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Abstract: In this paper, the inverse problems for the boundary value and initial value in a heat
equation are posed and solved. It is well known that those problems are ill posed. The problems are
reformulated as integral equations of the first kind by using the separation-of-variables method. The
discretization of the integral equation allowed us to reduce the integral equation to a system of linear
algebraic equations or a linear operator equation of the first kind on Hilbert spaces. The Landweber-
type iterative method was used in order to find an approximation solution. The V-cycle multigrid
method is used to obtain more frequent and fast convergence for iteration. The numerical computation
examples are presented to verify the accuracy and fast computing of the approximation solution.
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1. Introduction

In the early twentieth century, Hadamard [1] labeled some well-posed problems,
stating that a problem is well posed when it fulfills the following points:

a. Solution exists.
b. Uniqueness—this solution is unique.
c. Stability (the given data are continuously dependent on the solution).

If at least one of the above points or conditions is not fulfilled, the problem is consid-
ered an ill-posed problem. The violations of 1 and 2 can often be improved with a small
re-formulation of the problem. Violations of stability are much harder to remedy because
they imply that a small disturbance in the data leads to a large disturbance in the estimated
solution [2–5].

The inverse problem under the study of the heat equation can be solved by many
methods. For example, the method of regularization Tikhonov A.N. [6], by the method of
Lavrentiev M.M. [7], by the method of quasi-solutions Ivanov V.K. [8] and many others.
Various methods and algorithms for solving IP “inverse problems” were explained and used
in [9–19]. The success of these methods and algorithms is largely based on understanding
and analyzing the mathematical problems related to the declarations of the properties in
these IP “inverse problems” and identifying specific difficulties in solving them [20–25].

One of the many known methods of solving a linear operator equation is the iteration
method, such us the Landweber iteration method. This method has several issues, such
as initial guess, complexity, and convergence. The discretization process for the integral
equation primes to a huge, sparse, and highly structured system of linear equations or

Mathematics 2022, 10, 2802. https://doi.org/10.3390/math10152802 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10152802
https://doi.org/10.3390/math10152802
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9845-6599
https://orcid.org/0000-0002-3442-6865
https://orcid.org/0000-0002-0281-082X
https://orcid.org/0000-0003-2755-1497
https://doi.org/10.3390/math10152802
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10152802?type=check_update&version=2


Mathematics 2022, 10, 2802 2 of 15

linear operator equations. Inappropriately, theoretic convergence studies and mathematical
experiments show that the convergence rate is slow for these iterative algorithms, leading to
an amplified cost of iteration [26]. The direct iteration method suffers from some restricting
boundaries. Multigrid methods advanced from efforts to overcome these limitations.
Multigrid settings are largely successful when used with relaxation or iteration methods and
they lead to fast and direct point-to-estimated solutions to solve the IP “inverse problems”.

Multigrid methods [27–30] are often used to accelerate the convergence rate of iterative
or relaxing methods. This is an effective method for solving large systems of linear algebra
equations, which results from the discretization of integral equations or PDE. Multigrid
methods have been applied to least-squares wave front reconstruction [31]. This method
has also been used to solve inverse problems with linear parabolic PDE constraints [32]
and ODT problems [29].

In this work, we provide a new algorithm for numerical solutions to the integral
equations of the first kind by using the V-cycle multigrid method and comparing it with the
Landweber iteration method. In this article, we mixed between the Landweber iteration
method and the multigrid method to obtain accelerated solutions

We consider the following two forms of the integral equation of the first kind that
come from two inverse ill-posed heat equation problems.

Au(t) =
b∫

a

K(t, x)u(t)dx = f (t) (1)

where t ∈ [c, d] and the kernel K(x, t), K′t(x, t) ∈ C([a, b]× [c, d]), and f (t) ∈ L2[c, d], the
(1) can represent the initial value problem for heat equation.

Au(t) =
t∫

0

K(t, τ)u(τ)dτ = f (t) (2)

where t ∈ [0, T] and K(t, τ) corresponding the kernel function for the integral Equation (2),
K(t, τ), K′t(t, τ), K′′ t(t, τ) ∈ C([a, b]× [0, T]), u(t) ∈ L2[0, T]. This type of integral equation
can represent the boundary value problem for the heat equation.

Problems (1) and (2) can be reduced to the form of the leaner operator equation after
applying the discretization algorithm.

Au = f (3)

The solution vector u ∈ Rn should reduce the following minimizing problem.

min
u∈Rn
||Au− f ||2 (4)

where A ∈ Rn×n is a large matrix and the vector f ∈ Rn represents known error-
contaminated data and can be expressed as the following.

f = ftrue + η (5)

where ftrue is an unknown error-free vector associated with f and η represents the error in
f . The noise may stem from measurement and/or discretization errors.

||η|| ≤ δ (6)

where δ is given and known as error level.
The approaches proposed in this work are the Landweber-type iterative method

to obtain a good approximation solution for (3). Then, the multigrid method was used
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to obtain a more complete and fast solution by using the Landweber type as relaxation
iterative in post-smoothing and pre-smoothing parts.

All these steps are organized through the sections in this paper. Section 2 defines
the linear partial differential equations and describes the solution as an integral equation
of the first kind for the boundary value problem and the initial value problem of the
heat equation. Section 3 describes the general notations and the iterative Landweber-type
method. Section 4 describes and implements the V-cycle multigrid method. After that,
in Section 5, the numerical examples are presented to explain our analysis. Finally, the
explanation of the suggested method is summarized in Section 6.

2. Problem Statement

In this section, we briefly present two-class problems: the boundary value and initial
value problems. Both problems can be reduced to an integral equation by using the
separation-of-variables method. Then, by implementing the discretization process, we
obtain the linear operator equation. The inverse ill-posed problems have been studied and
solved in many works with a different method [11–14].

2.1. Inverse Boundary Value Problem

We consider the inverse boundary value problem given in [33,34] with time interval [0, T].

∂u(x, t)
∂t

=
∂2u(x, t)

∂x2 ; x ∈ (0, x), t ∈ (0, T] (7)

u(x, 0) = 0; x ∈ [0, 1] (8)

∂u(0, t)
∂x

= 0; t ∈ (0, T] (9)

u(1, t) = u(t); t ∈ (0, T] (10)

suppose that the u(t) ∈ H4[0, T], is a function such that

u(0) = u′(0) = u′′ (0) = u′′ (T) = u′′ (T) = 0 (11)

where
T∫
0
|u′′′ (t)|2dt ≤ r2, r−known number. By using the separation-of-variables method,

we obtained the following solution.

u(x0, t) =
∞

∑
n=0

Cn(t) cos((n + 0.5)πx0) + u(t) (12)

where the x0 ∈ (0, 1), t ∈ [0, T]

Cn(t) =
2e−(n+0.5)2π2t

(n + 0.5)π

t∫
0

u′(τ)e(n+0.5)2π2τdτ (13)

integrating by parts the right-hand side of Formula (13) twice, we obtain

Cn(t) = 2
(n+0.5)π

t∫
0

u′′′ (τ)e−(n+0.5)2π2(t−τ)dτ + 2
(n+0.5)3π3 u′(t)

−
[

2
(n+0.5)3π3 u′(0) + 2

(n+0.5)5π5 u′′ (t) + 2
(n+0.5)5π5 u′′ (0)

] (14)

Cn(t) = 2
(n+0.5)5π5

t∫
0

u′′′ (τ)e−(n+0.5)2π2(t−τ)dτ

−
[

2
(n+0.5)3π3 u′(0) + 2

(n+0.5)5π5 u′′ (0)
] (15)
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where u′(0) = u′′ (0) = 0 by (11)

Cn(t) =
2

(n + 0.5)5π5

t∫
0

u′′′ (τ)e−(n+0.5)2π2(t−τ)dτ (16)

From (12) and (16) we have the following integral equation of the first kind

f (t) = u(x0, t) =
t∫

0

[
u(t) +

∞

∑
n=0

2 cos(n + 0.5)πx0

(n + 0.5)5π5
e−(n+0.5)2π2(t−τ)

]
g(τ)dτ (17)

where u′′′ (τ) = g(τ). We need to define an operator B : L2[a, b]→ L2[a, b] by the follow-
ing formula.

Bg(τ) = u(t) =
t∫

0

(t− τ)2

2
g(τ)dτ (18)

where Bg(τ) ∈ L2[0, T].
We used the algorithm in [6] with a specified derivative term for the kernel and

obtained the following.

Au(t) =
t∫

0

K(t, τ)g(τ)dτ = f (t) (19)

where t ∈ [0, T].
Where A is finite-dimensional operator. For the next step, we need to apply the

discretization algorithm [5,6] on the integral Equation (19)

Ki(t) = K(t, τi) (20)

Ki(t); τi ≤ τ ≤ τi+1, t ∈ [0, T], i = 0, 1, . . . , n− 1 (21)

Ki
(
tj
)
; τi ≤ τ ≤ τi+1, tj ≤ t ≤ tj+1, i = 0, 1, . . . , n− 1, j = 0, 1, . . . , n− 1 (22)

Kn(t, τ) = Ki
(
tj
)

(23)

A[u(t)] =
t∫

0

Kn(t, τ)g(τ)dτ = f (t), t ∈ [0, T] (24)

the value of kernel depended on the following condition.

Ki
(
tj
)
=

{
K
(
tj, τi

)
i ≤ j

0? i > j
(25)

From above, we convert the boundary value problem to linear operator equation Au = f ,
where u = Bg, by reducing the integral equation to a system of linear algebra equations.

AB


g(τ0)
g(τ1)

...
g(τn−1)

 =


f (t0)
f (t2)

...
f (tn−1)

 (26)

where

A =
1
n


K(τ0, t0) 0
K(τ0, t1) K(τ1, t1)

. . . 0

. . . 0
...

...
K(τ0, tn−1) K(τ1, tn−1)

. . .
...

. . . K(τn−1, tn−1)

 (27)
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The operator A in (27) is a triangular operator.

2.2. Initial Value Problem

The second inverse problem is the initial value problem for the heat equation has been
described by the following linear partial differential equation.

∂u(x, t)
∂t

=
∂2u(x, t)

∂x2 , x ∈ [0, l], t ∈ (0, T] (28)

u(0, t) = 0, t ∈ (0, T] (29)

u(l, t) = 0, t ∈ (0, T] (30)

u(x, 0) = u(x), x ∈ [0, l] (31)

where u(0, t) and u(l, t) are boundary conditions, u0(x) is an initial condition, which needs
to be found. This problem was solved in [35] by using Tikhonov’s regularization inversion
method and it was solved by Picard’s method in [2]. In this work, we apply another
numerical algorithm to obtain a more accurate solution and fast implementation with a
high-scale problem. The integral form for this equation will be

Au(x) =
l∫

0

K(x, y)u(y)dy = f (x) (32)

where the kernel K(x, y) is an infinite series and we cannot handle the infinite sum, so we
need to make the sum of series finite to 10-times

K(x, y) =
2
l

10

∑
n=1

e
−(nπ)2T

l2 sin(
nπx

l
) sin(

nπy
l

), T > 0 (33)

For giving the approximate solution to u(x), we can rewrite the problem as linear
algebraic equations where the form will be Au = f .

A


u(y0)
u(y2)

...
u(yn−1)

 =


f (x0)
f (x2)

...
f (xn−1)

 (34)

where

A =
l − 0

n


K(x0, y0) K(x0, y1) . . . K(x0, yn−1)
K(x1, y0) K(x1, y1) . . . K(x1, yn−1)

...
... . . .

...
K(xn−1, y0) K(xn−1, y1) . . . K(xn−1, yn−1)

 (35)

The bounded operator A is ill conditioned and any numerical attempt to directly solve
(35) will fail.

3. Iterative Method

We first establish the notations for the linear operator Equation (3). We used the vector
u to denote the true solution and used the vector v to denote the estimate solution; perhaps
v is generated by the iterative method. There are two significant measures; the first one is
the error vector e,

e = u− v (36)
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Unfortunately, the error is unknown because the vector u is not given. The second
measure is residual r, defining how well v approximates u; it is given by

r = f − Av (37)

The residual is simply the amount by which the approximation v fails to satisfy the
original problem (3). There is an equation defining the relationship between the error e and
residual r

e = Ar (38)

In order to improve the estimation of the vector v, we solve Equation (38). After that,
we compute the new estimation by using the definition of the error equation

u = e + v (39)

Landweber-Type Method

The Landweber-type iteration method will be used in this work.

vk+1 = vk + λk AT M( f − Avk), k = 0, 1, . . . , (40)

where λk is the relaxation parameter and M is the symmetric positive definite operator.
We used the classical Landweber method, where the operator M is defined as identity
matrix [36]. The Landweber-type method has a self-regularization property. This property is
very important to reduce the errors in the regularized solution by controlling the mechanism
of convergence. In order to enhance convergence, we need to select λk relaxation parameter.
In [37], there is an important theorem, which proves how the value of the relaxation
parameter make iterations of (40) converge to a solution of min

u∈Rn
||Au− f ||2.

Theorem 1. Let λk = λ for k ≥ 0. Then, the iterates of (40) converge to a solution (v) of (3) if and
only if 0 < λ < 2/σ2

1 with σ1 the largest singular value of
√

MA. If, in addition, v0 ∈ R(AT)
then v is the unique solution with minimal norm.

This theorem was proved in [37] with a constant relaxation parameter λk = λ. To
reduce error in the iterative method (40), the following relaxation parameters are studied
by [38]:

λk =
||wk||2

||
√

MArk||2
(41)

where rk = f − Avk and wk = AT Mrk for k = 0, 1, . . ..
The following Algorithm 1 explains how to write the program code for the Landweber-

type iteration method with a variable relaxation parameter.

Algorithm 1 L.T.1

For loop: k: =1, 2, 3, . . .
n = size(u, 1); % determine the size of domain
v = zeros(n− 1, 1); % initial guess (zeros vector)
M = one(n− 1, n− 1); % create Identity Matrix
r = f − (Avk);
w = AT Ir;

λ = ||w||2
||IAr||2 ;

v = v + (λAT M)( f − Av);
End loop
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The next Algorithm 2 explains the Landweber-type iteration method with a constant
relaxation parameter.

Algorithm 2 L.T.2

For loop: k: =1, 2, 3, . . .
n = size(u, 1); % determine the size of domain
v = zeros(n− 1, 1); % initial guess (zeros vector)
M = one(n− 1, n− 1); % create Identity Matrix
λ = number; % determine the relaxation parameter
v = v + (λAT M)( f − Av);
End loop

Those algorithms can be used in next section as a relax function.

4. Multigrid Method Algorithms

The goal of the multigrid method is to recover the limitations in the iteration method,
at least in its primary stages, by using a good initial guess. A well-known technique for
obtaining an enhanced initial guess is by performing some preliminary iterations on a
coarse grid. Iterations on a coarse grid are less expensive because there are fewer unknowns
to be updated. We noted the grid name as with points. Add the new notations to (3).

Ahuh = fh, on Ωh (42)

the coarse grid Ω2h with ( n
2 − 1) points noted as

A2hu2h = f2h.on Ω2h (43)

The multigrid method consists of two main steps. One is the smoothing operators and
the other is the grid transfer operators. We used the Landweber method as a smoothing
method in the algorithm. We named this step “relaxing”. In the grid transfer operator
step, we have two types of operators: the prolongation and the interpolation operator.
We used a simple method to define those operators, which is explained in [30]. The
prolongation operator P takes the vector in a coarse grid and produces the fine-grid vector
Ph

2h : Ω2h → Ωh . The interpolation operator I transfer a vector from a fine grid to a coarse
grid I2h

h : Ωh → Ω2h as shown in Figure 1.
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Figure 1. The fine grid and the coarse grid.

The prolongation operator Ph
2h : Ω2h → Ωh according to the rule Ph

2hv2h = vh, where

vh
2j = v2h

j (44)

vh
2j+1 =

1
2
(v2h

j + v2h
j+1), 0 ≤ j ≤ n

2
− 1 (45)
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It is clear that the Ph
2h operator is mapping from R

n
2−1 to Rn−1. It has full-rank null

space N = {0}. This operator has the general form

Ph
2hv2h =

1
2



1
2 1
1 2

1
. . .
. . . 1

2 1
1 2

1


(n−1)×( n

2−1)



v1
v2
...
...

v n
2−1


=



v1
v2
v3

...

...

vn−1


= vh (46)

The interpolation operator I2h
h is mapping Rn−1 to R

n
2−1,

I2h
h vh =

1
4


1 2 1

1 2 1
. . . . . . . . .

1 2 1
1 2 1


( n

2−1)×(n−1)



v1
v2
v3

...

...

vn−1


=



v1
v2
...
...

v n
2−1


= v2h (47)

In this work, we will use the V-cycle multigrid method. There are two smoothing parts:
the pre-smooth and the post-smooth. We need to apply relax (iterative computing method)
to each node to obtain a solution vector. We transfer the vector from fine grid to coarse grid
by using an interpolation operator I in the pre-smoothing part. In the post-smoothing part,
the vector transfers from coarse grid to fine grid by using the prolongation operator P, see
Figure 2.
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If we apply the V-cycle method twice, we get a W-cycle multigrid. The relax
action was implemented by a Landweber-type iteration (40). The relax action re-
duces the high frequency of error and the result of the relax stage is noted as vector
vLh, L = 1, 2, 4, 8, 16, 32, 64, 128, . . ..



Mathematics 2022, 10, 2802 9 of 15

Pre-smoothing

• Relax Ahuh = f , initial guess vh = 0
• Compute residual r2h = I2h

h rh, rh = fh − Ahvh
• Relax A2he2h = r2h, initial guess v2h = 0
• Compute residual r̂4h = I4h

2h r̂2h, r̂2h = r2h − A2hv2h
• Relax A4he4h = r̂4h, initial guess v4h = 0

• Compute residual
^
r 8h = I8h

4h
^
r 4h,

^
r 4h = r̂4h − A4hv4h

Lowest Level

• Solve ALheLh = rLh

Post-smoothing

• correct v4h ← v4h + P4h
8h v8h

• Relax A4he4h = r̂4h, initial guess v4h

• correct v2h ← v2h + P2h
4h v4h

• Relax A2he2h = r2h, initial guess v2h

• correct vh ← vh + Ph
2hv2h

• Relax Ahuh = f , initial guess vh

where A2h = I2h
h AhPh

2h and A4h = I4h
2h A2hP2h

4h .

5. Numerical Results

We will compare between the Landweber-type method and V-cycle multigrid method
by considering the time and error level.

5.1. Boundary Value Problem

Considering the inverse boundary value problem (7)–(11) for the heat equation, we
need to find u(t) ∈ H4[0, T]. The exact solution will be u(t), and the input function for
inverse problem u(x0, t) = f (t), where the x0 ∈ (0, 1), t ∈ [0, T], x0 = 0.5 and T = 5, as
shown in Figure 3.
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Figure 3. The boundary value problem for heat equation: (a) the exact solution u(t); (b) u(x, t) = f (t)
where t ∈ [0, T], x = 0.5 and T = 5.

We tested the two algorithms in different domains Ωh with different noise levels. The
results are shown in Table 1. When we called the Call Algorithm 1 L.T.1 or Algorithm 3
V.M algorithm, we used Call Algorithm 1 L.T.1 or Algorithm 1 L.T.1 in Relax (Av = f ) step
with 100 iterations.
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Algorithm 3 V.M

grid(A, v, f ) % define function grid with three input
n = size(v, 1); % determine the size of domain
Relax (Av = f ) % Call Algorithm 1 L.T.1 or Algorithm 2 L.T.2 with low iteration times
If (n > size of lowest level)
r = f − Av; % Compute Residual
for i = 1:n % Create prolongation matrix
P(2*i − 1, i) = 1;
P(2*i, i)= 2;
P(2*i + 1, i) = 1;
End
I = PT ; % Create interpolation matrix
r_to_c = 0.25 ∗ Ir;% from fine-grid to coarse-grid
A_n = 0.25 ∗ I ∗ A ∗ 0.5 ∗ P; %Create ALh interpolation matrix
v = zeros(size( r_to_c , 1) , 1); % initial guess (zeros vector)
e_to_c = grid(A_n, v, r_to_c); % used recursion function
e = 0.5 ∗ P ∗ e_to_c; %from coarse-grid to fine-grid
v = v + e; % correct
end
Relax (Av = f ) % Call Algorithm 1 L.T.1 or Algorithm 2 L.T.2 with low iteration times with low
iteration times
output = v;
End_grid;

Table 1. Results for boundary value problem in different Ωh.

Ωh Algorithm δ CPU Time Seconds ||Av−f||2 No. of Iterations

64

Algorithm 1
L.T.1

0.01 0.042 0.001
400

0.04 0.041 0.02

Algorithm 3
V.M

0.01 0.039 0.015

0.04 0.035 0.024

128

Algorithm 1
L.T.1

0.02 0.132 0.016
300

0.05 0.147 0.029

Algorithm 3
V.M

0.02 0.122 0.019

0.05 0.103 0.032

256

Algorithm 1
L.T.1

0.02 0.46 0.02
200

0.08 0.481 0.04

Algorithm 3
V.M

0.02 0.593 0.026

0.08 0.566 0.05

512

Algorithm 1
L.T.1

0.01 10.98 0.023
500

0.06 11.03 0.039

Algorithm 3
V.M

0.01 4.914 0.027

0.06 4.838 0.03

1024

Algorithm 1
L.T.1

0.02 63.636 0.034
500

0.06 66.03 0.042

Algorithm 3
V.M

0.02 31.38 0.033

0.06 32.04 0.041
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The above table shows the Algorithm 3 V.M has speeded the computation time com-
pared with the L.T.1 algorithm. The solutions for two algorithms in Ωh are shown in
Figure 4.
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Figure 4. Approximation solutions where (a) algorithm 1 L.T.1 in Ωh = 64, (b) algorithm 3 V.M in
Ωh = 64, (c) algorithm 1 L.T.1 in Ωh = 128, (d) algorithm 3 V.M in Ωh = 128, (e) algorithm 1 L.T.1 in
Ωh = 256, (f) algorithm 3 V.M in Ωh = 256, (g) algorithm 1 L.T.1 in Ωh = 512, (h) algorithm 3 V.M in
Ωh = 512, (i) algorithm 1 L.T.1 in Ωh = 1024, (j) algorithm 3 V.M in Ωh = 1024.

5.2. Initial Value Problem

Considering the inverse initial value problem (28)–(31) for the heat equation, we need
to find u(x) ∈ L2[0, 1]. The exact solution will be u(x) = sin πx, 0 ≤ x ≤ 1. We created the
input function for the inverse problem, as shown in Figure 5. u(x, T) = f (x), 0 ≤ x ≤ 1
and T = 0.01.
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In this numerical example, we will use the Landweber-type method with constant
relaxation parameter λk = λ; also, we will use the same iterative method in V-cycle
multigrid with constant relaxation parameter. We compared the two algorithms with a high
scale of domains Ωh. The results are shown in Table 2. When we called the V.M. algorithm,
we used L.T.1 in Relax (Av = f ) step with 10 iterations.

Table 2. Results for initial value problem in different Ωh.

Ωh Algorithm δ CPU Time Seconds No. of Iterations ||Av−f||2

512

Algorithm 2
L.T.2

0.064
0.760 77

0.041
Algorithm 3

V.M 0.127

1024

Algorithm 2
L.T.2

0.09
4.405 84

0.0567
Algorithm 3

V.M 0.684

2048

Algorithm 2
L.T.2

0.13
28.718 91

0.0816
Algorithm 3

V.M 4.026

4096

Algorithm 2
L.T.2

0.18
252.61 102

0.115
Algorithm 3

V.M 28.381

From the above results, we see the Algorithm 3 V.M Algorithm successfully applied
to obtain a good approximating solution with low time in high-scale domains Ωh, see
Figure 6.
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6. Conclusions

This work deals with algorithms for solving the boundary value problem and the
initial value problem for the heat equation and some results were collected. The forward
problem was solved by the separation-of-variables method and then the PED is converted
to an integral equation of the first kind. By using the discretization method, we converted
the integral equation to a linear operator equation for the first kind. The Landweber
iteration method was successfully applied to obtain an estimated solution. The V-cycle
multigrid method is applied to make the computation cost for the iterative method cheap
and more accurate. It is clear that the V.M. algorithm has a recursion function, named
grid. W used a low number of iterations in each relaxing step inside the grid function. The
results show the CPU time for solving each equation in a specific domain size is accelerated
by using a low iteration number in grid function through all the low domains in V.M.
algorithm. All results in this numerical example show that the multigrid method is fast,
more convergent and accurate. In future work, parallel computing will be used to make
the cost of computing cheaper.
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