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Abstract: A new family of distributions called the mixture of the exponentiated Kumaraswamy-G
(henceforth, in short, ExpKum-G) class is developed. We consider Weibull distribution as the base-
line (G) distribution to propose and study this special sub-model, which we call the exponentiated
Kumaraswamy Weibull distribution. Several useful statistical properties of the proposed ExpKum-G
distribution are derived. Under the classical paradigm, we consider the maximum likelihood esti-
mation under progressive type II censoring to estimate the model parameters. Under the Bayesian
paradigm, independent gamma priors are proposed to estimate the model parameters under pro-
gressive type II censored samples, assuming several loss functions. A simulation study is carried out
to illustrate the efficiency of the proposed estimation strategies under both classical and Bayesian
paradigms, based on progressively type II censoring models. For illustrative purposes, a real data set
is considered that exhibits that the proposed model in the new class provides a better fit than other
types of finite mixtures of exponentiated Kumaraswamy-type models.

Keywords: Kumaraswamy-G distribution; Bayesian approach; finite mixture; exponentiated Kumaraswamy
Weibull distribution; loss function; progressive type II censoring

MSC: 65C20; 60E05; 62P30; 62L15

1. Introduction

The utility of mixture distributions during the last decade or so have provided a
mathematical-based strategy to model a wide range of random phenomena effectively.
Statistically speaking, the mixture distributions are a useful tool and have greater flexibility
to analyze and interpret the probabilistic alias random events in a possibly heterogenous
population. In modeling real-life data, it is quite normal to observe that the data have come
from a mixture population involving of two or more distributions. One may find ample
evidence(s) in terms of applications of finite mixture models not limited to but including
in medicine, economics, psychology, survival data analysis, censored data analysis and
reliability, among others. In this article, we are going to explore such a finite mixture
model based on bounded (on (0,1)) univariate continuous distribution mixing with another
baseline (G) continuous distribution and will study its structural properties with some
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applications. Next, we provide some useful references related to finite mixture models
that are pertinent in this context. Ref. [1] introduced the classical and Bayesian inference
on the finite mixture of exponentiated Kumaraswamy Gompertz and exponentiated Ku-
maraswamy Fréchet (MEKGEKF) distributions under progressively type II censoring with
applications and it appears that this MEKGEKF distribution might be useful in analyzing
certain dataset(s), for which either or both of its component distributions will be inadequate
to completely explain the data. Consequently, this also serves as one of the main purposes
for the current work.

In recent years, there has been a lot of interest in the art of parameter(s) induction
to a baseline distribution. The addition of one or more extra shape parameter(s) to the
baseline distribution makes it more versatile, particularly for examining the tail features.
This parameter(s) induction also improved the goodness-of-fit of the proposed general-
ized family of distributions, despite the computational difficulty in some cases. Over
two decades, there have been numerous generalized G families of continuous univari-
ate distributions that have been derived and explored to model various types of data
adequately. The exponentiated family, Marshall–Olkin extended family, beta-generated
family, McDonald-generalized family, Kumaraswamy-generalized family, and exponenti-
ated generalized family are among the well-known and widely recognized G families of
distributions that are addressed in [2]. Some Marshall–Olkin extended variants and the
Kumaraswamy-generalized family of distributions are proposed. For the exponentiated
Kumaraswamy distribution and its log-transform, one can refer to [3]. Refs. [4,5] defined
the probability density function (pdf) of exponentiated Kumaraswamy G (henceforth, in
short, EKG) distributions, which is as follows:

f (x) = abcg(x)Ga−1(x)[1− Ga(x)]b−1
{

1− [1− Ga(x)]b
}c−1

(1)

where a, b, c are all positive parameters and x > 0.
The associated cumulative distribution function (cdf) is given by

F(x) =
{

1− [1− Ga(x)]b
}c

, x > 0.

If u ∈ (0, 1), the associated quantile function is given by

x(u) = G−1
{

1−
[
1− u

1
c

] 1
b
} 1

a

(2)

In this paper, we consider a finite mixture of two independent EKW distributions
with mixing weights and consider an absolute continuous probability model, namely the
two-parameter Weibull, as a baseline model.

The rest of this article is organized as follows. In Section 2, we provide the mathe-
matical description of the proposed model. In Section 3, some useful structural properties
of the proposed model are discussed. The maximum likelihood function of the mixture
exponentiated Kumaraswamy-G distribution based on progressively type II censoring is
given in Section 4. Section 5 deals with the specific distribution of the mixture of exponen-
tiated Kumaraswamy-G distribution when the baseline (G) is a two parameter Weibull,
henceforth known as EKW distribution. In Section 6, we provide a general framework for
the Bayes estimation of the vector of the parameters and the posterior risk under different
loss functions of the exponentiated Kumaraswamy-G distribution. In Section 7, we consider
the estimation of the EKW distribution under both the classical and Bayesian paradigms
via a simulation study and under various censoring schemes. For illustrative purposes, an
application of the EKW distribution is shown by applying the model to bladder cancer data
in Section 8. Finally, some concluding remarks are presented in Section 9.
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2. Model Description

A density function of the mixture of two components’ densities with mixing propor-
tions p ∈ [0, 1] and q = 1− p of EKG distributions is given as follows:

f (x) = p f1(x) + q f2(x),

where
f j(x) = ajbjcjg(x)Gaj−1(x)[1− Gaj(x)]bj−1

{
1− [1− Gaj(x)]bj

}cj−1

for x > 0, with ajbjcj > 0, and j = 1, 2, the j-th component and the pdf of the mixture of the
two EKG distributions is given by

f (x) = pa1b1c1g(x)Ga1−1(x)[1− Ga1(x)]b1−1
{

1− [1− Ga1(x)]b1
}c1−1

+ qa2b2c2g(x)Ga2−1(x)

[1− Ga2(x)]b2−1
{

1− [1− Ga2(x)]b2
}c2−1

I(0 < x < ∞),
(3)

meaning the associated cdf of the distribution is

F(x) = pF1(x) + qF2(x)

i.e., F(x) = p
{

1− [1− Ga1(x)]b1
}c1

+ q
{

1− [1− Ga2(x)]b2
}c2

, x > 0.
(4)

The component wise cdf can be obtained as

Fj(x) =
{

1− [1− Gaj(x)]bj
}cj

, x > 0.

For the density in Equation (3), (a1, b1), (a2, b2), are all playing the role of shape
parameters. Consequently, for the varying choices of a1, b1, a2 and b2 one may obtain
various possible shapes of the pdf, as well as for the hrf function.

3. Structural Properties

We begin this section by discussing the asymptotes and shapes of the proposed mixture
model in Equation (3).

• Result 1: Shapes. The cdf in Equation (3) can be obtained analytically. The critical
points of the pdf are the roots of the following equation:

∂
∂x

[
pa1b1c1g(x)Ga1−1(x)[1− Ga1 (x)]b1−1

{
1− [1− Ga1 (x)]b1

}c1−1
+ qa2b2c2g(x)Ga2−1(x)[1− Ga2 (x)]b2−1

{
1− [1− Ga2 (x)]b2

}c2−1
]
= 0,

= pa1b1c1[A1(x)] + (1− p)a2b2c2[A2(x)] = 0,
(5)

where

A1(x) = ǵ(x)Ga1−1(x)[1− Ga1 (x)]b1−1
{

1− [1− Ga1 (x)]b1
}c1−1

+ g(x)(a1 − 1)Ga1−2(x)g(x)[1− Ga1 (x)]b1−1
{

1− [1− Ga1 (x)]b1
}c1−1

,

= a1(b1 − 1)g(x)Ga1−1(x)[1− Ga1 (x)]b1−2g(x)
{

1− [1− Ga1 (x)]b1
}c1−1

+ g(x)Ga1−1(x)g(x)[1− Ga1 (x)]b1−1(c1 − 1)
{

1− [1− Ga1 (x)]b1
}c1−2{

b1[1− Ga1 (x)]b1−1
}

a1

g(x)Ga1 (x),

= Ga1−1(x)[1− Ga1 (x)]b1−1g(x)
{

1− [1− Ga1 (x)]b1
}c1−1

{
(a1 − 1)

g2(x)
G(x)

− a1(b1 − 1)g2(x)Ga1−1(x)
[1− Ga1 (x)]

+
a1b1(c1 − 1)g2(x)Ga1−1(x)[1− Ga1 (x)]b1−1

1− [1− Ga1 (x)]b1

}
,

Similarly,

A2(x) = Ga2−1(x)[1− Ga2(x)]b2−1
{

1− [1− Ga2(x)]b2
}c2−1{

(a2 − 1) g2(x)
G(x) −

a2(b2−1)g2(x)Ga2−1(x)
[1−Ga2 (x)] + a2b2(c2−1)g2(x)Ga2−1(x)[1−Ga2 (x)]b2−1

1−[1−Ga2 (x)]b2

}
,
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There may be more than one root to the Equation (5). If x = x* is the root of the equation,
it corresponds to a local maximum, or a local minimum or a point of inflexion depending
on ξ(x∗)< 0, ξ(x∗) = 0, or ξ(x∗) >0, where ξ(x∗) = ∂2

∂x2 [ f (x)]|x = x∗ .

• Result 2: Mixture Representation

A random variable is said to have the exponentiated-G distribution with parameter
a > 0 if y ∼ Exp − G(a) and if its pdf and cdf is given by f (y) = a g(x)Ga(x) and
F(y) = Ga(x), as shown in [6,7].

If one considers the following, we have the following equations:

f1(x) = a1b1c1g(x)Ga1−1(x)[1− Ga1(x)]b1−1
{

1− [1− Ga1(x)]b1
}c1−1

= a1b1c1g(x)Ga1−1(x)[1− Ga1(x)]b1−1 ∞
∑

j1=0
(−1)j1

(
c1 − 1

j1

)
[1− Ga1(x)]j1b1

= a1b1c1
∞
∑

j1=0
(−1)j1

∞
∑

j2=0
(−1)j2

(
c1 − 1

j1

)(
b1(j1 + 1)− 1

j2

)
g(x)Ga1−1(x)Ga1 j2(x),

= a1b1c1
∞
∑

j1=0

∞
∑

j2=0
(−1)j1+j2

(
c1 − 1

j1

)(
b1(j1 + 1)− 1

j2

)
a1(j2+1) Ga1(j2+1)(x).

Likewise,

f2(x) = a2b2c2 ∑∞
j1=0 ∑∞

j2=0(−1)j1+j2

(
c2 − 1

j1

)(
b2(j2 + 1)− 1

j2

)
a2(j2 + 1)

Ga2(j2+1)(x).

Therefore,

f (x) = p(a2b2c2)
−1 ∑∞

j1=0 ∑∞
j2=0 Ψ1(j1, j2, b1, c1)Ga1(j2+1)(x) + q(a2b2c2)

−1 ∑∞
j1=0 ∑∞

j2=0 Ψ2(j1, j2, b2, c2)Ga2(j2+1)(x)

where Ψ1(j1, j2, b1, c1) =
(−1)j1+j2

a1(j2+1)

(
c1 − 1

j1

)(
b1(j1 + 1)− 1

j2

)
and Ψ2(j1, j2, b2, c2) =

(−1)j1+j2

a2(j2+1)

(
c2 − 1

j1

)(
b2(j2 + 1)− 1

j2

)
.

Note that if b1, c1, b2, c2 are integers, then the repective sums will stop at b1, c1, b2 and c2.
The above expression shows the fact that the pdf of the finite mixture of EKG can be

represented as the finite mixture of infinite exponentiated-G distribution with parameters
a1(j2 + 1) and a2(j2 + 1), respectively.

Therefore, structural properties, such as moments, entropy, etc., of this model can be
obtained from the knowledge of the exponentiated-G distribution and one can refer to [8]
for some pertinent details.

• Result 3: Simulation Strategy

Method 1. Direct cdf inversion method
Step 1: Generate U ∼ Uni f orm (0, 1).

Step 2: Then, set Xi = pi

1−
[

1−U
1
ci
i

] 1
bi


1
ai

, ∑2
i=1 pi = 1, f or(ai, bi, ci) > 0

∀ i = 1, 2.
Method 2. Via acceptance-rejection sampling plan
This will work if a ≥ 1, b ≥ 1, c ≥ 1.

One must define D1 =
ab1c1

1 b1(a1 − 1)1− 1
a1 (b1 − 1)b1−1(c1 − 1)c1−1

(a1b1c1 − 1)
c1− 1

a1b1
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and D2 =
ab2c2

2 b2(a2 − 1)1− 1
a2 (b2 − 1)b2−1(c2 − 1)c2−1

(a2b2c2 − 1)
c2− 1

a2b2

.

M = max{D1, D2}. Then, the following scheme will work:

(i) Simulate X = x from the pdf in Equation (3).
(ii) Simulate Y = UMg(x), where U ∼ Uni f orm (0, 1).
(iii) Accept X = x as a sample from the target density if y < f (x). If y ≥ f (x), one must

go to step (ii).

One may obtain an expression of the reliability function of mixture EKG, which takes
the following form:

R(x) = pR1(x) + qR2(x)

where the component-wise reliability function of the mixture model is given by

Rj(x) = 1−
{

1− [1− Gaj(x)]bj
}cj

, x > 0.

The density in Equation (1) is flexible in the sense that one can obtain different shapes
of hazard rate function (hrf) of the mixture model, which is given by

hj(x) =
ajbjcjg(x)[1− Gaj(x)]bj−1

{
1− [1− Gaj(x)]bj

}cj−1

1−
{

1− [1− Gaj(x)]bj
}cj

.

The quantile function of the mixture model is given by

q(x) = pG−1

{
1−

[
1−U

1
c1 (x)

] 1
b1

} 1
a1

+ qG−1
{

1−
[
1−U

1
c2 (x)

] 1
b2

} 1
a2

.

For example, the median, xm, of f (x) for U = 0.5 will be

xm = pG−1

{
1−

[
1− 0.5

1
c1 (x)

] 1
b1

} 1
a1

+ qG−1
{

1−
[
1− 0.5

1
c2 (x)

] 1
b2

} 1
a2

,

The various shapes of the pdf and the hrf when the baseline distribution (G) is Weibull
is provided in Figure 1. In the next section, we discuss the maximum likelihood estimation
strategy for the finite mixture of exponentiated Kumaraswamy-G (EKG) distribution under
the progressive type-II censoring scheme. For more details, one can refer to [9]. The
necessary and sufficient conditions for identifiability and identifiability properties are
discussed in the Appendix A.
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4. Maximum Likelihood Estimation of EKG Distribution under Progressive
Type-II Censoring

One must suppose that n units are put on life test at time zero and the experimenter
decides beforehand the quantity m, the number of failures to be observed. At the time of
first failure, R1 units are randomly removed from the remaining n-1 surviving units. At
the second failure, R2 units from the remaining n− 2− R1 units are randomly removed.
The test continues until the mth failure. At this time, all remaining Rm = n−m− R1 −
R2 − . . . − Rm−1 units are removed. In this censoring scheme, Ri and m are prefixed.
The resulting m is ordered. Values, which are obtained as a consequence of this type of
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censoring, are appropriately referred to as progressive type II censored ordered statistics.
One must note that if R1 = R2 = . . . = Rm−1 = 0, so that Rm = n−m, this scheme reduces
to a conventional type II on the stage right censoring scheme.

One must also note that if R1 = R2 = . . . = Rm = 0, so that m = n, the progressively
type II censoring scheme reduces to the case of a complete sample (the case of no censoring).

One must allow (X1:m:n, X2:m:n, . . . , Xm:m:n) to be a progressively type II censored
sample, with (R1, R2, . . . , Rm) being the progressive censoring scheme. The likelihood
function based on the progressive censored sample of EKG distributions is given by

L
(

x
∣∣aj, bj, cj, sj, rj, p, q

)
= K ∏m

i=1 g(Xi:m:n)[1− G(Xi:m:n)]
Ri

where k = n(n− 1− R1)(n− 1− R2) . . . (n−m + 1− R1 . . .− Rm), g(x) and G(x) are given
in Equations (3) and (4) and we obtain the log likelihood function without the constant
term, which is is given by

L
(

x
∣∣aj, bj, cj, sj, rj, p, q

)
∝ ∏m

i=1 gj(Xi:m:n)
[
1− Gj(Xi:m:n)

]Ri

To simplify, we take the logarithm of the likelihood function, ı, and for illustration
purposes, let gj(Xi:m:n) = f j(Xi:m:n) and Gj(Xi:m:n) = Fj(Xi:m:n) as follows:

ı ∝ ∑m
i=1 log

[
f j(Xi:m:n)

]
+ Rilog

[
1− Fj(Xi:m:n)

]
Next, for illustrative purposes, we consider the baseline (G) distribution to be a two

parameter Weibull distribution on the EKG distribution and discuss its estimation under
both the classical and Bayesian set up.

5. Finite Mixture of Exponentiated Kumaraswamy Weibull Distribution

Exponentiated Kumaraswamy Weibull (EKW) distribution is a special case that can be
generated from exponentiated Kumaraswamy -G distributions. The EKW distribution is
found by taking G(x) of the Weibull distribution in Equation (1). One of the most important
advantages of the EKW distribution is its capacity to fit data sets with a variety of shapes,
as well as for censored data, compared to the component distributions. One must let G be
the Weibull distribution with the pdf and the cdf are given by

g(x) =
r
s

( x
s

)r−1
exp
[
−
( x

s

)r]
,x > 0,

and
G(x) =

(
1− exp

[
−
( x

s

)r])
.

The inverse of the cdf is given by

s(−ln(1− G(u)))
1
r = Q(u)

The pdf of a mixture of two component densities with mixing proportions, (pj, j = 1, 2)
for q = 1 − p of the exponentiated Kumaraswamy Weibull distribution (henceforth, in short
is MKEW) is given by

f (x) = p a1b1c1r1
s1

(
x
s1

)r1−1
exp
[
−
(

x
s1

)r1
][

1− exp
(
−
(

x
s1

)r1
)]a1−1

[
1−

[
1− exp

(
−
(

x
s1

)r1
)]a1

]b1−1

[
1−

[
1−

[
1− exp

(
−
(

x
s1

)r1
)]a1

]b1
]c1−1

+q a2b2c2r2
s2

(
x
s2

)r2−1
exp
[
−
(

x
s2

)r2
][

1− exp
(
−
(

x
s2

)r2
)]a2−1

[
1−

[
1− exp

(
−
(

x
s2

)r2
)]a2

]b2−1
[

1−
[

1−
[
1− exp

(
−
(

x
s2

)r2
)]a2

]b2
]c2−1

, x > 0

(6)
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For the pdf in Equation (6), the following is noted:

(i) s1 and s2 are the scale parameters and r1 and r2 are the shape parameters for the
Weibull component.

(ii) a1, a2, b1 and b2 are the shape parameters arising from the finite mixture pdf in
Equation (4);

(iii) p, and q are the mixing proportions , where p + q = 1.

Depending on the different values of the parameters, different shapes of the pdf
and the hrf of the MEKW distribution are shown in Figure 1. From Figure 1 (left panel),
it appears that the MEKW pdf can include symmetric, asymmetric, right-skewed, and
decreasing shapes, depending on the values of parameters. From Figure 1 (right panel),
one can observe that the hrf may assume shapes with constants and that are down-upward
and increasing.

The associated cdf is given by

F(x) = p

1−
[

1−
[

1− exp
(
−
(

x
s1

)r1
)]a1

]b1
c1

+ q

1−
[

1−
[

1− exp
(
−
(

x
s2

)r2
)]a2

]b2
c2

The hazard rate function of MEKW, hr(x), model is flexible, as it allows for different shapes,
which is given by

hr(x) =
f (x)
S(x)

=
p f1(x) + q f2(x)
pS1(x) + qS2(x)

.

The quantile function is given by

Qj(u) = pG−1

{
1−

[
1− u

1
c1

] 1
b1

} 1
a1

+ qG−1
{

1−
[
1− u

1
c2

] 1
b2

} 1
a2

. (7)

In the next section, by using a quantile function-based formula for skewness and
kurtosis, we plot the coefficients of skewness and kurtosis for the MEKW distribution for
different values of the parameters, as shown in Figure 2. From Figure 2, one can observe
that the distribution can be positively skewed, negatively skewed, and could also assume
platykurtic and mesokurtic shapes.
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In the next section, we discuss a strategy of estimating parameters for the EKG model
under the Bayesian paradigm using independent gamma priors.

5.1. Bayesian Estimation Using Gamma Priors for the Finite Mixture of Exponentiated
Kumaraswamy-G Family

In this section, we consider the Bayes estimates of the model parameters that are
obtained under the assumption that the component random variables for the random
vector Φ = [aj,bj,cj, sj, rj, p, q, ], f or j = 1, 2, have independent gamma priors with hyper
parameters ak and ∅k , k = 1, 2, 3, 4, 5, 6, 7, which is given by

f (Φ; a, ∅) =
∅k

ak

Γak
Φak−1e−∅kΦ, Φ > 0, (8)

By multiplying Equation (6) with the joint posterior density of the vector Φ, given the
data, we can obtain the following:

π(Φ|x ) ∝ L(x|Φ) f (Φ; ak, ∅k)

∝
m
∏
i=1

[a1b1c1 pg(Xi:m:n)Ga1−1(Xi:m:n)

[1− Ga1−1(Xi:m:n)]
b1−1

{
[1− Ga1−1(Xi:m:n)]

b1−1
}c1−1[

1−
[
[1− Ga1−1(Xi:m:n)]

b1−1
]}c1

]Ri

+qa2b2c2 pg(Xi:m:n)Ga2−1(Xi:m:n)[1− Ga2−1(Xi:m:n)]
b2−1

[
[1− Ga2−1(Xi:m:n)]

b2−1
]c2−1[

1−
[
[1− Ga2−1(Xi:m:n)]

b2−1
]c2
]Ri
]

∅k
ak

Γak
Φak−1e−∅kΦ, I(Φ > 0).

(9)

Marginal posterior distributions of Φ can be obtained by integrating out the nuisance
parameters. Next, we consider the loss function that will be used to derive the estimators
from the marginal posterior distributions.

5.2. Bayes Estimation of the Vector of Parameters and Evaluation of Posterior Risk under Different
Loss Functions

This section spotlights the derivation of the Bayes estimator (BE) under different loss
functions and their respective posterior risks (PR). For a detailed study on different loss error
functions, one can refer to [10]. The Bayes estimators are evaluated using the squared error
loss function (SELF), weighted squared error loss function (WSELF), precautionary loss
function (PLF), modified (quadratic) squared error loss function (M/Q SELF), logarithmic
loss function (LLF), entropy loss function (ELF), and K-Loss function. The K-loss function
proposed by [11] is well fitted for a measure of inaccuracy for an estimator of a scale
parameter of a distribution defined by R+ = (0, ∞); this loss function is called the K-loss
function (KLF). Table 1 shows the Bayes estimators and the associated posterior risks under
each specific loss functions considered in this paper.

Next, we derive the Bayes estimators of the model parameters under different loss
functions. They were originally used in estimation problems when the unbiased estimator
of Φ was being considered. Another reason for its popularity is due to its relationship to
the least squares theory. The SEL function makes the computations simpler. Under the
SEL, WSEL, Q

M SEL, PL, LL, EL and KL functions in Table 1, the Bayesian estimation for the
random vector Φ =

(
aj, bj, cj, sj, rj, p, q

)
, for j = 1, 2, and under various loss functions, it

can be obtained as follows.

Φ̂SEL = E(Φ|x ) =
∫

Φ

(
Φ− Φ̂

)2
π(Φ|x )dΦ.

Φ̂WSEL = E(Φ|x ) =
∫
Φ

(
Φ− Φ̂

)2

Φ
π(Φ|x )dΦ.
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Φ̂ Q
M SEL = E(Φ|x ) =

∫
Φ

(
1− Φ̂

Φ

)2

π(Φ|x )dΦ.

Φ̂PL = E(Φ|x ) =
∫

Φ

(
Φ− Φ̂

)2

Φ̂
π(Φ|x )dΦ.

Φ̂LL = E(Φ|x ) =
∫

Φ

(
logΦ− logΦ̂

)2
π(Φ|x )dΦ.

Φ̂KL = E(Φ|x ) =
∫

Φ

√ Φ̂
Φ
−
√

Φ
Φ̂

2

π(Φ|x )dΦ. (10)

It is evident that each of the integrals in the above section have no closed form for the
resulting joint posterior distribution as given in Equation (9). Therefore, they need to be
solved analytically. Consequently, the MCMC technique is proposed to generate samples
from the posterior distributions and then the Bayes estimates of the parameter vector Φ
are computed under progressively type II censored samples. Next, we provide the general
form of the Bayesian credible intervals.

Table 1. Bayes estimator and posterior risk under different loss functions.

Loss Function Bayes Estimator (BE) Posterior Risk (PR)

L1 = SEL =
(

Φ− Φ̂
)2 E(Φ|X ) V(Φ|X )

L2 = WSEL =
(Φ−Φ̂)

2

Φ

[
E
(

Φ−1|X
)]−1

E(Φ|X )−
[

E
(

Φ−1|X
)]−1

L3 = Q
M SEL =

(
1− Φ̂

Φ

)2 E(Φ−1|X )
E(Φ−2|X ) 1− E(Φ−1|X )

2

E(Φ−2|X )

L4 = PL =
(Φ−Φ̂)

2

Φ̂

√
E
(

Φ2|X
)

2
[√

E
(

Φ2|X
)
− E(Φ|X )

]
L5 = LL =

(
logΦ− logΦ̂

)2 exp[E(logΦ|X )] V(logΦ|X )

L6 = EL =
(

Φ̂
Φ − log Φ

Φ̂
− 1
) [

E
(

Φ−1|X
)]−1

E(logΦ|X )− logE
(

Φ−1|X
)

L7 = KL =

(√
Φ̂
Φ −

√
Φ
Φ̂

)2 √
E(Φ|X )

E(Φ−1|X )
2
[

E(Φ|X )E
(

Φ−1|X
)
− 1
]

5.3. Credible Intervals

In this subsection, asymmetric 100(1− τ )% two-sided Bayes probability interval
estimates of the parameter vector Φ, denoted by [LΦ, UΦ], are obtained by solving the
following expression:

p[L(t) < Φ < U(t)] =
∫ U(t)

L(t)
π(θ,β, λ|t )dΦ = 1− τ. (11)

Since it is difficult to find the interval LΦ and UΦ analytically, we apply suitable
numerical techniques to solve Equation (11).

6. Bayesian Estimation of the Exponentiated Kumaraswamy Weibull Distribution

G is assumed to be the Weibull distribution with pdf and cdf, which are given by

g(x) =
r
s

( x
s

)r−1
exp
[
−
( x

s

)r]
,
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where r is the shape parameter (r > 0), and s is the scale parameter (s > 0) and

G(x) =
(

1− exp
[
−
( x

s

)r])
,x > 0.

The joint posterior density for the parameter vector Φ, given the data, becomes
the following:

π(Φ|x ) ∝ L(x|Φ) f (Φ; ak, ∅k)

∝
m
∏
i=1

[
a1b1c1 p r1

s1

(
x
s1

)r1−1
exp
[
−
(

x
s1

)r1
][

1− exp
[
−
(

x
s1

)r1
]]a1−1

[
1−

[
1− exp

[
−
(

x
s1

)r1
]]a1−1

]b1−1
]{[

1−
[
1− exp

[
−
(

x
s1

)r1
]]a1−1

]b1−1
}c1−1

[
1−

[[
1−

[
1− exp

[
−
(

x
s1

)r1
]]a1−1

]b1−1
]c1
]Ri

+qa2b2c2
r2
s2

(
x
s2

)r2−1
exp
[
−
(

x
s2

)r2
][

1− exp
[
−
(

x
s2

)r2
]]a2−1

[
1−

[
1− exp

[
−
(

x
s2

)r2
]]a2−1

]b2−1
[[

1−
[
1− exp

[
−
(

x
s2

)r2
]]a2−1

]b2−1
]c2−1

[
1−

[[
1−

[
1− exp

[
−
(

x
s2

)r2
]]a2−1

]b2−1
]c2
]Ri

∅k
ak

Γak
Φak−1e−∅kΦ, I(Φ > 0)

(12)

Marginal distributions of the parameter vector Φ can be obtained by integrating the
nuisance parameters. Next, we consider the loss function that will be used to derive the
estimators from the marginal posterior distributions.

7. Simulation Study

In this section, we evaluate the performance of the maximum likelihood and the
Bayesian estimation methods to estimate the parameters using Monte Carlo simulations.
We conduct the simulations using the (Maxlik) package in R software, as shown in [12].
The values of the biases, and the relative mean square errors (RMSEs) in the results indicate
that the maximum likelihood and the Bayesian estimation methods performs quite well to
estimate the model parameters.

Simulation Study for MEKW

In this subsection, we evaluate the performance of the maximum likelihood method
and Bayesian estimation method to estimate the parameters for the MEKW model using
Monte Carlo simulations. Based on progressively type II censored samples selected from
the MEKW pdf in Equation (3), a total of eight parameter combinations, and assuming
the sample sizes n = 25, 50, censored at 60% and 80% of the sample size, are considered.
The process is repeated 1000 times and the biases (estimate–actual), RMSEs and length
of confidence intervals (CI) of the estimates are reported in Tables 2–7. In computing the
length of CI, we obtain length asymptotic CI (LACI) for the likelihood estimators, and also
obtain the length credible CI (LCCI) for the Bayesian estimators. In addition, we compared
the performance of the estimation by considering the following schemes.

Scheme 1. Rkı = 0, ı = 1, . . . , nk −mk

Scheme 2. Rkı =

{
nk −mk, ı = 1

0, ı = 2, . . . , mk

Scheme 3. Rkı =

{
nk −mk, ı = mk

0, ı = 1, . . . , mk−1

MLE, average bias Abs(Bias) and the RMSE for the MLE of the parameters are pre-
sented for different sample sizes and different sampling schemes
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For Case 1, the selected initial values are as follows: a1 = 1.4, b1 = 1.5, c1 = 1.35, r1 = 1.7,
s1 = 1.2, a2 = 1.4, b2 = 1.5, c2 = 1.35, r2 = 1.5, s2 = 1.3; p = 0.7.

For Case 2, the initial values are a1 = 1.8, b1 = 0.2, c1 = 3.5, r1 = 1.2, s1 = 1.5, a2 = 4,
b2 = 0.1, c2 = 0.65, r2 = 1.5, s2 = 1.3, p = 0.6.

Table 2. Bias, RMSE and length of CI for the MLE and Bayesian estimates of the parameters are
presented for different sample sizes: Scheme 1 (complete sample), Case 1.

MLE Bayesian

n Bias RMSE LACI Bias RMSE LCCI

25

a1 0.1363 0.7467 2.8809 0.0743 0.2569 0.9628

b1 −0.2161 0.7758 2.9236 0.1091 0.2275 0.7848

c1 0.1374 0.9482 3.6814 0.0941 0.2920 0.9927

r1 0.6883 1.2519 4.1030 0.1441 0.2783 0.8962

s1 −0.1083 0.3819 1.4369 0.0243 0.1426 0.5350

a2 0.2119 0.8836 3.3659 0.1080 0.2499 0.8166

b2 −0.2985 0.8408 3.0842 0.1432 0.3119 1.0558

c2 0.2908 1.0364 3.9034 0.0380 0.2224 0.8259

r2 0.7734 1.4002 4.5801 0.1438 0.2855 0.9685

s2 −0.2023 0.5034 1.8088 0.0052 0.0335 0.1289

p −0.0112 0.0952 0.3710 −0.0342 0.0885 0.3028

50

a1 0.0325 0.6253 2.4502 0.0364 0.1648 0.6325

b1 −0.1865 0.6440 2.4185 0.0602 0.1333 0.4764

c1 0.0006 0.7457 2.9259 0.0262 0.1634 0.6277

r1 0.5867 0.9923 3.1401 0.1102 0.1835 0.5522

s1 −0.0360 0.3025 1.1784 0.0103 0.0898 0.3480

a2 0.1064 0.7523 2.9225 0.0364 0.1389 0.5130

b2 −0.1927 0.6604 2.4784 0.1101 0.2216 0.7209

c2 0.1501 0.8913 3.4475 0.0396 0.1470 0.5468

r2 0.6011 1.0677 3.4625 0.0978 0.1756 0.5552

s2 −0.1098 0.4171 1.5790 0.0000 0.0219 0.0854

p −0.0012 0.0648 0.2540 −0.0146 0.0622 0.2353

100

a1 −0.0776 0.5013 1.9434 0.0156 0.1205 0.4462

b1 −0.1608 0.5400 2.0228 0.0506 0.1193 0.4208

c1 −0.1454 0.5745 2.1809 0.0136 0.1412 0.5552

r1 0.6321 0.9161 2.6022 0.1030 0.1609 0.4740

s1 0.0369 0.2611 1.0143 −0.0010 0.0701 0.2702

a2 0.0565 0.6470 2.5289 0.0162 0.1004 0.3790

b2 −0.1245 0.6024 2.3128 0.0673 0.1583 0.5709

c2 0.0053 0.7704 3.0230 0.0203 0.1138 0.4199

r2 0.5095 0.9132 2.9741 0.0713 0.1396 0.4697

s2 −0.0214 0.3687 1.4443 −0.0005 0.0179 0.0671

p 0.0019 0.0521 0.2043 −0.0050 0.0497 0.1896
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Table 3. Bias, RMSE and length of CI for the MLE and Bayesian estimates of the parameters are
presented for different schemes: Case 1 and n = 25.

MLE Bayesian

Scheme n, m Bias RMSE LACI Bias RMSE LCCI

2

25, 15

a1 0.2086 0.6935 2.5950 0.1157 0.2775 0.9395

b1 −0.3516 0.7858 2.7576 0.0911 0.2282 0.7983

c1 0.1511 0.7569 2.9101 0.0765 0.2676 0.9211

r1 0.5921 1.1801 4.0056 0.1478 0.3511 1.1950

s1 −0.2418 0.4328 1.4085 0.0366 0.2240 0.8323

a2 0.3463 0.9475 3.4605 0.0217 0.2295 0.8224

b2 −0.4146 0.9381 3.3021 0.2170 0.4221 1.4613

c2 0.2505 0.8901 3.3515 0.0471 0.2519 0.9327

r2 1.1189 1.5792 4.3727 0.1465 0.2942 0.9666

s2 −0.4516 0.6420 1.7906 −0.0091 0.0436 0.1606

p 0.0232 0.2115 0.8248 −0.0054 0.1803 0.5545

25, 20

a1 0.1707 0.6897 2.5622 0.0455 0.1439 0.5135

b1 −0.3438 0.7705 2.7060 0.0500 0.1341 0.4665

c1 0.0316 0.7494 2.9038 0.0436 0.1566 0.5762

r1 0.6538 1.0314 3.3474 0.0571 0.2067 0.7663

s1 −0.1799 0.4067 1.3144 0.0404 0.1491 0.5154

a2 0.2747 0.8731 3.2521 0.0371 0.1507 0.5460

b2 −0.3155 0.8002 2.8854 0.1040 0.2557 0.8661

c2 0.2094 0.8093 3.0556 0.0354 0.1428 0.5314

r2 0.9609 1.2634 3.0120 0.0999 0.1988 0.6814

s2 −0.2952 0.5144 1.6531 −0.0030 0.0250 0.0908

p 0.0099 0.1339 0.5238 −0.0169 0.1143 0.4068

3

25, 15

a1 0.1161 0.7157 2.7713 0.0909 0.2582 0.9175

b1 −0.3936 0.7869 2.6737 0.0994 0.2208 0.7204

c1 0.1617 0.8577 3.3051 0.0683 0.2632 0.9451

r1 0.6209 1.2826 4.4038 0.1023 0.2885 0.9627

s1 −0.1745 0.4339 1.5587 0.0754 0.1732 0.6193

a2 0.2977 0.8905 3.2933 0.0859 0.2325 0.8070

b2 −0.3494 0.8102 2.8682 0.1131 0.3168 1.0870

c2 0.3593 0.9570 3.4806 0.0930 0.2529 0.8532

r2 0.7486 1.2881 4.1132 0.1310 0.2876 0.9885

s2 −0.2523 0.5078 1.7293 0.0091 0.0347 0.1240

p −0.0110 0.2158 0.8458 −0.0355 0.1884 0.5606

25, 20

a1 0.1607 0.7128 2.7250 0.0563 0.1489 0.5512

b1 −0.2165 0.7084 2.5194 0.0502 0.1247 0.4392

c1 0.1249 0.8100 3.0788 0.0470 0.1634 0.6065

r1 0.5943 1.0322 3.6334 0.0650 0.1916 0.6970

s1 −0.1554 0.4023 1.4562 0.0235 0.1069 0.4019

a2 0.1888 0.8684 3.2622 0.0552 0.1365 0.4698

b2 −0.2937 0.8115 2.6968 0.0614 0.1984 0.6992

c2 0.2993 0.8063 3.0035 0.0473 0.1400 0.5285

r2 0.5807 1.0457 4.0757 0.0732 0.1829 0.6418

s2 −0.1663 0.5084 1.4885 0.0048 0.0200 0.0761

p −0.0107 0.1419 0.5554 −0.0354 0.1267 0.4211
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Table 4. Bias, RMSE and length of CI for the MLE and Bayesian estimates of the parameters are
presented for different schemes: Case 1 and n = 50.

MLE Bayesian

Scheme n, m Bias RMSE LACI Bias RMSE LCCI

2

50, 30

a1 0.1740 0.6464 2.4428 0.0985 0.2686 0.9424

b1 −0.2839 0.6850 2.4461 0.1049 0.2627 0.9051

c1 0.0535 0.6684 2.6143 0.0815 0.2862 0.9613

r1 0.4536 1.0329 3.6413 0.1323 0.3722 1.2898

s1 −0.1768 0.3914 1.3701 0.0462 0.2367 0.8292

a2 0.1538 0.7803 3.0018 −0.0047 0.2490 0.9586

b2 −0.3140 0.7485 2.6661 0.3206 0.5488 1.6380

c2 0.0664 0.7585 2.9649 0.0245 0.2544 0.9684

r2 1.1236 1.6130 4.5412 0.2103 0.3669 1.1379

s2 −0.3536 0.5499 1.6526 −0.0264 0.0637 0.2052

p 0.0273 0.1937 0.7527 0.0109 0.1774 0.5251

50, 40

a1 0.1385 0.6058 2.3526 0.0378 0.1515 0.5607

b1 −0.3216 0.6863 2.3792 0.0357 0.1402 0.5168

c1 0.0496 0.5807 2.5146 0.0318 0.1757 0.6541

r1 0.4528 0.9119 3.5998 0.0671 0.2231 0.7929

s1 −0.1435 0.3782 1.3732 0.0488 0.1514 0.5324

a2 0.1669 0.7759 2.9731 0.0134 0.1514 0.5693

b2 −0.1764 0.7496 2.5859 0.1789 0.3302 0.9973

c2 −0.0199 0.7398 2.9020 0.0129 0.1412 0.5300

r2 1.0421 1.5571 4.5399 0.1420 0.2564 0.8151

s2 −0.2003 0.4252 1.4718 −0.0121 0.0342 0.1166

p 0.0261 0.1170 0.4475 0.0095 0.1047 0.3537

3

50, 30

a1 0.1031 0.6498 2.5174 0.0779 0.2654 0.9538

b1 −0.2174 0.6665 2.4724 0.0968 0.2433 0.8425

c1 0.1599 0.7887 3.0306 0.0804 0.3027 1.0356

r1 0.3891 0.9908 3.5757 0.0807 0.2552 0.9065

s1 −0.1131 0.3722 1.3915 0.0546 0.1587 0.5932

a2 0.2047 0.7134 2.6817 0.0921 0.2352 0.7769

b2 −0.1824 0.6974 2.6414 0.0814 0.2837 0.9804

c2 0.2089 0.8528 3.2443 0.0572 0.2373 0.8509

r2 0.4022 0.9146 3.2231 0.1108 0.2715 0.9205

s2 −0.1485 0.4358 1.6076 0.0124 0.0368 0.1380

p −0.0058 0.2060 0.8079 −0.0190 0.1904 0.5459

50, 40

a1 0.1919 0.6064 2.4934 0.0457 0.1469 0.5373

b1 −0.1360 0.6266 2.4002 0.0501 0.1353 0.4797

c1 0.2024 0.6306 2.9215 0.0371 0.1646 0.6183

r1 0.2577 0.8736 3.2753 0.0444 0.1767 0.6505

s1 −0.1101 0.3609 1.3485 0.0333 0.0997 0.3671

a2 0.1838 0.7048 2.5844 0.0389 0.1382 0.5167

b2 −0.1898 0.6913 2.6081 0.0503 0.1826 0.6657

c2 0.2209 0.8492 3.1514 0.0355 0.1405 0.5139

r2 0.4817 0.9032 3.1583 0.0666 0.1764 0.6511

s2 −0.1363 0.4060 1.5724 0.0040 0.0233 0.0878

p −0.0106 0.1194 0.4667 −0.0238 0.1120 0.3631
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Table 5. Bias, RMSE and length of CI for the MLE and Bayesian estimates of the parameters are
presented for different sample sizes: Scheme 1 (complete sample), Case 2.

MLE Bayesian

n Bias RMSE LACI Bias RMSE LCCI

25

a1 0.4950 1.2585 5.9078 0.1046 0.2725 0.9632

b1 0.0025 0.0974 0.3819 0.0691 0.0811 0.3175

c1 0.3392 1.2556 4.7436 0.0663 0.1757 0.6258

r1 0.1166 0.2492 0.8640 −0.0189 0.1458 0.5568

s1 0.1338 0.4568 1.7138 0.1819 0.2823 0.8286

a2 0.0850 1.9085 7.4814 0.0398 0.1079 0.3711

b2 0.0461 0.1245 0.4540 0.0312 0.0675 0.2063

c2 0.2599 0.5643 1.9656 0.0475 0.2313 0.7513

r2 0.0984 0.3444 1.2950 −0.0534 0.1993 0.7545

s2 −0.0048 0.3695 1.4497 0.0216 0.0382 0.1283

p −0.0035 0.0920 0.3607 −0.0116 0.0816 0.3071

50

a1 0.2532 1.0781 4.9156 0.0615 0.1727 0.6082

b1 0.0039 0.0774 0.3032 0.0425 0.0778 0.2230

c1 0.3267 1.0900 4.0806 0.0339 0.1189 0.4407

r1 0.0774 0.1588 0.5440 −0.0128 0.1009 0.3987

s1 0.1067 0.4314 1.6401 0.0985 0.1755 0.5609

a2 −0.1625 1.4809 5.7759 0.0299 0.0781 0.2910

b2 0.0457 0.1183 0.4281 0.0296 0.0515 0.1509

c2 0.2415 0.4634 1.8299 0.0410 0.1641 0.5968

r2 0.0369 0.2309 0.8944 −0.0655 0.1306 0.4482

s2 0.0314 0.3073 1.4569 0.0157 0.0265 0.0823

p −0.0036 0.0692 0.2712 −0.0094 0.0648 0.2451

100

a1 0.1000 0.9519 3.7145 0.0397 0.1558 0.5863

b1 0.0054 0.0522 0.2037 0.0249 0.0539 0.1661

c1 0.2833 0.7983 2.9286 0.0349 0.1158 0.4385

r1 0.0534 0.1129 0.3903 0.0063 0.0776 0.3142

s1 0.0688 0.3142 1.2030 0.0658 0.1410 0.4920

a2 −0.1731 1.1550 4.4811 0.0199 0.0732 0.2684

b2 0.0396 0.0985 0.3541 0.0233 0.0381 0.1088

c2 0.1359 0.3042 1.0677 0.0174 0.1019 0.3844

r2 0.0006 0.1304 0.5117 −0.0566 0.0978 0.3237

s2 0.0363 0.2320 1.2465 0.0114 0.0254 0.0740

p −0.0014 0.0485 0.1903 −0.0031 0.0472 0.1834
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Table 6. Bias, RMSE and length of CI for the MLE and Bayesian estimates of the parameters are
presented for different schemes: Case 2 and n = 25.

MLE Bayesian

Scheme n, m Bias RMSE LACI Bias RMSE LCCI

2

25, 15

a1 0.3219 1.5006 5.7511 0.0890 0.2609 0.9529

b1 −0.0140 0.1061 0.4125 0.0409 0.1046 0.3430

c1 0.2475 1.3018 5.0149 0.0303 0.1680 0.6187

r1 0.3045 0.6054 2.0533 0.1003 0.2511 0.8449

s1 0.1760 0.5871 2.1980 0.1423 0.2544 0.7830

a2 −0.1057 2.0364 7.9800 0.0373 0.1059 0.3868

b2 0.0533 0.2103 0.7982 0.0260 0.0679 0.2227

c2 0.2514 0.6190 2.2198 0.0491 0.2189 0.7067

r2 0.2421 0.5800 2.0680 −0.0026 0.2304 0.9165

s2 0.1230 0.5706 2.1865 0.0203 0.0362 0.1182

p −0.0230 0.1544 0.5992 −0.0320 0.1371 0.5096

25, 20

a1 0.4450 1.2772 4.7292 0.0502 0.1432 0.5073

b1 −0.0071 0.1040 0.4072 0.0391 0.0990 0.3048

c1 0.2764 1.2067 4.6092 0.0235 0.1010 0.3778

r1 0.1954 0.4030 1.3830 0.0309 0.1768 0.6555

s1 0.1461 0.5049 1.8965 0.0819 0.1589 0.5218

a2 0.1944 2.0450 7.9880 0.0235 0.0627 0.2217

b2 0.0341 0.1379 0.5242 0.0239 0.0581 0.1891

c2 0.2256 0.6054 2.2044 0.0551 0.2044 0.7016

r2 0.1582 0.4093 1.4811 −0.0506 0.1708 0.6461

s2 0.0712 0.4372 1.6925 0.0127 0.0223 0.0712

p −0.0200 0.1178 0.4557 −0.0314 0.1056 0.3854

3

25, 15

a1 0.3756 1.5466 5.8871 0.0977 0.2491 0.8675

b1 0.0086 0.1149 0.4497 0.0728 0.1016 0.3220

c1 0.2402 1.1652 4.4740 0.0407 0.1576 0.6094

r1 0.1513 0.2897 0.9695 −0.0267 0.1492 0.5809

s1 0.2196 0.5639 2.0382 0.1517 0.2645 0.8215

a2 0.0220 1.8220 7.1490 0.0473 0.1138 0.3973

b2 0.0456 0.1589 0.5971 0.0289 0.0658 0.2128

c2 0.2686 0.6084 2.1420 0.0957 0.2510 0.8332

r2 0.2490 0.4789 1.6053 −0.0177 0.2134 0.8030

s2 0.1015 0.4697 1.7995 0.0246 0.0406 0.1244

p −0.1750 0.2005 0.3840 −0.1599 0.1814 0.3204

25, 20

a1 0.3345 1.4388 5.4909 0.0556 0.1509 0.5303

b1 0.0026 0.1035 0.4058 0.0504 0.0942 0.2754

c1 0.3566 1.0276 4.2807 0.0291 0.1015 0.3685

r1 0.1413 0.2619 0.8653 −0.0160 0.1250 0.4882

s1 0.1898 0.5521 2.0346 0.0960 0.1626 0.5275

a2 0.2065 1.7882 5.3390 0.0242 0.0622 0.2171

b2 0.0523 0.1422 0.5190 0.0218 0.0566 0.1773

c2 0.3228 0.5461 2.0235 0.0667 0.2028 0.7112

r2 0.1509 0.4165 1.5231 −0.0344 0.1565 0.5786

s2 0.0576 0.4180 1.6247 0.0128 0.0232 0.0730

p −0.0859 0.1294 0.3797 −0.0773 0.1171 0.3043
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Table 7. Bias, RMSE and length of CI for the MLE and Bayesian estimates of the parameters are
presented for different schemes: Case 2 and n = 50.

MLE Bayesian

Scheme n, m Bias RMSE LACI Bias RMSE LCCI

I

50, 30

a1 0.1607 1.1624 4.5175 0.0950 0.2756 0.9877

b1 −0.0156 0.0926 0.3583 0.0425 0.1156 0.3975

c1 0.1410 0.9550 3.7064 0.0340 0.1804 0.7061

r1 0.3582 0.6997 2.3586 0.1390 0.3104 1.0253

s1 0.1687 0.6128 2.3115 0.1347 0.2730 0.8936

a2 −0.3925 1.4224 5.3648 0.0466 0.1148 0.4057

b2 0.0444 0.1538 0.5779 0.0233 0.0643 0.2126

c2 0.1707 0.4040 1.4368 0.0621 0.2132 0.7099

r2 0.2614 0.6599 2.3776 0.0353 0.2589 0.9918

s2 0.1804 0.6739 2.5479 0.0192 0.0394 0.1334

p −0.0440 0.2016 0.7719 −0.0479 0.1859 0.5668

50, 40

a1 0.1322 1.0365 4.2045 0.0616 0.1823 0.6517

b1 −0.0061 0.0903 0.3536 0.0218 0.0800 0.2685

c1 0.1406 0.9028 3.6985 0.0214 0.1105 0.4222

r1 0.1619 0.3606 1.2642 0.0606 0.1810 0.6664

s1 0.1229 0.4318 1.6243 0.0673 0.1532 0.5163

a2 −0.2044 1.3552 4.5038 0.0219 0.0698 0.2580

b2 0.0286 0.1166 0.4435 0.0224 0.0498 0.1704

c2 0.1682 0.3741 1.4034 0.0500 0.1703 0.5965

r2 0.1231 0.3405 1.2457 −0.0294 0.1568 0.6370

s2 0.0647 0.4849 1.8859 0.0107 0.0238 0.0771

p −0.0117 0.1050 0.4094 −0.0171 0.0996 0.3911

II

50, 30

a1 0.3428 1.2479 4.7083 0.1173 0.3037 1.1006

b1 0.0019 0.0856 0.3357 0.0651 0.1078 0.2946

c1 0.2610 1.0548 4.0104 0.0631 0.1839 0.6537

r1 0.1252 0.2271 0.7435 −0.0133 0.1284 0.5061

s1 0.1625 0.4028 1.4461 0.1708 0.2807 0.7910

a2 −0.0189 1.2375 4.8553 0.0595 0.1238 0.4057

b2 0.0300 0.0986 0.3684 0.0344 0.0626 0.1887

c2 0.1687 0.3744 1.3115 0.1112 0.2300 0.7343

r2 0.1328 0.3041 1.0733 −0.0624 0.1694 0.5980

s2 0.0893 0.3474 1.3174 0.0302 0.0480 0.1460

p −0.2414 0.2501 0.2563 −0.2261 0.2345 0.2025

50, 40

a1 0.1323 0.9504 4.6244 0.0602 0.1719 0.6060

b1 0.0084 0.0855 0.3337 0.0488 0.0886 0.2672

c1 0.2795 0.8144 3.8352 0.0355 0.1176 0.4267

r1 0.0950 0.1849 0.6223 −0.0175 0.1077 0.4235

s1 0.1539 0.3912 1.4114 0.0958 0.1742 0.5624

a2 −0.1510 0.9435 4.5993 0.0280 0.0748 0.2571

b2 0.0406 0.0914 0.3440 0.0239 0.0483 0.1573

c2 0.1276 0.3428 1.2532 0.0524 0.1699 0.6015

r2 0.1008 0.2956 1.0090 −0.0475 0.1378 0.4887

s2 0.0880 0.3042 1.2462 0.0133 0.0258 0.0864

p −0.1212 0.1366 0.2472 −0.1148 0.1298 0.1923
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8. Application on Bladder Cancer Data

In this section, we provide a real data analysis to illustrate some practical applications
of the proposed distributions. The data are from [13], which correspond to the remission
times (in months) of a random sample of n = 128 bladder cancer patients. These data are
given as follows:

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40,
2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54,
3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88,
5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23,
5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49,
7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79,
18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54,
8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

Before proceeding further, we fitted the mixture EKW distribution to the complete
data set. Table 8 reports the ML and Bayesian estimates for the parameters for the complete
bladder cancer data. Figure 3 represents the overall fit of EKW for these data.

Table 8. ML estimates of the EKW parameters with the corresponding bladder data.

a b c r s KSD PVKS CVM AD

Estimates 3.6537 3.1179 1.1311 0.4578 5.2873 0.0443 0.9629 0.0408 0.2700
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The validity of the fitted model is assessed by computing the Kolmogorov–Smirnov
distance (KSD) statistics with p-Value KS (PVKS) in Table 8. In addition, we plotted the
fitted cdf and the empirical cdf, as shown in Figure 3. This was conducted by replacing the
parameters with their ML (in red) estimates, as shown in Figure 3. The KSD statistics for
ML are 0.0443 and the corresponding p-value is 0.9629. Therefore, the KS test, along with
Figure 3, indicate that the EKW distribution provides the best fit for this data set.

Next, we fitted the MEKW distribution to the complete data set. Table 9 reports the
ML and Bayesian estimates for the parameters for the complete bladder cancer data.
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Table 9. ML estimates of the MEKW parameters for the complete sample of the bladder data.

MLE Bayesian

Estimates SE Lower Upper Estimates SE Lower Upper

a1 8.2459 0.0171 8.2125 8.2794 8.3297 0.0075 8.2310 8.2601

b1 0.1491 0.0123 0.1250 0.1733 0.1866 0.0008 0.1477 0.1506

c1 27.6825 7.5314 12.9208 42.4441 27.2578 0.1975 27.5327 27.8240

r1 1.1925 0.0015 1.1896 1.1954 1.1456 0.0015 1.1800 1.1984

s1 4.4770 0.0014 4.4742 4.4798 4.3029 0.0003 4.4620 4.4911

a2 12.2492 0.0079 12.2337 12.2648 12.2200 0.0075 12.2343 12.2634

b2 0.1526 0.0126 0.1279 0.1773 0.2207 0.0008 0.1511 0.1540

c2 22.6763 5.8063 11.2960 34.0567 22.6720 0.0754 22.5266 22.8179

r2 1.2810 0.0024 1.2763 1.2858 0.3040 0.0014 1.2661 1.2952

s2 5.6261 0.0026 5.6210 5.6313 0.1922 0.0025 5.6115 5.6406

p 0.5004 0.0347 0.4325 0.5684 0.6039 0.0075 0.4858 0.5149

In Figures 4 and 5, we provide the trace plots of the MCMC results, showing the
MCMC procedure converges. Figures 6 and 7 show the MCMC density and HDI intervals
for the results of the Bayesian estimation of the MEKW model for the complete sample.
Therefore, we will use the estimate for the mixing parameter ρ̂ = 0.5004 in computing the
ML and Bayesian estimates for other parameters when using complete samples.
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Two different sampling schemes are used to generate the progressively censored
samples from the bladder cancer data with m = 100, which are as follows:

Strategy 1: (99*0,28); Rkı =

{
nk −mk, ı = 1

0, ı = 2, . . . , mk
(type II censoring scheme).

Strategy 2: (28,99*0); Rkı =

{
nk −mk, ı = mk

0, ı = 1, . . . , mk−1
.

In both cases, we have considered the optimization algorithm to compute the ML
estimates. Table 10 shows the ML estimates for these two schemes.
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Table 10. ML estimates of the MEKW parameters for different censoring schemes of the bladder data.

MLE Bayesian

m Estimates SE Estimates SE Lower Upper

100

I

1 0.7798 0.6666 2.3379 0.1443 2.0831 2.5781

2 0.3701 0.2945 1.4005 0.1141 1.1089 1.5987

3 1.5890 1.5642 1.0217 0.0929 0.8747 1.2007

4 1.0476 0.3145 0.6716 0.0607 0.5607 0.8075

5 2.5998 1.4655 6.1628 0.1388 5.9327 6.4243

6 0.3585 0.4015 0.4015 0.0689 0.2564 0.5199

7 0.0910 0.1559 0.3354 0.0565 0.2526 0.4543

8 2.2788 1.9297 4.1502 0.1257 3.9216 4.3922

9 0.8801 0.2630 0.6598 0.0461 0.5720 0.7408

10 0.3263 0.4107 0.7023 0.1030 0.4812 0.8705

11 0.4996 0.0312 0.4978 0.0307 0.4320 0.5622

II

1 3.1095 1.2115 2.9865 0.8578 1.3865 4.5300

2 5.4366 1.2115 5.5720 0.5985 4.7450 7.8209

3 1.6154 1.5705 2.0721 0.9825 0.4263 3.9153

4 0.3895 0.5488 0.3989 0.0817 0.2433 0.5639

5 9.4701 3.0546 10.1271 2.1945 5.8077 14.0496

6 3.1391 0.2030 3.2203 0.1536 2.1766 3.9201

7 5.3816 4.7374 6.0417 2.5953 1.8477 11.4996

8 1.6035 1.5762 1.8511 1.1209 0.4448 4.2545

9 0.3891 0.3544 0.4127 0.1405 0.1992 0.7092

10 9.2241 5.6376 11.1351 4.8638 3.1418 19.6341

11 0.5000 0.0312 0.5031 0.0245 0.4146 0.5892

For Case 1, where m = 100 and under the Scheme 1, the following can be noted: 0.08
0.20 0.40 0.50 0.51 0.81 0.90 1.05 1.19 1.26 1.35 1.40 1.46 1.76 2.02 2.02 2.07 2.09 2.23 2.26 2.46
2.54 2.62 2.64 2.69 2.69 2.75 2.83 2.87 3.02 3.25 3.31 3.36 3.36 3.48 3.52 3.57 3.64 3.70 3.82 3.88
4.18 4.23 4.26 4.33 4.34 4.40 4.50 4.51 4.87 4.98 5.06 5.09 5.17 5.32 5.32 5.34 5.41 5.41 5.49 5.62
5.71 5.85 6.25 6.54 6.76 6.93 6.94 6.97 7.09 7.26 7.28 7.32 7.39 7.59 7.62 7.63 7.66 7.87 7.93 8.26
8.37 8.53 8.65 8.66 9.02 9.22 9.47 9.74 10.06 10.34 10.66 10.75 11.25 11.64 11.79 11.98 12.02
12.03 12.07.
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For Case 2, where m = 100 and under the Scheme 2, the following can be noted: 0.08
0.20 0.40 0.50 0.90 1.05 1.19 1.35 1.40 1.46 1.76 2.02 2.09 2.23 2.26 2.46 2.64 2.69 2.69 2.75 2.83
3.02 3.25 3.31 3.36 3.36 3.48 3.52 3.57 3.64 3.82 4.18 4.23 4.26 4.33 4.34 4.40 4.50 4.51 4.87 4.98
5.06 5.09 5.17 5.32 5.32 5.41 5.41 5.49 5.62 5.71 6.25 6.54 6.76 6.93 6.94 6.97 7.09 7.28 7.32 7.39
7.59 7.62 7.63 7.66 8.37 8.53 8.65 9.02 9.47 9.74 10.06 10.66 10.75 11.25 11.64 11.79 11.98 12.02
12.07 12.63 13.29 14.24 14.77 16.62 17.12 17.36 18.10 19.13 20.28 22.69 23.63 25.74 25.82 26.31
34.26 36.66 43.01 46.12 79.05.

In addition, Bayesian credible interval estimates of the parameters are obtained numer-
ically using Markov chain Monte Carlo (MCMC) techniques. That is, samples are simulated
from the joint posterior distribution in Equation (12) using the Metropolis–Hasting algo-
rithm to obtain the posterior mean values of the estimates of the parameters by MCMC.
Table 10 reports the estimates of the MEKW parameters with the corresponding SE and
credible confidence intervals using the HDI algorithm of the Bayesian estimators.

9. Concluding Remarks

Finite mixture models under both the continuous and the discrete domain have
received considerable attention over the last decade or so due to its flexibility of modeling an
observed phenomenon when each component cannot adequately explain the entire nature
of the data. In this paper, we have developed and studied a finite mixture of exponentiated
Kumaraswamy-G distribution under a progressively type II censored sampling scheme,
when the baseline distribution (G) is a two parameter Weibull. The efficacy of the proposed
model has been established through applying it to model data from the healthcare domain.
From the simulation study as well as from the application, it has been observed that,
depending on the censoring scheme, either of the two estimation methods (i.e., maximum
likelihood and the Bayesian estimation under independent gamma priors) could be useful.
Among the various loss functions assumed for the Bayesian estimation, the results based
on the small simulation study are inconclusive as to which loss function will be the most
suitable for this type of finite mixture models. Most likely, a full-scale simulation study with
varying parameter choices and a wide range of censoring schemes would give us an idea.
Currently, we are working on this and it will be published when it is ready for submission.
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Appendix A

A parameter point ε0 in A is said to be identifiable if there is no other ε in A, which is
observed to be equivalent, as shown in [14].

Appendix A.1. Necessary and Sufficient Conditions for Identifiability

(i) Assumption 1: The structural parameters space A is an open set inRm; R = (−∞,+∞).
This true in our case, as for Equation (3), the mixture model density. The associated

parameter vector,
→
∆ = (a1, b1, c1, a2, b2, c2, r1, r2, s1, s2, p, q ), with the parameter space

→
Ψ = {(a1, a2) ≥ 1; (bi, ci) ∈ (0, 1]∀i = 1, 2, (ri, si) ∈ R+; (p, q) ∈ (0, 1]} and the asso-

ciated support parameters space show that
→
Ψ is an open set in R12. Then, the function

f is a proper density.

(ii) Assumption 2: Functions for every
→
Ψ. In particular, f is non-negative and the equation∫

f
(

y;
→
∆
)

dy = 1, holds for all
→
∆ in

→
Ψ. This is true for the density in Equation (3).

(iii) Assumption 3: The sample space of y, say B, for which f is strictly positive, is the

same for all
→
∆ in the parameter space

→
Ψ. This is also true and immeditely holds for

the density in Equation (3).

(iv) Assumption 4: For all
→
∆ in a convex set containing

→
Ψ and for all y in the sample space

B, the functions f
(

y;
→
∆
)

and loge

[
f
(

y;
→
∆
)]

are continuously differentiable, with

respect to each element in
→
∆. This is also true for the density in Equation (3).

(v) Assumption 5: The elements of the information matrix (FIM) (in this case, the ob-

served Fisher information matrix), R
(→

∆
)
=

∂log f

∂
→
∆i

,
∂log f

∂
→
∆j

, exists and are contin-

uous functions of
→
∆ everywhere in

→
Ψ for the density in Equation (3); the associated

log-likelihood function will be (for a single observation)

log
[

f
(

x;
→
∆
)]

= log
[

p a1b1c1r1
s1

(
x
s1

)r1−1
exp
[
−
(

x
s1

)r1
][

1− exp
(
−
(

x
s1

)r1
)]a1−1

]
[

1−
[
1− exp

(
−
(

x
s1

)r1
)]a1

]b1−1
[

1−
[

1−
[
1− exp

(
−
(

x
s1

)r1
)]a1

]b1
]c1−1

+q a2b2c2r2
s2

(
x
s2

)r2−1
exp
[
−
(

x
s2

)r2
][

1− exp
(
−
(

x
s2

)r2
)]a2−1

[
1−

[
1− exp

(
−
(

x
s2

)r2
)]a2

]b2−1
[

1−
[

1−
[
1− exp

(
−
(

x
s2

)r2
)]a2

]b2
]c2−1


For illustrative purposes, we will discuss one element from the observed FIM of

dimension 12 × 12. The proof of existence of the remaining elements and continuity can
be similarly established. For brevity, the complete details are avoided. It is available upon
request to the authors. Next, one must consider

∂2log f
∂a1∂a2

=
−D1

D2
(A1)

where
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D1 =

[
b1b2c1c2exp

[(
x
s1

)r1

+
(

x
s2

)r2
][

1− exp
(
−
(

x
s1

)r1
)]a1[

1− exp
(
−
(

x
s2

)r2
)]a2

[
1−

[
1− exp

(
−
(

x
s1

)r1
)]a1

]b1−2

[
1−

[
1− exp

(
−
(

x
s2

)r2
)]a2

]b2−2
[

1−
[

1−
[
1− exp

(
−
(

x
s1

)r1
)]a1

]b1
]c1−1

[
1−

[
1−

[
1− exp

(
−
(

x
s2

)r2
)]a2

]b2
]c2−2

pqr1r2

(
x
s1

)r1
(

x
s2

)r2

(
−1 +

[
1− exp

(
−
(

x
s1

)r1
)]a1

)(
−1 +

[
1−

[
1− exp

(
−
(

x
s1

)r1
)]a1

]b1
)

+a1

(
1−

[
1−

[
1− exp

(
−
(

x
s1

)r1
)]a1

]b1
)

+b1

[
1− exp

(
−
(

x
s1

)r1
)]a1(

−1 + c1

[
1−

[
1− exp

(
−
(

x
s1

)r1
)]a1

]b1
)

log
[
1− exp

(
−
(

x
s1

)r1
)]

(
−1 +

[
1− exp

(
−
(

x
s2

)r2
)]a2

)(
−1 +

[
1−

[
1− exp

(
−
(

x
s2

)r2
)]a2

]b2
)

a2b2(
1−

[
1−

[
1− exp

(
−
(

x
s2

)r2
)]a2

]b2
)

+log
[
1− exp

(
−
(

x
s2

)r2
)](
−1 + c2

[
1−

[
1− exp

(
−
(

x
s2

)r2
)]a2

]b2
)]

,

D2 =
(
−1 + exp

(
−
(

x
s1

)r1
))

(
−1 + exp

(
−
(

x
s2

)r2
))[

pr1a1b1c1

[
1− exp

(
−
(

x
s1

)r1
)]a1−1

[
1−

[
1− exp

(
−
(

x
s1

)r1
)]a1

]b1−1
[

1−
[

1−
[
1− exp

(
−
(

x
s1

)r1
)]a1

]b1
]c1−1(

x
s1

)r1

+qr2a2b2c2

[
1− exp

(
−
(

x
s2

)r2
)]a2−1

[
1−

[
1− exp

(
−
(

x
s2

)r2
)]a2

]b2−1

[
1−

[
1−

[
1− exp

(
−
(

x
s2

)r2
)]a2

]b2
]c2−1(

x
s2

)r2

2

From Equation (A1), it is obvious that these derivatives exist for all possible choices

of the parameter vector
→
∆ and for the parameter space

→
Ψ, as well as for all possible

values of x ∈ (0, ∞). This derivative function is also continuous. The proof is simple, and
thus excluded.

• Identifiability of the MEKW Model

Before considering the aspect of estimation and associated inference and classification
of random variables, which are based on observations from a mixture, it is necessary to
address the subject of identifiability of the mixture(s) and possibly its components. We
suggest our readers to refer to the following pertinent reference: [14] for more information
on the identifiability of mixture distributions. The identification of a mixture for two EK
(with the same baseline G’s as given in (2)) components will now be explored.



Mathematics 2022, 10, 2800 25 of 26

We begin with the combination of two survival functions. One must consider a
linear combination of two separate distributions, one of which is EKW(a1, b1, c1, s1, r1)
distribution, and the other distribution is EKW(a2, b2, c2, s2, r2), as shown below.

2

∑
i=0

piSi(x) = 0,

where S1(x) = 1−
[

1−
[

1−
[
1− exp

(
−
(

x
s1

)r1
)]a1

]b1
]c1

, 0 < x< ∞, a1, b1, c1, s1, r1 >0,

S2(x) = 1 −
{

1−
[

1−
(

1− exp
[
−
(

x
s2

)−r2
])a2

]b2
}c2

, 0 < x< ∞, a2, b2, c2, s2, r2 >0,

and p1 and p2 are the mixing weights, such that p1 + p2 = 1 and 0 < pi < 1 ∀ i = 1, 2.
The finite mixture of EKW (a1, b1, c1, s1, r1), and EKW (a2, b2, c2, s2, r2) distributions are
identifiable, if S1(x), S2(x) are linearly independent. This means, if (a1, b1, c1, s1, r1) 6=
(a2, b2, c2, s2, r2), this implies p1 = p2 = 0.

If x = 0, then S1(0) = S2(0) = 1→ p1 + p2 = 0→ p1 = −p2.
Then,

1−

1−
[

1−
[

1− exp
(
−
(

x
s1

)r1
)]a1

]b1
c1

= 1−

1−
[

1−
(

1− exp

[
−
(

x
s2

)−r2
])a2

]b2


c2

,

1−
[

1−
[

1− exp
(
−
(

x
s1

)r1
)]a1

]b1
c1

=

1−
[

1−
(

1− exp

[
−
(

x
s2

)−r2
])a2

]b2


c2

,

∞

∑
i1=0

(
c1
i1

)
(−1)i1

(
1−

(
1− exp

(
−
(

x
s1

)r1
))a1

)b1i1

=
∞

∑
i2=0

(
c2
i1

)
(−1)i1

(
1−

(
1− exp

(
−
(

x
s2

)r2
))a2

)b2i1

,

∞

∑
i1=0

(
c1
i1

) ∞

∑
i2=0

(
b1i1
i2

)
(−1)i1+i2

(
1− exp

(
−
(

x
s1

)r1
))a1i2

=
∞

∑
i1=0

(
c2
i1

) ∞

∑
i2=0

(
b2i1
i2

)
(−1)i1+i2

[
exp

(
−
(

x
s2

)−r2
)]a2i2

,

∞
∑

i1=0

(
c1
i1

)
∞
∑

i2=0

(
b1i1
i2

)
(−1)i1+i2

∞
∑

i3=0

(
a1i2
i3

)
(−1)i1+i2+i3

(
exp
(
−
(

x
s1

)r1
))

=
∞
∑

i1=0

(
c2
i1

)
∞
∑

i2=0

(
b2i1
i2

)
(−1)i1+i2

∞
∑

i3=0

(
a2i2
i3

)
(−1)i1+i2+i3

(
exp
(
−
(

x
s2

)r2
))

,

∞

∑
i1=0

(
c1
i1

) ∞

∑
i2=0

(
b1i1
i2

)
(−1)i1+i2

∞

∑
i3=0

(
a1i2
i3

)
(−1)i1+i2+i3

(
x
s1

)r1

=
∞

∑
i1=0

(
c2
i1

) ∞

∑
i2=0

(
b2i1
i2

)
(−1)i1+i2

∞

∑
i3=0

(
a2i2
i3

)
(−1)i1+i2+i3

(
x
s2

)r2

where i1! = i1(i1 − 1)(i1 − 2) . . . .3.2.1, i1 = i2 = i3, and the coefficients of x on both sides
are compared and it is discovered that a1 = a2, b1 = b2, c1 = c2, s1 = s2 , r1 = r2, and
p1 = p2 = 0.

S1(x) and S2(x) are, thus, linearly independent. As a result, the EKW(a1, b1, c1, s1, r1)
and EKW (a2, b2, c2, s2, r2) distributions can be identified as a finite mixture.
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