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Abstract: In this era of big data, Multi-source Domain Adaptation (MDA) becomes more and more
popular and is employed to make full use of available source data collected from several different,
but related domains. Although multiple source domains provide much information, the processing
of domain shifts becomes more challenging, especially in learning a common domain-invariant
representation for all domains. Moreover, it is counter-intuitive to treat multiple source domains
equally as most existing MDA algorithms do. Therefore, the domain-specific distribution for each
source–target domain pair is aligned, respectively. Nevertheless, it is hard to combine adaptation
outputs from different domain-specific classifiers effectively, because of ambiguity on the category
boundary. Subjective Logic (SL) is introduced to measure the uncertainty (credibility) of each domain-
specific classifier, so that MDA could be bridged with DST. Due to the advantage of information
fusion, Dempster–Shafer evidence Theory (DST) is utilized to reduce the category boundary am-
biguity and output reasonable decisions by combining adaptation outputs based on uncertainty.
Finally, extensive comparative experiments on three popular benchmark datasets for cross-domain image
classification are conducted to evaluate the performance of the proposed method via various aspects.

Keywords: multi-source domain adaptation; Dempster–Shafer evidence theory; cross-domain classification

MSC: 68T07

1. Introduction

Recently, Deep Learning (DL) has made remarkable advances in various fields [1–7],
especially in classification [8–10]. Despite excellent results, the success of deep methods
highly relies on: (1) large-scale labeled data for supervised learning and (2) the training
and test data meeting the requirement of being Independently Identically Distributed (IID).
However, annotation is time-consuming and unaffordable in practice. If a model is trained
on a dataset (known as the source domain), but tested on another non-IID dataset (known
as the target domain), domain shifts occur and tend to severely degrade the performance
of the learned model [11,12]. Therefore, it is necessary to develop models that are trained
on the given labeled datasets, but that can generalize well to a non-IID unlabeled dataset.

Domain Adaptation (DA) aims to learn a discriminative model by reducing do-
main shifts between training and test distributions [13]. DA transfers the given labeled
source domain knowledge to tackle the task to the different, but related target domain
by learning domain-invariant representation between domains. Most approaches focus
on Single-source Domain Adaptation (SDA), where the labeled data from only one single
source domain are considered. Many achievements have emerged in this decade [14–18].
For example, DDC [14] adds an adaptation layer to the pre-trained AlexNet model to con-
fuse the feature representation between the single source domain and the target domain.
DSAN [16] proposes a novel fine-grained metric function to align the distribution of the sin-
gle source domain and the target domain. Most of them learn to map the data from both
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domains into a common feature space to learn domain-invariant representations by mini-
mizing domain distribution discrepancy, so that the source classifier could then be directly
applied to target instances.

However, in practice, it is very likely to obtain multiple available source domains,
while SDA is not up to employing those source data adequately. Hence, more challeng-
ing, Multi-source Domain Adaptation (MDA) is developed to utilize labeled data from
multiple source domains with different distributions and has attracted extensive attention
these days [19–21]. The most straightforward way is to combine all source domains into
one single source domain and, then, directly apply SDA methods to align distributions.
Due to the dataset expansion, the methods might improve the performance. However,
the improvements might not be sufficient; the more accurate ways are supposed to explore
to make full use of source domains.

With the spurt of progress in DL and SDA today, MDA has been gradually developed.
However, there are two typical issues with most techniques [22–28]. (1) Firstly, it is more
challenging to learn a common domain-invariant representation for all domains in MDA,
because the damages of domain shifts cannot be eliminated even in SDA. Thereby, MDA
is processed by aligning the domain-specific distribution for each source–target domain
pair. (2) Secondly, multiple source domains are treated as equivalents. However, the ben-
efits of each source domain to the target domain tasks are diverse in reality. The final
output should be closer to the adaptation output of the source–target domain pairs with
higher credibility. Some studies [29,30] add extra neural network components to measure
the credibility (i.e., transferability). In this research study, we employed Subjective Logic
(SL) [31] to obtain the uncertainty of every source domain without any addition of the neu-
ral network. Regarding source–target domain pairs as witnesses with different credibility
(uncertainty), we introduced Dempster–Shafer evidence Theory (DST) to combine all
domain-specific adaptation outputs.

As an uncertainty reasoning method, DST can effectively and reliably deal with uncer-
tainty. It relies on Basic Probability Assignment Functions (BPAFs) to measure the initial
degree of belief in the occurrence of an event, which is similar to the concept of the “proba-
bility” of a random event in probability theory. To generate BPAFs, DST is bridged with
MDA and DL by subjective logic.

Our contributions are summarized as follows:

• A novel multi-source domain adaptation method with Dempster–Shafer evidence
theory is proposed. We provide an effective cross-domain classification solution
without any addition of the neural network.

• There are few studies combining multi-source domain adaptation and Dempster–
Shafer evidence theory as of yet. We explored this kind of research early. In our work,
DST is employed to fuse all domain-specific adaptation results and output the final
credible results.

• The effectiveness of our cross-domain classification method is verified by conducting
comprehensive experiments on three well-known benchmarks. The experimental
results prove that the proposed method has better performance than other com-
pared approaches.

The rest of this paper is organized as follows. Section 2 reviews the related work.
In Section 3, the preliminaries are given. Section 4 describes the proposed method in detail.
A series of experiments is reported in Section 5 and discussed in Section 6. Finally, Section 7
summarizes this research study.

2. Related Work
2.1. Single-Source Domain Adaptation

Single-source Domain Adaptation (SDA) is bound up with multi-source domain
adaptation. SDA aims to generalize a model learned from a labeled source domain to a
related unlabeled target domain with a different data distribution by reducing the domain
shift. SDA can be roughly divided into three categories according to different alignment
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strategies. (1) Discrepancy-based approaches utilize different metric schemas to explicitly
measure the distance between the source and target domains and diminish the domain shift.
Commonly used discrepancy metrics for domain adaptation include Maximum Mean Dis-
crepancy (MMD) [32–34], moment matching [35,36], Kullback–Leibler (KL) divergence [37],
correlation alignment [38,39], and mixture distance [40]. (2) Adversarial-based approaches
align different data distributions by confusing a well-trained discriminator (domain clas-
sifier). Many methods [41–46] are based on Generative Adversarial Networks (GANs),
which align different data distributions by implicitly learning the metric function (i.e.,
domain discriminator) between the source and target domains. (3) Reconstruction-based
approaches assume that reconstructing the target domain from a latent representation by
using the source task model can help learn domain-invariant representations. The recon-
struction is usually obtained via an auto-decoder [47–49] or a GAN discriminator [50–52].

In our work, the first kind of approach was chosen and the most widely used discrep-
ancy MMD was employed to align the distributions.

2.2. Multi-Source Domain Adaptation

In practice, available source data often come from several different, but related do-
mains. Multi-source Domain Adaptation (MDA) is developed to make full use of these
data. However, multiple source domain data provide much information, but challenge
the processing of domain shifts. (1) Based on the assumption that the target domain distri-
bution can be approximated by mixing the source domain distribution [53,54], some MDA
methods focus on the weighted combination of source domains. For example, Sun and
Shi [22] designed a method to weight the source domain classifiers based on the Bayesian
learning principle. Xu et al. [23] proposed a voting method for multiple classifiers, which is
based on the output of domain discriminators. (2) In addition, some methods are devised
to map all source domains and the target domain to a unified feature space. For instance,
MDAN [24] aligns the distribution of source domains with the target domain through
multiple domain discriminators. M3SDA [25] employs moment matching to align the
source–target and source-source domains in a common feature space. HoMM [26] ex-
ploits the high-order statistics for domain alignment in a reproducing kernel Hilbert space.
(3) Some other methods are based on reconstruction [27,28], which reconstruct multiple
source domains into an intermediate single source domain and then directly carry out SDA.

Sadly, the damages of domain shifts cannot be eliminated in SDA. It is more difficult
to learn a common domain-invariant representation for all domains in MDA.
Following MFSAN [55], the domain-specific distribution and classifier alignment architec-
ture for cross-domain classification has proceeded. However, MFSAN treats every source
domain equally. This is counter-intuitive because different source domains help the target
task differently. Thus, regarding source–target domain pairs as witnesses with different
credibility (uncertainty), DST is employed to combine all domain-specific adaptation results.
Specifically, the uncertainty is captured, and BPAFs are generated by using subjective logic.

2.3. Dempster–Shafer Evidence Theory

Dempster–Shafer evidence Theory (DST) was first introduced in the 1960s. Based
on the investigation of statistical problems, Arthur P. Dempster introduced the concept
of upper and lower probabilities and their combining rules [56]. Then, the form of probabil-
ity that does not satisfy additivity was defined for the first time [57]. Later, Glenn Shafer
reinterpreted the upper and lower probabilities based on the belief function and developed
the theory into a general framework for modeling epistemic uncertainty [58]. DST allows
beliefs from different sources to be fused with various operators to obtain new beliefs
considering all available evidence [59]. Currently, generating the belief function through
DL has proven to be successful and efficient [60]. These unique characteristics make DST
particularly suitable for information fusion [61,62]. Similar to information fusion, the idea
of our MDA method is to combine evidence from multiple sources.
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3. Preliminaries
3.1. Unsupervised Multi-Source Domain Adaptation

In this research study, the unsupervised MDA problem is investigated. Let Ds =
{Dsi}N

i=1 denote a collection of N available datasets of source domains, and each labeled

source dataset Dsi = {(X(j)
si , y(j)

si )}
nsi
j=1 with nsi samples is sufficient to train a source domain

distribution model. Meanwhile, a target dataset Dt = {X(j)
t }

nt
j=1 with nt samples drawn

from the target domainDt has no labels to support training a reasonable distribution model.
With given Ds ∪ Dt, the general goal of this problem is to train a cross-domain classifier
fθ(x), which has a low target risk εt = Ex∈Dt [ fθ(x) 6= yt].

The domain-specific distribution and classifier alignment architecture in MFSAN [55]
has proceeded to cross-domain classification. Thus, the domain adaptation model involves
the source domain task loss Ls, the domain adaptation loss Ld, and the classifier constraint
loss Lr. As shown in (1), λ and γ are trade-off parameters.

L = Ls + λLd + γLr (1)

3.2. Maximum Mean Discrepancy

Maximum mean discrepancy, inspired by the two-sample test in statistics [63,64], is
the most widely used discrepancy to align the distributions in domain adaptation. In
general, MMD is interpreted as the maximum value (upper bound) of the expectation
difference between two distributions mapped by any function f in a predefined function
field F , which is an arbitrary vector in the unit sphere (i.e., ‖ f ‖ < 1) of the reproducing
Hilbert space:

MMD[F , p, q] := sup
f∈F

(
Ep[ f (x)]− Eq[ f (y)]

)
(2)

In practice, an estimate of the MMD compares the square distance between the empir-
ical kernel mean embeddings as (3). H is the Reproducing Kernel Hilbert Space (RKHS)
endowed with a characteristic kernel k. k means k

(
xs, xt) = 〈φ(xs), φ

(
xt)〉, where 〈·, ·〉 rep-

resents the inner product of vectors and φ(·) denotes some feature map to map the original
samples to the RKHSH.

MMD2[F , Xs, Xt] =

∥∥∥∥∥∥ 1
ns

∑
xi∈Ds

φ(xi)−
1
nt

∑
xj∈Dt

φ
(
xj
)∥∥∥∥∥∥

2

H

(3)

3.3. Basic Concepts of DST

The Basic Probability Assignment Function (BPAF) is the fundamental unit of DST,
which expresses the initial degree of belief in the proposition. Let Θ be a frame of discern-
ment, which specifies the proposition range. The function m : 2Θ → [0, 1] becomes the
BPAF when it satisfies (4). If m(A) > 0, m(A) is also called the belief mass, and A is named
the focal element. {

m(∅) = 0
∑A⊆Θ m(A) = 1

(4)

Dempster’s rule ⊕ is at the core of DST, as it provides algorithmic rules for combining
two pieces of evidence, as shown in (5). Besides, Dempster’s rule is invoked N − 1 times
to combine N sets of evidence.

m1(X)⊕m2(X) =

{
0, X = ∅

1
1−K ∑Ai∩Bj=X m1(Ai)m2

(
Bj
)
, X 6= ∅ (5)
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The definition of conflict factor K, shown in (6), reflects the degree of conflict between
m1 and m2, whereby 1/(1− K) represents the normalization factor. Obviously, Dempster’s
rule tries to fuse shared parts from different sources and ignores conflicting beliefs.

K = ∑
Ai∩Bj=∅

m1(Ai)m2
(

Bj
)

(6)

3.4. Dirichlet Distribution

The Dirichlet distribution is involved in SL, which bridges DL, MDA, and DST. In
the context of multi-class classification, SL converts the outputs (from DL and MDA)
of the neural networks into the concentration parameter of the Dirichlet distribution
and associates it with the belief masses (for DST). Accordingly, DST could combine multi-
source evidence after BPAFs are obtained and output the final decision.

If the probability density function of multivariate continuous random variable θ =
{θ1, θ2, . . . , θk} is (7):

p(θ | α) =
Γ
(

∑k
i=1 αi

)
∏k

i=1 Γ(αi)

k

∏
i=1

θ
αi−1
i (7)

where ∑k
i=1 θi = 1, θi ≥ 0, αi > 0, i = 1, 2, . . . , k, and Γ(·) is the Gamma function.

Then, the random variable θ is said to obey the Dirichlet distribution with concentration
parameter α and denoted as θ ∼ Dir(α).

Dirichlet distribution θ exists on the (k− 1)-dimensional simplex, as shown in Figure 1.

(a) (b) (c)

Figure 1. Visualization of Dirichlet distribution, where θ = {θ1, θ2, θ3} and θ1, θ2, θ3 ≥ 0, θ1 + θ2 +

θ3 = 1. (a) α = (10, 1, 1); (b) α = (1.001, 1.001, 1.001); (c) α = (10, 10, 10). Bright yellow represents
high probability, and dark blue represents low probability. In the multi-classification problem, each
vertex is regarded as a category.

The most important property of the Dirichlet distribution is that it is the conjugate prior
to the multinomial distribution. If θ follows the Dirichlet distribution, its prior probability distri-
bution is p(θ|α) = Dir(θ|α) and posterior probability distribution is p(θ|D, α) = Dir(θ|α + n),
where D is the given simplex and n = (n1, n2, . . . , nk) is the observation count of the multino-
mial distribution. The concentration parameters α = {α1, α2, . . . , αk} of the Dirichlet distribution
as a priori distribution are also called the hyperparameters of the posterior distribution. Hence,
it is convenient to obtain the posterior distribution from the prior distribution.

4. Research Methodology

Following the two-stage alignment framework in MFSAN [55], a novel Multi-source
domain Adaptation Network with Dempster–Shafer evidence theory (MAN-DS) for cross-
domain classification is proposed. MAN-DS aims to train a model based on multi-source
domain labeled samples and adapts to classify target instances with different distribu-
tions. As shown in Figure 2, the MAN-DS framework consists of four key components,
i.e., common feature extractor, domain-specific feature extractor, domain-specific classifier,
and Dempster’s combination. Different source domains are extracted into different feature
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spaces, and then, the distribution alignment of each pair of source and target domains
and the output alignment of every source classifier are imposed. Domain-specific adap-
tation outputs are combined by Dempster’s rule in the end. Besides, the so f tmax layer
of the classifier is replaced with an activation layer (e.g., ReLU).

Figure 2. The overall structure of MAN-DS.

4.1. Common Feature Extractor

The damages of domain shifts cannot be eliminated in SDA, so it is more difficult
to learn a common domain-invariant representation for all domains in MDA. To address this
problem, the easiest way is to train multiple networks to map each source–target domain
pair into a specific feature space. However, this would take too much time and space.
Thus, the feature extractor is divided into two parts. The first part extracts common
features, and the second part extracts domain-specific features (see the next section). In
the first part, a common convolutional neural subnetwork f (·) is used to automatically
map samples in all domains from the original feature space into a common feature space.

4.2. Domain-Specific Feature Extractor

Now, we come to the second part where domain-specific features are extracted by
different extractors. For each pair of source and target domains, a specific subnetwork
hi(·) aims to map f (xsi) and f (xt) into the same domain-specific feature space. The objec-
tive of domain adaptation is to find a domain-invariant representation between domains.
In other words, an hi(·) is desired, which makes the distribution discrepancy between
hi( f (xsi)) and hi( f (xt)) as small as possible. There are many explicit or implicit methods
to achieve this goal. Here, the most widely used MMD is employed to reduce the distribu-
tion discrepancy between domains. The MMD loss is reformulated as:

Lmmd =
1
N

N

∑
i=1

MMD2[F , hi( f (Xsi)), hi( f (Xt))] (8)

4.3. Domain-Specific Classifier

Traditionally, a series of so f tmax classifiers ci(·) is employed to classify the source do-
main samples after extracting domain-specific invariant features, respectively.
However, the use of the exponent in the so f tmax function leads to the probability of the pre-
dicted category being inflated. It was replaced with an activation function (e.g., RELU)
to ensure that the network outputs non-negative values in this research study. The multi-
classification problem is a multinomial distribution fitting problem. As the conjugate prior,
the Dirichlet distribution is convenient to obtain the posterior distribution from the prior dis-
tribution.
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Subjective logic [31] defines a theoretical framework for obtaining the probabilities
of different classes and the overall uncertainty of the multi-classification problem based
on the evidence collected from the data. SL provides an additional mass function, which
allows the model to distinguish between a lack of evidence. In our model, SL provides
the degree of overall uncertainty of each source, which is important for final decisions
to some extent.

For the K-classification problem, the nonnegative-activated output e = (e1, e2, . . . , ek)
of the last fully connected layer of the classifier refers to evidence and is closely related
to the concentration parameters α = (α1, α2, . . . , α + k) of the Dirichlet distribution, as shown
in the following:

αk = ek + 1, k = 1, 2, . . . , K (9)

With subjective logic, for each pair of the source–target domain, the probability b(i)k
for the kth category and the overall uncertainty u(i) are calculated by:

b(i)k =
e(i)k

S(i)
=

α
(i)
k − 1

S(i)

u(i) =
K

S(i)

(10)

where S(i) = ∑K
k=1(e

(i)
k + 1) = ∑K

k=1(α
(i)
k ) is the Dirichlet strength. Obviously, u(i) +

∑K
k=1 b(i)k = 1. Correspondingly, the less total evidence observed, the greater the total

uncertainty is. The mean of the corresponding Dirichlet distribution P̂si for the probability

p̂(k)i is computed as p̂(k)i =
α
(i)
i

S(i) .
In addition, Figure 3 demonstrates the process of the outputs of multiple domain-

specific classifiers in detail. The evidence of each source is obtained using neural networks
(Step ¬). According to subjective logic [31] , the obtained evidence parameterizes the Dirich-
let distribution (Step ­) to induce the classification probability and uncertainty (Step ®).
The classification probability and overall uncertainty are inferred by combining the belief
masses of multiple sources based on Dempster’s rule (Step ¯). Dempster’s combining is
discussed in Section 4.4.

Figure 3. The process of combining the outputs of multiple domain-specific classifiers.

Source domain task loss Lcls is calculated here. To adapt to the Dirichlet distribu-
tion [65], the cross-entropy function is formulated as (11).

Lace

(
α(i)
)
=
∫ [ K

∑
k=1
−yij log

(
pjk

)] 1
B
(
αj
) K

∏
k=1

p
α
(i)
jk −1

jk dpj

=
K

∑
k=1

yjk

(
ψ
(

S(i)
)
− ψ

(
α
(i)
jk

)) (11)
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where ψ(·) is the digamma function, the parameter αi of the Dirichlet distribution and form-
ing the multinomial opinions D(pi αi), where pi is the category assignment probabilities
on a simplex, and pjk is the predicted probability of the jth sample for category k.

The above loss function ensures that more evidence is generated for the correct label
of each sample than for other classes, but there is no guarantee that less evidence is
generated for the incorrect label. That is, in MAN-DS, the expected evidence of incorrect
labels shrinks to 0 [66]. To this end, the following KL divergence term is introduced:

KL
[
D
(
pj | α̃j

)
‖D
(
pj | 1

)]
= log

 Γ
(

∑K
k=1 α̃jk

)
Γ(K)∏K

k=1 Γ
(

α̃jk

)


+
K

∑
k=1

(
α̃jk − 1

)[
ψ
(

α̃jk

)
− ψ

(
K

∑
r=1

α̃jr

)] (12)

Therefore, given parameter αj of the Dirichlet distribution for each sample j, the loss is:

L
(

α(i)
)
=

nsi

∑
j=1
L
(
αj
)
=

nsi

∑
j=1

{
Lace

(
αj
)
+ ρKL

[
D
(
pj | α̃j

)
‖D
(
pj | 1

)]}
(13)

where ρ > 0 is a balance factor. In practice, ρ increases slowly from zero to 1 to avoid
paying too much attention to the KL divergence term in the early stage of learning.

That is, the classification loss is formulated as:

Lcls =
N

∑
i
L
(

α(i)
)

(14)

4.4. Dempster’s Combination

With subjective logic, there is an FoD Θ = {1, 2, . . . , K} and K + 1 focal elements
{{1}, {2}, . . . , {K}, Θ} with belief mass {b1, b2, . . . , bk, u} in every source–target domain
pair. To fuse these adaptation outputs from N sources, only call Dempster’s rule (defined
in (5)) N − 1 times as:

m⊕(bk) = m1(bk)⊕m2(bk)⊕, . . . ,⊕mN−1(bk) (15)

In addition, the prediction results of multiple classifiers for the same target sample
should be consistent. Dempster’s combination could help to avoid ambiguity and large
uncertainty on the category boundary, which is demonstrated in Figure 4.

Moreover, the Manhattan distance is used to measure the difference among the classi-
fiers to achieve this goal, as well. Denote e(i) = e(i)1 , e(i)2 , . . . , e(i)k , e(i) = α(i) − 1 = b(i)S(i) as
the final output of the ith source–target domain pair. The loss-of-label Manhattan distance
is formulated as:

Ldist =
1
N

N

∑
i
|e(i) −m⊕(e)| (16)

4.5. Objective Function and Algorithm

The overall objective function of the proposed model is formulated as (17).

arg min
f ,h,c

(Lcls + γLmmd + λLdisc) (17)

In detail, Lcls is minimized to accomplish the source domain task; Lmmd is minimized
to reduce the domain shifts between each source domain and the target domain; Ldisc
is a consistent regular term and minimized to constrain the outputs of domain-specific
classifiers. In addition, γ and λ are trade-off parameters; refer to (1).
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Figure 4. The demonstration the prediction conflict of domain-specific classifiers.
The algorithm of MAN-DS is summarized in Algorithm 1, and it can be trained by

the standard back-propagation.

Algorithm 1 The algorithm of the proposed method

Input: source domain data {Dsi}N
i=1, target domain data Dt, the number of training itera-

tions T, and batch size M;
Output: model parameters;

1: Initialize the parameters of f (·), g(·), hi(·), ci(·);
2: for t = 1, . . . , T do
3: Randomly sample a batch of {(x(j)

si , y(j)
si )}

M
j=1 from Dsi, respectively;

4: Randomly sample a batch of {x(j)
t }M

j=1 from Dt;

5: Extract common features f (x(j)
si ) and f (x(j)

t );

6: Extract domain-specific features hi( f (x(j)
si )) and hi( f (x(j)

t ));

7: Compute Lmmd with hi( f (x(j)
si )) and hi( f (x(j)

t )) by (8);

8: Obtain ci(hi( f (x(j)
si ))) for classification and compute Lcls by (14);

9: Obtain ci(hi( f (x(j)
t ))), and combine them by (5)

10: Compute Ldist by (16);
11: Update parameters by (17).
12: end for

5. Experiment

The effectiveness of our cross-domain classification method was verified by conducting
comprehensive experiments on three well-known benchmarks: ImageCLEF-DA, Office-31,
and Office-Home.

5.1. Data Preparation

ImageCLEF-DA [67] is a benchmark dataset for the ImageCLEF 2014 domain adap-
tation challenge, which is organized by selecting the 12 common categories shared by
the following three public datasets, each considered as a domain: Caltech-256(C), Ima-
geNet ILSVRC 2012(I), and Pascal VOC 2012 (P). There are 50 images in each category and
600 images in each domain. All domain combinations were used, and three transfer tasks
were built: C, I→ P; C,P→ I; I,P→ C.

Office-31 [68] is a benchmark for domain adaptation, comprising 4110 images in 31 classes
collected from three distinct domains: Amazon (A), which contains images downloaded
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from amazon.com, Webcam (W), and DSLR (D), which contains images taken by a web
camera and digital SLR camera with different photographic settings. The images in each
domain are unbalanced. To enable unbiased evaluation, all methods were evaluated on all
three transfer tasks: A, W→ D; A,W→ D; W,D→ A.

Office-Home [69] consists of 15,588 images, larger than Office-31 and ImageCLEF-DA.
It consists of images from 4 different domains: Artistic images (A), Clip Art (C), Product
images (P), and Real-World images (R). For each domain, the dataset contains images of 65 object
categories collected in the office and home settings. All domain combinations were used, and
four transfer tasks were built:: A, P, R→ C; A, P, C→ R; A, R, C→ P; P, R, C→ A.

5.2. Compared Method

There is a small amount of MDA work based on a domain-specific distribution and
classifier alignment architecture. To verify the effectiveness of our MDSAN model, the
Multiple Feature Spaces Adaptation Network (MFSAN) [55] was introduced as the multi-
source baseline. In addition, the proposed method was compared with ResNet [70], Deep
Domain Confusion (DDC) [14], the Deep Adaptation Network (DAN) [71], Deep CORAL
(DCORAL) [72], and Reverse Gradient (RevGrad) [73].

There are several comparative standards for different purposes. (1) Source combine:
all source domains are combined into a traditional single-source vs. target setting; (2) Single
best: the best single source transfer results among the multiple candidate source domains
with SDA methods; (3) Multi-source: the results of MDA methods. The first standard is
to verify whether multiple source domains are beneficial for the target task or whether
the simple combination of source domains will lead to negative transfer. In addition,
the second standard evaluates whether the best SDA method could be further improved
by introducing other source domains. The third standard demonstrates the effectiveness
of the proposed approach.

Furthermore, ablation experiments were performed to verify the effectiveness of DST
for adaptation outputs’ fusion. This variant is denoted as V1, which simply averages
the outputs in the end. In addition, variant V2 does not consider Lmmd, and variant V3
ignores Ldist.

5.3. Implementation Details

All methods were implemented based on the PyTorch framework and deployed and
testified on the same device. For a fair comparison, the same data pre-processing routines
and model architecture were utilized in all experiments. The pre-trained ResNet50 [70]
was employed as the common feature extractor, where the fine-tuning strategy was used
to save time. For all domain-specific feature extractors, the same structure (conv(1× 1),
conv(3× 3), conv(1× 1)) was utilized. At the end of the neural network, the channels were
reduced to 256, like DDC [14]. According to subjective logic, the so f tmax layer was replaced
with so f tplus to activate the outputs and avoid negative values. The optimization method
was mini-batch stochastic gradient descent with a momentum of 0.9. The learning rate was
gradually decreased by ηp = η0

(1+α)β , where p is the training progress linearly changing
from 0 to 1, and η0 = 0.01, α = 10, β = 0.75. This would optimize to promote convergence
and low error on the source domain. As for the hyperparameters, γ = ρ = 100λ was simply
set. They were changed from 0 to 1 by a progressive schedule γp = 2

exp(−θp) − 1, (θ = 10),
instead of fixing them throughout the experiments.

5.4. Experimental Results

MAN-DS was compared with the above-mentioned methods on three datasets, and the
average results of five repeated experiments are reported in Tables 1–3, respectively. The
maximum accuracy in a transfer task is marked in bold.
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Table 1. Performance comparison of classification accuracy (%) on Office-31 dataset.

Standards Method A,W→D A,D→W W,D→A Average

ResNet 99.33 96.50 61.87 85.90
DDC 99.33 95.80 67.33 87.49

Single Best DAN 99.43 97.61 66.70 87.91
DCORAL 99.53 98.20 65.20 87.64
RevGrad 99.27 96.67 68.53 88.16

DAN 99.57 97.50 67.73 88.27
Source

Combine DCORAL 99.33 98.00 67.83 88.39

RevGrad 99.73 97.67 67.77 88.39

MFSAN 99.33 98.67 71.50 89.83
V1 99.79 98.50 67.02 88.44

Multi-Source V2 99.73 98.74 66.02 88.16
V3 99.79 98.86 73.87 90.84

MAN-DS 100.00 99.12 74.16 91.09

Table 2. Performance comparison of classification accuracy (%) on Image-CLEF dataset.

Standards Method C,P→I I,P→C I,C→P Average

ResNet 74.83 91.53 83.90 83.42
DDC 74.37 91.33 85.33 83.68

Single Best DAN 75.10 93.33 86.13 84.85
DCORAL 76.67 93.43 88.33 86.14
RevGrad 75.07 94.00 87.07 85.38

DAN 77.67 93.00 91.70 87.46
Source

Combine DCORAL 77.73 93.20 91.33 87.42

RevGrad 78.00 93.03 91.87 87.63

MFSAN 79.17 94.50 93.33 89.00
V1 77.67 95.50 92.83 88.67

Multi-Source V2 77.16 93.50 91.33 87.33
V3 79.56 94.50 91.87 88.40

MAN-DS 79.00 95.67 93.17 89.28

Table 3. Performance comparison of classification accuracy (%) on Office-Home dataset.

Standards Method C,P,R→A A,P,R→C A,C,R→P A,C,P→R Average

ResNet 65.28 48.54 77.56 74.55 66.48
DDC 64.13 50.22 78.42 75.00 66.94

Single Best DAN 69.07 56.46 79.63 74.65 69.95
DCORAL 66.56 55.15 81.38 76.32 69.85
RevGrad 67.58 55.88 80.32 75.86 69.91

DAN 69.07 59.40 78.41 82.50 72.35
Source

Combine DCORAL 68.24 57.62 79.67 83.24 72.19

RevGrad 67.88 57.22 79.52 82.74 71.84

MFSAN 72.86 62.34 80.32 81.86 74.35
V1 74.32 62.12 82.31 83.13 75.47

Multi-
Source V2 72.86 62.34 80.32 81.86 74.35

V3 74.12 63.56 82.52 82.74 75.74
MAN-DS 74.50 64.44 82.56 83.29 76.20
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6. Discussion
6.1. Result Observations

From these experimental results, insightful observations are given:

• The results of Source combine were better than Single best, which shows that the knowl-
edge of the multi-source domain is useful to the target task. That is, the multi-source
domains have transferability. Combining sources into a single source is helpful in most
domain adaptation methods. The performance improvement might be attributed
to the data enrichment.

• MAN-DS outperformed all compared methods on most transfer tasks in all three
datasets, especially in the Office-Home dataset. The results indicate that it is beneficial
to learn the domain-invariant representation and align the distribution in each pair
of the source and target domain with considering domain-specific category boundaries.
Besides, DST alleviates the ambiguity and uncertainty of the prediction and promotes
classification accuracy successfully.

• Comparing MAN-DS with the variant V1, the only difference is that the proposed
method employs DST to fuse the adaptation outputs, while V1 averages them sim-
ply. Although DST was applied in Ldist to align domain-specific boundaries, the
proposed method still has an improvement over V1. Thus, DST is excellent to tackle
the ambiguity and uncertainty of the prediction.

• Comparing MAN-DS with the variant V2, the only difference is that V2 does not
consider Lmmd. The experimental results show that MMD helps domain adaptation
very little. Meanwhile, the proposed Ldist and Dempster’s combination rule could
also help to align the distribution to some extent.

• Comparing MAN-DS with the variant V3, the only difference is that V3 ignores Ldist.
There is little difference in the experimental results, which indicates that DST is
powerful to handle the prediction conflicts on the category boundaries.

6.2. Ablation Experiment

Ablation experiments were implemented by conducting V1, V2, and V3, as shown
in Tables 1–3. The encouraging results show that every component of MAN-DS is positive
to improve performance.

To further verify the effectiveness of the DST fusion strategy, supplementary experiments
were carried out where Si is the isth domain-specific classifier, as reported in Table 4. The
maximum accuracy in a transfer task is marked in bold.

Table 4. Classification accuracy (%) with and without DST fusion strategy on Office-Home dataset.

Method C,P,R→A A,P,R→C A,C,R→P A,C,P→R

S1 72.56 59.48 80.33 80.59
S2 65.58 61.54 75.54 75.78
S3 71.39 60.56 79.87 82.36

DST 74.50 64.44 82.56 83.29

6.3. Feature Visualization

Feature visualization is demonstrated in Figure 5. The category boundaries of the
domain-specific classifier on the task D,W→A learned by MAN-DS and MFSAN are
visualized by using t-SNE embeddings. It is clear that MAN-DS is more effective in dealing
with prediction conflicts, in which DST is effective.
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(a) MAN-DS (b) MFSAN

Figure 5. Domain-specific classifier feature visualization.

6.4. Parameter Sensitivity

Parameter sensitivity was tested by sampling the trade-off parameter (where γ = ρ =
100λ for simplicity) values in {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2}. To study the parameters’
sensitivity, the experiments were implemented on task D,W→A and A,C→R, and the
results are shown in Figure 6. As observed, the accuracy increases with the increase of γ
and reaches a peak at γ = 1, then decreases. The proposed method MAN-DS can keep a rel-
atively stable result in the range of (0.1, 2) of γ, which is higher than the baseline. Generally,
MAN-DS is not sensitive to changes in the parameters in a certain range. Hence, setting
γ to (0.1, 2) is recommended to achieve better performance. In the reported experiment,
the parameters {γ, ρ, λ} were set to {1, 1, 0.01}, respectively.

Figure 6. Accuracy with respect to γ = ρ = 100λ.
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6.5. Computational Complexity

The FLoating point OPerations (FLOPs) were used to measure the operation times
of forward propagation in neural network; the smaller the FLOPs, the faster the computa-
tion speed is. In addition, the smaller the number of PARAMeters (PARAMs) in the neural
network, the smaller the size of the model is. Table 5 shows the FLOPs and PARAMs
of MAN-DS, MFSAN, and ResNet50. Compared with ResNet50, the small increase of com-
putational complexity mainly comes from the component of domain-specific feature extrac-
tors and classifiers. Compared with the baseline MFSAN, MAN-DS improves the accuracy
without increasing the computational complexity.

Table 5. FLOPs and PARAMs.

Method FLOPs PARAMs

MAN-DS 4.23 G 25.88 M
MFSAN 4.23 G 25.88 M

ResNet50 4.12 G 25.56 M

Moreover, Dempster’s combination does not increase the computational complexity
of the algorithm. For the K-classification task, MAN-DS always obtains K + 1 instead of 2K

focal elements, which is {1, 2, . . . , K, Θ}. That is, the computational complexity caused by
Dempster’s combination is not O(2n), but O(n).

7. Conclusions

The core of MDA is making full use of available source data collected from sev-
eral different, but related domains. However, it becomes difficult and challenging due
to the multiple domain shifts. Following the domain-specific alignment architecture, this
study proposed a novel multi-source domain adaptation network combing Dempster–
Shafer evidence theory for cross-domain image classification to reduce multiple domain
shifts and enhance transfer accuracy. In addition, SL and the Dirichlet distribution were
employed to bridge MDA with DST.

To evaluate the effectiveness of the proposed method, three popular benchmark
datasets were used and ten transfer tasks were devised to train and validate MAN-DS.
Extensive experiments demonstrated that MAN-DS outperforms its competitors in cross-
domain image classification. The insightful conclusions are as follows:

• MAN-DS achieved good accuracy in all ten transfer tasks of three datasets.
On the Office-Home dataset, MAN-DS even improved the average adaptation ac-
curacy to 76.20%, which is about 2% higher than the best baseline.

• Feature visualization shows that MAN-DS could alleviate boundary conflicts to some
extent, due to effective DST.

• MAN-DS is not sensitive to changes in parameters in a certain range γ ∈ (0.1, 2), generally.
• MAN-DS improved accuracy without increasing computational complexity. Compared

with the baseline MFSAN, the FLOPs and PARAMs of MAN-DS were 4.23 G and 25.88 M,
which are close to the 4.12 G and 25.56 M of ResNet. Especially, MAN-DS reduced
the computational overhead of the outputs’ combination from O(2n) to O(n).

• Ablation experiments indicated that every component of MAN-DS is positive to im-
prove performance.

• The encouraging results show that SL could effectively bridge MDA with DST.
• This research study empirically demonstrates DST could reduce the category boundary

ambiguity, so as to mitigate the negative impact of multiple domain shifts.

In this research study, the original and unimproved Dempster’s rule was used. In the
future, the combination rules will be optimized based on the improved information entropy
method to take more evidence information into account. Besides, more effective MDA and
DST bridging methods will be investigated.
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