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1. Introduction

Communication plays a significant role in many social and economic situations. Co-
operation under communication restrictions and surplus distributions can be described
and analyzed through cooperative games restricted by a combinatorial structure. The first
model in which the restrictions are defined by the connected subgraphs of a graph was
introduced by Myerson [1–13]. Since then, many other situations in which the communica-
tion restrictions are described by graphs or hypergraphs have been studied in cooperative
game theory.

Bilbao [4] introduced the restricted cooperation model derived from a combinatorial
structure called augmenting system. The combinatorial structure is a generalization of
the antimatroid structure [2,3] and the system of connected subgraphs of a graph [13,14].
For games under augmenting systems, Algaba et al. [1] proposed an allocation rule called
the value α, which generalizes the Myerson value for games restricted by graphs and the
Shapley value for games restricted by permission structures. This value α for augmenting
structures has been characterized axiomatically by using either component efficiency, loop-
null and balanced contributions, or standardness for two-person restricted games and the
consistency of this value. The variants of balanced contributions have been suggested and
applied to axiomatic characterizations of the other values for cooperative games in [6,15–19].
More studies for games on augmenting systems can be found in [5,12].

The marginality principle has a long tradition in economic theory [17]. The reason is
that the outcome of a player in cooperative games is largely based on the player’s marginal
contributions to all coalitions. Marginality requires that a player’s payoff only depends on
her own productivity. Many allocation rules in cooperative games have been characterized
axiomatically by using the property of marginality. For example, the Shapley value [20]
and the Owen value [9,10]. It is known that the Myerson value for games restricted by
graphs does not satisfy the axiom of marginality. However, Manuel et al. [11] introduced
a PL-marginality associated with the set of links for games restricted by graphs and gave
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an axiomatization of the Myerson value by using PL-marginality and the other standard
axioms in the literature.

The purpose of this paper is to provide a new axiomatization of the value α for
augmenting structures by introducing a new property of marginality, namely marginality
for augmenting structures. We show that the value α for augmenting structures is uniquely
determined by the marginality for augmenting structures as well as the standard axioms:
component efficiency, the loop-null property used by Algaba et al. in [1] and equal treatment
of necessary players used by van den Brink and Gilles in [7]. The property of marginality
for augmenting structures requires that equal marginal contributions in games restricted
by augmenting systems imply equal allocation.

In Section 2, we give preliminaries. In Section 3, we propose an axiomatic characteri-
zation of the value α for augmenting structures by marginality for augmenting structures.
Section 4 gives some concluding remarks.

2. Preliminaries
2.1. TU-Games

A cooperative game with transferable utility, in short, a TU-game, is composed of a
nonempty set N and a characteristic function defined on the collection of all subsets of N
and having the property v(∅) = 0. We shall denote the TU-game given through N and v
by (N, v), or simply v, and the collection of all TU-games with a player set N by GN . Each
subset S of N is called a coalition and v(S) is the worth of coalition S, i.e., the members of N
can obtain total payoff v(S) by agreeing to cooperate. For the simplicity of notation, we
write v(i, . . . , k) and S \ i for v({i, . . . , k}) and S \ {i}, respectively. The cardinality of set A
is denoted by |A| or the corresponding lower case letter a = |A|.

For nonempty S ⊆ N, the subgame of v with respect to S is vS(T) = v(T), for all T ⊆ S.
The unanimity game with respect to S is defined by uS(T) = 1 if S ⊆ T and uS(T) = 0
otherwise. Every game (N, v) is a unique linear combination of unanimity games,

v = ∑
∅ 6=S⊆N

λS(v)uS,

where λS(v) = ∑∅ 6=T⊆S(−1)s−tv(T) is called the unanimity coefficient of S in (N, v). Hence,
the worth of every coalition S can be written in terms of them as

v(S) = ∑
∅ 6=T⊆S

λT(v). (1)

An allocation rule (also called a value) on GN is a function ϕ that assigns to every game
(N, v) ∈ GN a payoff vector ϕ(N, v) ∈ Rn, ϕi(N, v) representing the outcome of player i in
the game (N, v).

The Shapley value is a well-known allocation rule that is defined in [18] by

Shi(N, v) = ∑
i∈S,S⊆N

λS(v)
|S| for all i ∈ N.

Shapley [18] introduced the first axiomatization of this value, which is founded on the
axioms of efficiency, the null player property, symmetry and additivity. Let us state the
axioms as follows.

• Efficiency. ∑i∈N ϕi(N, v) = v(N).
• Null player property. For any null player i ∈ N, i.e., v(S ∪ i) = v(S) for any S ⊆ N \ i,

ϕi(N, v) = 0.
• Symmetry. For any symmetric players i, j ∈ N, i.e., v(S ∪ i) = v(S ∪ j) for any

S ⊆ N \ {i, j}, ϕi(N, v) = ϕj(N, v).
• Additivity. For any (N, v), (N, w) ∈ GN , ϕ(N, v + w) = ϕ(N, v) + ϕ(N, w).



Mathematics 2022, 10, 2803 3 of 9

2.2. Augmenting Systems

A set system on N is a pair (N,F ) where F ⊆ 2N is a family of subsets of N. The sets
belonging to F are called feasible. For a coalition R ⊆ N, the set system (R,FR) induced by
R is defined by FR = {S ∈ F : S ⊆ R}. For i ∈ N, we define F \ i = {S ∈ F : i /∈ S}. The
set system (N \ i,F \ i) is the deletion of i in (N,F ).

An augmenting system is a set system (N,F ) with the following properties:

(i) ∅ ∈ F ;
(ii) If S, T ∈ F with S ∩ T 6= ∅, then S ∪ T ∈ F ;
(iii) If S, T ∈ F with S ⊂ T, then there exists i ∈ T \ S such that S ∪ i ∈ F .

By definition of an augmenting system, if (N,F ) is an augmenting system, then
(N \ i,F \ i) is an augmenting system. Player i ∈ N is called an isolated player (also called
loop player) in an augmenting system (N,F ) if i ∈ N \⋃S∈F S. Obviously, (N,F \ i) is also
an augmenting system when i is an isolated player in (N,F ).

Let (N,F ) be a set system and let S ⊆ N be a subset. The maximal nonempty feasible
subsets of S are called components of S. We denote by CF (S) the set of components of a
subset S ⊆ N. Observe that the set CF (S) may be the empty set. Clearly, i is isolated if and
only if i /∈ C for all C ∈ CF (N).

Let P be the set of all positive integers and let N = {1, . . . , n} ⊆ P. An augmenting
structure on N is a triple (N, v,F ), where (N, v) is a TU-game on GN and (N,F ) is an
augmenting system. The set of all augmenting structures with player set N is denoted by
ASN , and the set of all augmenting structures is given by AS =

⋃
N⊆P ASN .

An allocation rule ϕ on ASN is a map ϕ: ASN → Rn, ϕi(N, v,F ) representing the
outcome for player i in the augmenting structure (N, v,F ).

To introduce the allocation rule α, Bilbao [4] defined the restricted game under aug-
menting systems. Let (N, v,F ) ∈ ASN . The restricted game vF with respect to augmenting
system F is defined by

vF (S) = ∑
T∈CF (S)

v(T) for all S ⊆ N.

For any T ∈ F , let T+ = T ∪ T∗ where T∗ = {i ∈ N \ T : T ∪ i ∈ F}. Bilbao [4]
obtained the following properties of the restricted game vF inspired by the result of
Owen [16] for graph-restricted games.

Lemma 1. Let (N, v,F ) be an augmenting structure. Then the restricted game vF satisfies

vF = ∑
S∈F ,S 6=∅

λS(vF )uS,

where
λS(vF ) = ∑

T∈F ,T⊆S⊆T+

(−1)s−tv(T)

and λS(vF ) = 0 for all S /∈ F .

The allocation rule α on ASN is defined in [1] as the Shapley value of the restricted
game vF , i.e.,

α(N, v,F ) = Sh(N, vF ).

By Lemma 1,

αi(N, v, L) = Shi(N, vF ) = ∑
i∈S∈F

λS(vF )
|S| for all i ∈ N. (2)

Note that the value α(N, v,F ) coincides with the Myerson value for games restricted
by graphs when (N,F ) is an augmenting system such that {i} ∈ F for all i ∈ N.
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Algaba et al. [1] showed that value α on ASN is uniquely determined by the axioms
of either component efficiency, loop-null and balanced contributions or consistency and
standardness for two-person restricted games below.

Let ϕ be an allocation rule on ASN .
Component efficiency. For all (N, v,F ) ∈ ASN and C ∈ CF (N),

∑
i∈C

ϕi(N, v,F ) = v(C).

Loop-null. For all (N, v,F ) ∈ ASN and for any isolated player i in (N,F ), ϕi(N, v,F ) = 0.
Loop-null states that every player who is not in any admissible (or, feasible) coalition

obtains zero. The property is also called an isolated property in the literature.
Balanced contributions. For all (N, v,F ) ∈ ASN and any two players i, j ∈ N with i 6= j,

ϕj(N, v,F )− ϕj(N, v,F \ i) = ϕi(N, v,F )− ϕi(N, v,F \ j).

Algaba et al. [1] established an axiomatic characterization of the value α for augmenting
structures in terms of component efficiency, loop-null and balanced contributions.

Theorem 1. The value α is the unique allocation rule on ASN that satisfies component efficiency,
loop-null and balanced contributions.

In [1] Algaba et al. also provided another characterization of value α by means of
consistency and standardness for two-person restricted games. The consistency axiom
was introduced by Hart and Mas-Colell [8] and applied to the characterization of the
Shapley value.

3. The Axiomatization

In this section, we shall give an alternative axiomatization of the value α(N, v, L). For
this purpose, let us introduce more terminology and properties.

For any (N, v) ∈ GN , we define

vi = ∑
i∈T,T⊆N

λT(v)uT . (3)

The following formulation directly holds by (1).

vi(S) = v(S)− v(S \ i) for all S ⊆ N. (4)

A player i ∈ N is a necessary player in (N, v) ∈ GN if v(S) = 0 for all S ⊆ N \ i
(see [7]). The marginal contribution of a player i ∈ N to a coalition S ⊆ N \ i is measured as
v(S ∪ i)− v(S).

Let ϕ be an allocation rule on ASN and any (N, v,F ) ∈ ASN .
Equal treatment of necessary players. For any i, j ∈ N, if i, j are necessary players in

(N, v), then ϕi(N, v,F ) = ϕj(N, v,F ).
This axiom requires that all players necessary to produce worth shall receive the same

payoff. It has been applied to the characterizations of values in [11,15]. By definition of
the restricted game vF , if i, j are necessary players in (N, v) for i, j ∈ N, then i, j are both
necessary and symmetric players in (N, vF ).

Marginality for augmenting structures. For any (N, v,F ), (N, w,F ) ∈ ASN and i ∈ N, if
vF (S ∪ i)− vF (S) = wF (S ∪ i)− wF (S) for all S ⊆ N \ i, then ϕi(N, v,F ) = ϕi(N, w,F ).

Marginality for augmenting structures states that a player’s payoff should depend
only on his own productivity in the restricted game vF .
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Lemma 2. For any (N, v,F ) ∈ ASN and S ∈ F , we have

λS
[
(vF )i

]
=

{
λS(vF ), if i ∈ S
0, if i /∈ S

Proof. Using (4), we have

λS
[
(vF )i

]
= ∑

T⊆S
(−1)s−t(vF )i(T)

= ∑
T⊆S

(−1)s−t[vF (T)− vF (T \ i)
]
.

If i /∈ S, then λS
[
(vF )i

]
= 0 as vF (T) = vF (T \ i). If i ∈ S, then

λS
[
(vF )i

]
= ∑

i∈T⊆S
(−1)s−t[vF (T)− vF (T \ i)

]
= ∑

T⊆S
(−1)s−tvF (T) = λS(vF ),

Showing the assertion.

Theorem 2. The value α(N, v, L) is the unique allocation rule on ASN satisfying component
efficiency, equal treatment of necessary players, loop-null and marginality for augmenting structures.

Proof. It is easy to check that the value α(N, v, L) satisfies the four properties in Theorem 2.
It has been shown that α(N, v, L) satisfies component efficiency and loop-null by Al-
gaba et al. [1]. α(N, v, L) satisfies the properties of equal treatment of necessary and
marginality for augmenting structures follows directly from the fact that the Shapley value
satisfies symmetry and marginality in vF , respectively.

Let ϕ be an allocation rule satisfying the four properties in Theorem 2, we have to
show that ϕ = α. If |N| = 1, then clearly α(N, v,F ) = ϕ(N, v,F ) by component efficiency
and loop-null. Therefore, we may assume that |N| ≥ 2.

We establish this by contradiction. Let (N, v,F ) ∈ ASN be a game with a minimum
number of terms λS(vF ) 6= 0 under the summation below such that ϕ 6= α.

vF = ∑
∅ 6=S∈F

λS(vF )uS. (5)

Let D(N, vF ) = {S ∈ F : λS(vF ) 6= 0}. Note that (vF )F = vF by the definition of
vF . Thus, by marginality for augmenting structures of ϕ,

ϕ(N, v,F ) = ϕ(N, vF ,F ). (6)

If |D(N, vF )| = 0, then vF = 0, and so each i ∈ N is necessary in vF . This implies
that each pair i, j ∈ N is symmetric in vF . By symmetry of the Shapley value in vF and
component efficiency of the value α(N, v, L),

∑
i∈N

αi(N, v,F ) = ∑
i∈N

Shi(N, vF ) = |N|Shi(N, vF )

∑
i∈N

αi(N, v,F ) = vF (N) = 0.

Therefore, αi(N, v,F ) = Shi(N, vF ) = 0 for all i ∈ N. On the other hand, by compo-
nent efficiency of ϕ in vF ,

∑
i∈N

ϕi(N, vF ,F ) = (vF )F (N) = vF (N) = 0.
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By equal treatment of necessary players of ϕ in vF , we obtain ϕi(N, vF ,F ) = 0 for all
i ∈ N. By (6), ϕi(N, v,F ) = 0 for all i ∈ N. Hence α(N, v,F ) = ϕ(N, v,F ), a contradiction.
Thus |D(N, vF )| ≥ 1.

Let A =
⋂

S∈D(N,vF ) S. We now consider each i ∈ N.
Suppose i ∈ A. Then i is a necessary player in vF since

vF (S) = ∑
T⊆S

λT(vF ) = ∑
T∈F ,T⊆S

∑
R∈F ,R⊆T⊆R+

(−1)(t−r)v(R) = 0 for any S ⊆ N \ i

By Lemma 1. The property of equal treatment of necessary players of ϕ in vF

requires the allocation of exactly the same payoff to either of these players in A, i.e.,
ϕi(N, vF ,F ) = ϕj(N, vF ,F ) for all i, j ∈ A. By (6),

ϕi(N, v,F ) = ϕj(N, v,F ) for all i, j ∈ A.

For the value α, since α satisfies equal treatment of necessary players in v,

αi(N, v,F ) = αj(N, v,F ) for all i, j ∈ A.

Suppose i /∈ A. We first claim that
[(

vF
)

i

]F
=
(
vF
)

i. Indeed, by (4)(
vF
)

i(S) = vF (S)− vF (S \ i) = ∑
C∈CF (S)

v(C)− ∑
C∈CF (S\i)

v(C) = v(Ci)− vF (Ci \ i)

For any S ⊆ N and i ∈ S, where Ci ∈ CF (S) is the component of S containing player i.
On the other hand, by (4),[(

vF
)

i

]F
(S) = ∑

C∈CF (S)

(
vF
)

i(C) =
(
vF
)

i(Ci) = v(Ci)− vF (Ci \ i)

For any S ⊆ N and i ∈ S. Hence
[(

vF
)

i

]F
=
(
vF
)

i.

Again by (4),
[(

vF
)

i

]F
(S \ i) =

(
vF
)

i(S \ i) = 0. Hence

[(
vF
)

i

]F
(S)−

[(
vF
)

i

]F
(S \ i) =

(
vF
)

i(S)−
(
vF
)

i(S \ i) =
(
vF
)

i(S)

= vF (S)− vF (S \ i),

For all S ⊆ N. The property of marginality for augmenting structures implies that
ϕi(N, v,F ) = ϕi(N,

(
vF
)

i,F ). Note that |D(N,
(
vF
)

i)| < |D(N, vF )|. By the mini-
mality of |D(N, vF )|, we have ϕ(N,

(
vF
)

i,F ) = α(N,
(
vF
)

i,F ). Then ϕi(N, v,F ) =

αi(N,
(
vF
)

i,F ).
By the definition of value α and the above equality

[(
vF
)

i

]F
=
(
vF
)

i,

αi

(
N,
(
vF
)

i,F
)
= Shi

(
N,
[
(vF )i

]F)
= Shi

(
N,
(
vF
)

i

)
.

By (2) and Lemma 2, we have Shi(N,
(
vF
)

i) = Shi(N, vF ). Hence

ϕi(N, v,F ) = Shi(N, vF ) = αi(N, v,F ) for all i ∈ N \ A.

If |A| = 0, then ϕi(N, v,F ) = αi(N, v,F ) for all i ∈ N, contradicting the assumption
that ϕ 6= α. Thus |A| > 0. Furthermore, by component efficiency and (i),

∑
i∈N

αi(N, v,F ) = vF (N) = ∑
i∈N

ϕi(N, v,F ) = |A|ϕi(N, v,F ) + ∑
i∈N\A

αi(N, v,F ).
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Or, equivalently,

|A|αi(N, v,F ) = ∑
i∈A

αi(N, v,F ) = |A|ϕi(N, v,F ).

Therefore, αi(N, v,F ) = ϕi(N, v,F ) for all i ∈ A. This implies that αi(N, v,F ) =
ϕi(N, v,F ) for all i ∈ N, a contradiction.

Remark 1. The property of equal treatment of necessary players in Theorem 2 can not be replaced
by equal treatment of symmetric players. This is because the symmetry in (N, v) does not guarantee
the symmetry in (N, vF ), which implies that the value α does not satisfy the equal treatment of
symmetric players. However, the property of marginality for augmenting structures in Theorem 2
can be replaced by the strong marginality for augmenting structures below.

Strong marginality for augmenting structures. For any (N, v,F ), (N, w,F ) ∈ ASN and
i ∈ N, if vF (S ∪ i) − vF (S) ≥ wF (S ∪ i) − wF (S) for all S ⊆ N \ i, then ϕi(N, v,F ) ≥
ϕi(N, w,F ).

The reason is that strong marginality for augmenting structures clearly implies marginal-
ity for augmenting structures.

The independence of the four stated properties in Theorem 2 can be shown by the
following examples.

For any (N, v,F ) ∈ ASN , let IP = {i ∈ N : i is an isolated player in (N, v,F )}.
(1) Let f 1 : ASN → Rn be defined by f 1(N, v,F ) = 1

2 α(N, v,F ). Then the value f 1

satisfies all axioms in Theorem 2 except component efficiency.
(2) We define f 2 : ASN → Rn as

f 2
i (N, v,F ) =


0 if i ∈ IP,
αi(N, v,F ) + (|Ci| − 1)ε, if i = i∗,
αi(N, v,F )− ε, if i ∈ Ci \ i∗,

where ε > 0, i∗ = maxj{j ∈ Ci} and i ∈ Ci ∈ CF (N). It is easy to see that f 2 satisfies
component efficiency, loop-null and marginality for augmenting structures, but not
equal treatment of necessary players.

(3) Let f 3 : ASN → Rn be defined by

f 3
i (N, v,F ) =

{
0 if i ∈ IP,
v(Ci)
|Ci |

, if i ∈ N \ IP,

where IP is defined as above and i ∈ Ci ∈ CF (N). It is easily verified that f 3

satisfies component efficiency, equal treatment of necessary players and loop-null,
but not marginality for augmenting structures. Indeed, let (N, v), (N, w) ∈ GN where
v(S) = |S|, w(S) = |S| − 1 for any S ⊆ N with |N| ≥ 3. For ∅ 6= N0 ⊂ N with
|N0| ≥ 2, i ∈ N0, let

F = {F : F ⊆ N \ N0)} ∪ {F ∪ {i} : ∅ 6= F ⊆ N \ N0}.

Note that IP = N0 \ i and CF (N) = {(N \ N0) ∪ {i}}. It can readily be checked that
vF (S∪ {i})− vF (S) = wF (S∪ {i})−wF (S) for every S ⊆ N \ i, but f 3

i (N, v,F ) = 1,

f 3
i (N, w,F ) = |N\N0|

|N\N0|+1 .

(4) Let f 4 : ASN → Rn be defined by

f 4
i (N, v,F ) =

{
v(i) if i ∈ IP,
αi(N, v,F ), if i ∈ N \ IP.
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Then the value satisfies all axioms in Theorem 2 except loop-null.

4. Concluding Remarks

In this paper, we introduce the axiom of marginality for augmenting structures. We
obtain an alternative axiomatic characterization of the value α for augmenting structures
by replacing balanced contributions with marginality for augmenting structures and equal
treatment of necessary players. However, this does not mean that the balanced con-
tributions axiom is equivalent to the two axioms of marginality for augmenting struc-
tures and equal treatment of necessary players. For example, we consider the values
f 5
i (N, v) = Shi(N, v) + ai and f 6

i (N, v) = |N|Shi(N, v) for all (N, v) ∈ GN and all i ∈ N,
where (a1, a2, . . . , an) ∈ Rn. Obviously, f 5

i (N, v) satisfies balanced contributions but not
symmetry (also called equal treatment of equals), while f 6

i (N, v) satisfies symmetry and
marginality but not balanced contributions. This implies that a value for augmenting
structures satisfying balanced contributions does not necessarily satisfy marginality for
augmenting structures and equal treatment of necessary players, and vice versa.
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