:
(I): As

ϑ1 =

√
2

3
, ϑ2 =

3
√

2ϑ2
5 +

2
√

2
3

9ϑ2
5 − 2

, ϑ6 =
4ϑ5

9ϑ2
5 − 2

, τ1 = −3τ3ϑ5√
2

, τ2 = 0,

we obtain

ψ1(x, t) = τ3 cosh

(
4tϑ5

9ϑ2
5 − 2

+ xϑ5

)
−

3τ3ϑ5 cosh

(
t
(

3
√

2ϑ2
5+

2
√

2
3

)
9ϑ2

5−2
+
√

2x
3

)
√

2
.

Consequently,

φ1(x, t) =

3

(
τ3ϑ5 sinh

(
4tϑ5

9ϑ2
5−2

+ xϑ5

)
− τ3ϑ5 sinh

(
t
(

3
√

2ϑ2
5+

2
√

2
3

)
9ϑ2

5−2
+
√

2x
3

))

τ3 cosh
(

4tϑ5
9ϑ2

5−2
+ xϑ5

)
−

3τ3ϑ5 cosh

 t
(

3
√

2ϑ2
5+

2
√

2
3

)
9ϑ2

5−2
+
√

2x
3


√

2

. (10)

(II): As

ϑ1 = −
√

2
3

, ϑ2 =
2
√

2− 9
√

2ϑ2
3

3
(
9ϑ2

3 + 2
) , ϑ4 = − 4ϑ3

9ϑ2
3 + 2

, τ1 = −3τ2ϑ3√
2

. τ3 = 0,

we obtain

ψ2(x, t) = τ2 cos

(
xϑ3 −

4tϑ3

9ϑ2
3 + 2

)
−

3τ2ϑ3 cosh
(√

2x
3 −

t(2
√

2−9
√

2ϑ2
3)

3(9ϑ2
3+2)

)
√

2
.

Consequently,

φ2(x, t) =
3
(

τ2ϑ3

(
− sin

(
xϑ3 − 4tϑ3

9ϑ2
3+2

))
− τ2ϑ3 sinh

(√
2x
3 −

t(2
√

2−9
√

2ϑ2
3)

3(9ϑ2
3+2)

))

τ2 cos
(

xϑ3 − 4tϑ3
9ϑ2

3+2

)
−

3τ2ϑ3 cosh

(
√

2x
3 −

t(2
√

2−9
√

2ϑ2
3)

3(9ϑ2
3+2)

)
√

2

. (11)
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4. Two-Wave Solution

Here, a class of two-wave solutions are presented.
Consider:

ψ(x, t) = c1e(δ2t+δ1x) + c2e(−(δ2t+δ1x)) + c3 sin(δ4t + δ3x) + c4 sinh(δ6t + δ5x). (12)

Putting Equation (12) into (3) provides:

− 36c1c2δ2δ3
1 + 8c1c2δ2

1 + 8c1c2δ2δ1 − 2c2
3δ2

3 − 2c2
4δ2

5 − 9c2
3δ3

3δ4 − 2c2
3δ3δ4 + 9c2

4δ3
5δ6 − 2c2

4δ5δ6 = 0,

2c1c3δ2
1 + 9c1c3δ3δ4δ2

1 + 9c1c3δ2δ2
3δ1 + 2c1c3δ2δ1 − 2c1c3δ2

3 − 2c1c3δ3δ4 = 0,

2c2c3δ2
1 + 9c2c3δ3δ4δ2

1 + 9c2c3δ2δ2
3δ1 + 2c2c3δ2δ1 − 2c2c3δ2

3 − 2c2c3δ3δ4 = 0,

9c1c3δ2δ3δ2
1 − 4c1c3δ3δ1 − 9c1c3δ2

3δ4δ1 − 2c1c3δ4δ1 − 2c1c3δ2δ3 = 0,

− 9c2c3δ2δ3δ2
1 + 4c2c3δ3δ1 + 9c2c3δ2

3δ4δ1 + 2c2c3δ4δ1 + 2c2c3δ2δ3 = 0,

2c1c4δ2
1 − 9c1c4δ5δ6δ2

1 − 9c1c4δ2δ2
5δ1 + 2c1c4δ2δ1 + 2c1c4δ2

5 + 2c1c4δ5δ6 = 0,

2c2c4δ2
1 − 9c2c4δ5δ6δ2

1 − 9c2c4δ2δ2
5δ1 + 2c2c4δ2δ1 + 2c2c4δ2

5 + 2c2c4δ5δ6 = 0,

− 2c3c4δ2
3 + 9c3c4δ5δ6δ2

3 + 9c3c4δ4δ2
5δ3 − 2c3c4δ4δ3 + 2c3c4δ2

5 + 2c3c4δ5δ6 = 0,

9c1c4δ2δ5δ2
1 − 4c1c4δ5δ1 + 9c1c4δ2

5δ6δ1 − 2c1c4δ6δ1 − 2c1c4δ2δ5 = 0,

− 9c2c4δ2δ5δ2
1 + 4c2c4δ5δ1 − 9c2c4δ2

5δ6δ1 + 2c2c4δ6δ1 + 2c2c4δ2δ5 = 0,

− 9c3c4δ4δ5δ2
3 − 4c3c4δ5δ3 + 9c3c4δ2

5δ6δ3 − 2c3c4δ6δ3 − 2c3c4δ4δ5 = 0.

(13)

Simplifying Equation (13) provides:
(I): As

δ5 = −δ1, δ6 =
9δ2δ2

1 − 4δ1 − 2δ2

9δ2
1 − 2

, c2 = −
c2

4
4c1

, c3 = 0,

we obtain

ψ1(x, t) = −
c2

4eδ1(−x)−δ2t

4c1
+ c1eδ2t+δ1x − c4 sinh

(
δ1x−

(
9δ2δ2

1 − 4δ1 − 2δ2
)
t

9δ2
1 − 2

)
.

Consequently,

φ1(x, t) =
3
(

c2
4δ1eδ1(−x)−δ2t

4c1
+ c1δ1eδ2t+δ1x − c4δ1 cosh

(
δ1x− (9δ2δ2

1−4δ1−2δ2)t
9δ2

1−2

))
− c2

4eδ1(−x)−δ2t

4c1
+ c1eδ2t+δ1x − c4 sinh

(
δ1x− (9δ2δ2

1−4δ1−2δ2)t
9δ2

1−2

) . (14)

(II): When

δ2 =
2δ1

9δ2
1 − 2

, δ3 = −δ1, δ4 = − 2δ1

9δ2
1 − 2

, c4 = 0,

we obtain

ψ2(x, t) = c1e
2δ1t

9δ2
1−2

+δ1x
+ c2e

δ1(−x)− 2δ1t
9δ2

1−2 − c3 sin

(
2δ1t

9δ2
1 − 2

+ δ1x

)
.

Consequently,

φ2(x, t) =

3

(
c1δ1e

2δ1t
9δ2

1−2
+δ1x
− c2δ1e

δ1(−x)− 2δ1t
9δ2

1−2 − c3δ1 cos
(

2δ1t
9δ2

1−2
+ δ1x

))

c1e
2δ1t

9δ2
1−2

+δ1x
+ c2e

δ1(−x)− 2δ1t
9δ2

1−2 − c3 sin
(

2δ1t
9δ2

1−2
+ δ1x

) . (15)
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5. Physical Interpretation

This study investigates the lump interaction aspects to a shallow water wave-like equa-
tion using the Hirota bilinear approach. One of the top solutions for nonlinear evolution
equations has been demonstrated to be the lump solutions. We successfully reported some
breather wave, lump-periodic, and two-wave solutions. A breather is a nonlinear wave in
physics that has energy concentrated in a focused, oscillating manner. The expectations
drawn from the analogous linear system for infinitesimal amplitudes, which lean toward
an even distribution of originally localized energy, are in conflict with this. The word
“breather” comes from the fact that the majority of breathers oscillate (breathe) in time and
are confined in location. Alternatively, oscillations that are localized in time and place are
referred to as a break [40]. An expanding dynamic disturbance of one or more values is
known as a wave in physics, mathematics, and related subjects. When a wave is periodic,
its constituent parts repeatedly oscillate at a given frequency around an equilibrium value.
A traveling wave is one where the entire waveform is moving in one direction; in contrast,
a standing wave is one where two superimposed periodic waves are moving in opposite
directions. A standing wave has nulls in the vibrational amplitude at some locations where
the wave amplitude seems reduced or even zero. The standing wave field of two opposing
waves known as a wave equation or a one-way wave equation for the dynamics of a single
wave in a particular direction are two common ways to explain waves [41]. Under the
choice of the good values of the parameters, three-dimensional, density, and contour fig-
ures are plotted. Figures 1 and 2 display the collision aspects between lump, exponential
function, and singular periodic wave for the breather solutions (6) and (7). Figures 3 and 4
display the collision aspects between lump, exponential function, periodic, and singular
periodic waves for the lump-periodic wave solutions (10) and (11). Figures 5 and 6 display
the collision aspects between lump, exponential function, periodic, and singular periodic
waves for the two-wave solutions (14) and (15).

(a) (b) (c)

Figure 1. (a) Three-dimensional, (b) density, and (c) contour images of (6) under the values
ϑ0 = 6, ϑ1 = 0.75, γ1 = −3.5.
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(a) (b) (c)

Figure 2. (a) Three-dimensional, (b) density, and (c) contour images of (7) under the values
ϑ0 = −7, γ1 = −9.55, ϑ1 = 0.471.

(a) (b) (c)

Figure 3. (a) Three-dimensional, (b) density, and (c) contour images of (10) under the values
ϑ5 = −1, τ3 = 18.5.

(a) (b) (c)

Figure 4. (a) Three-dimensional, (b) density, and (c) contour images of (11) under the values
ϑ3 = 3.14, τ2 = 18.28.
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(a) (b) (c)

Figure 5. (a) Three-dimensional, (b) density, and (c) contour images of (14) under the values
δ1 = 1, δ2 = −2, c1 = 1.1, c4 = −2.

(a) (b) (c)

Figure 6. (a) Three-dimensional, (b) density, and (c) contour images of (15) under the values
δ1 = −0.5, c2 = 5.65, c1 = −1.1, c3 = 17.2.

6. Conclusions

The shallow water wave-like equation has been investigated. The well-known and
efficient Hirota bilinear approach was employed to construct several novel solutions to
the equation under consideration. Lump-periodic, two-wave, and breather wave solutions
were produced as novel forms of results for the governing equation. In the meantime,
the figures for these results have been graphed. The propagation properties of the generated
solutions are illustrated in the plotted figures using the contour and three-dimensional
plots. The results reveal that the appropriate physical quantities and attributes of nonlinear
waves are related to the parameter values. The findings may be applied to a wide range of
areas to assist readers in better comprehending difficult physical elements. The equation
under consideration agreed with the attained solutions.
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