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Abstract: The embarrassingly parallel nature of the Bisection Algorithm makes it easy and efficient
to program on a parallel computer, but with an expensive time cost when all symmetric tridiagonal
eigenvalues are wanted. In addition, few methods can calculate a single eigenvalue in parallel
for now, especially in a specific order. This paper solves the issue with a new approach that can
parallelize the Bisection iteration. Some pseudocodes and numerical results are presented. It shows
our algorithm reduces the time cost by more than 35–70% compared to the Bisection algorithm while
maintaining its accuracy and flexibility.
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1. Introduction

The symmetric tridiagonal matrices often arise as primary data in many computational
quantum physical [1,2], mathematical [3–5], dynamical [6,7], computational quantum chem-
ical [8,9], signal processing [10], or even medical [11] problems and hence are important.
The current software reduces the generalized and the standard symmetric eigenproblems
to a symmetric tridiagonal eigenproblem as a common practice [10,12,13]. What is more
interesting is that the opposite path is also productive. Marques [14] computes the SVD of
a bidiagonal matrix through the eigenpairs of an associated symmetric tridiagonal matrix.
In this paper, we focus on symmetric eigenvalue solving.

People desire a parallel algorithm of good performance and flexibility, especially today
as CPU cores and massively parallel technology have skyrocketed. We noticed that in
many application scenes of eigenvalue computation, for example, in dynamics, it is often
necessary to solve only the first few orders of eigenvalues of a large matrix. The desire for
the largest eigenvalue is also common in practice [15–17]. However, the current QR, MRRR
(Multiple Relatively Robust Representations), DC (Divided and Conquer), and Bisection
algorithms do not seem to perform sufficient parallel operations if the number of CPU
cores (say, 40) is significantly larger than the number of eigenvalues (say, 1) to be solved.

The most popular algorithm at present for a symmetric eigenproblem is the QR algo-
rithm because of its stability and computational efficiency [18–20]. When only eigenvalues
are desired, all square roots can be eliminated in the QR transformation. This was first
observed by Ortega and Kaiser in 1963 [21] and a fast, stable algorithm was developed
by Pal, Walker, and Kahan (PWK) in 1969 [22]. However, the parallelization of the QR
algorithm is a problem, in this case, requiring more than a straightforward transcription
of serial code to parallel code. Many researchers have made attempts, such as blocking
the given matrix [23], look-ahead strategies [24], load-balancing schemes [25], pipelining
of iterations [20,26], or dimensional analysis [27]. However, few seem adequate for the
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symmetric tridiagonal matrices because most of those attempts are for dense matrices. One
more essential trouble is that the QR algorithm is unsuitable for computing one or several
selected eigenvalues. The MRRR algorithm [28] has a similar disadvantage as it is based
on the DQDS algorithm [29,30] to compute the eigenvalues. In detail, both QR and DQDS
algorithms use a designed shift, for example, Wilkinson’s shift, to obtain a high-order
asymptotic convergence rate. As a consequence, the order of eigenvalue convergence is
not manageable.

The DC algorithm [31] is easily parallelizable and has developed well in recent
years [32,33]. However, efficient parallel implementations are not straightforward to
program, and the decision to switch from task to data parallelism depends on the charac-
teristics of the underlying machine. Its space complexity is also an obvious shortcoming.
In fact, even the “dstedc” routine corresponding to the DC algorithm in LAPACK calls
“dsterf” when only eigenvalues are computed, i.e., the PWK version of the QR algorithm.
The DC algorithm also does not support the computation of eigenvalues of a specific order
or within a particular interval, let alone parallelization.

The Bisection method [34] calculates eigenvalues in any order or interval with a
variable precision, which is suitable and handy for the mixed precision calculation [35].
Its embarrassingly parallel nature and high accuracy make it implemented in current
software libraries for distributed memory computers. In addition, the Bisection method
has a parallelizing efficiency of 1 (unless the number of computational cores is larger than
the matrix dimension, which is rare) and little communication cost, which makes it highly
advantageous in massively parallel computations. However, parallel Bisection can only be
implemented if the number of unsolved eigenvalues is no less than the number of CPU
cores. In addition, the computational efficiency of the Bisection method disconcerts.

We briefly summarize here: QR, DC, and MRRR algorithms are only available for
obtaining all the eigenvalues. The Bisection method has excellent accuracy and flexibility
but with limited efficiency when computing all the eigenvalues. All existing methods fail
to calculate a single eigenvalue in parallel. Therefore, this paper has two goals: (1) to give a
new Bisection method that can perform parallel operations with any number of threads
when computing one specific eigenvalue; (2) to improve the efficiency of the Bisection
method when calculating a major set of or all eigenvalues.

Section 2 presents some theorems, lemmas, corollaries, and equations. They are
demonstrated for the design of Algorithms 4 and 5 and the accuracy analyses in Section 5.
The big view of our method for one specific eigenvalue is dividing the matrix for parallel
computing and merging them for the final result, with an insignificant time cost in the
merging process. For the Bisection method to retain its ability to compute eigenvalues of
any order, our strategy is to make the underlying iteration loop parallelizable. Instead of
counting Sturm sequences iteratively, Algorithm 4 (provided in Section 3) distributes the
task into the submatrices, which can be fulfilled independently. To merge these submatrices,
in Section 2, we give a special determinant Formula (2) (with our new proof inspired by
Maxwell’s reciprocity theorem), Corollary 1, and Theorem 3.

We give Algorithm 5 in Section 4 as a modified Bisection method for all the eigenvalues.
To reduce the number of iterations, the key is called a faster root-finder, which has less than
20% time cost of the traditional Bisection iteration process. However, it can only work when
an isolating interval, i.e., an interval within only one eigenvalue, is obtained. Theorem 3
provides an excellent approach to such an interval, and the calculation is executed by
dividing and merging. To accelerate convergence, we prove Theorem 4 in Section 4 and
utilize the deflation property in Algorithm 5.

In Section 5, we analyze the accuracy and present the numerical experiments. Section 5.2
shows the accuracy results and Section 5.3 shows the efficiency result. In Section 5.3,
diversified computing tasks are discussed and the feasibility is analyzed. The results show
that the new Divisional Bisection method can substantially improve the efficiency of the
Bisection algorithm while maintaining its accuracy and flexibility.
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2. Dividing the Matrix

The sequential principal minors of an ST (Symmetric Tridiagonal) matrix form a Sturm
Chain, which is the key to the Bisection algorithm. We denote the ith sequential principal
minor of a matrix A by A1:i, which is similar to the conventions in Matlab. The submatrix
of A in rows i through j will be denoted by Ai:j; A is determinant by det(A). We denote the
characteristic polynomial det(A− uI) by C1:n, C1:n(u), or CA

1:n(u) if necessary.
Let A be an n× n unreduced ST matrix (all ST matrices discussed in this paper are

unreduced), λi be its ith eigenvalue, vi be its ith eigenvector and vij be the jth component
of vi. Then, we have the iterative formulae of the ST determinants from [34] as

q0 = 1, q1 = a1 − u, qi = ai − u− b2
i−1/qi−1,

p0 = 1, p1 = an − u, pi = an+1−i − u− b2
n+1−i/pi−1,

(1)

where qi = Ci/Ci−1 and pi = Cn−i+1/Cn−i+2.
The Bisection method counts Sturm sequences by q or p. The number of eigenvalues

that are less than u is equal to the number of negative q values, while the number of λi > u
is equal to the non-negative q’s. The neighboring Ci and qi have the following theorem
from [12].

Theorem 1 (Root Separation Theorem).
Ci has only simple roots, which are separated strictly by the roots of Ci−1, for i = 2, . . . , n.

From Theorem 1, we have the following corollary.

Corollary 1. The signs of Ci−1 and Ci in the intervals separated by their roots can be expressed as

+s1 − s2 + s3 − . . .
+λ1 − λ2 + λ3 − λ4 + . . .

where sk(k = 1, . . . , i− 1) denotes the kth root of Ci − 1 and λk(k = 1, . . . , i) denotes the kth root
of Ci.

Proof. As C(u) = ∏n
i=1(λi − u), we have

Sign(C(u)) =

{
1, u→ −∞
(−1)n. u→ +∞

Considering that Ci has only simple roots (Theorem 1), the result shows.

We stress Theorem 1 and Corollary 1 here because they are not only the basis for the
following Theorems 2 and 3 but also support our subsequent algorithms and analyses.
When merging the submatrices, we use Corollary 1 and the signs of Ci values to decide
the global ζ in Algorithm 4. The accuracy of original iterations in Algorithm 5 is analyzed
through Theorem 1 and Corollary 1, which guarantee that the original results can be checked
and fixed with an acceptable iteration number (this process is carried by Algorithm 7). See
more details in Sections 3 and 5.

Recall that our task is to count Sturm sequences in submatrices; then, it is convenient
to calculate q values and p values from both ends of A. A specific determinant formula
shows the connection between det(A) and det(A1:k) and det(Ak+1:n) or qi and pi, which is
from [36]. Here, we present a new proof inspired by Maxwell’s reciprocity theorem.

According to Maxwell’s reciprocity theorem, the output at j caused by input at any
point i in a linear system is equal to the output at i caused by equal input at j. If we consider
the ST matrix A to be a dynamical system, the following lemma holds.
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Lemma 1. For an invertible symmetry matrix A, if Ax = ei and Ay = ej then xj = yi, where x
and y are both column vectors.

Proof. It can be easily established by symmetry.

Theorem 2 (Determinant Formula).
Let a be the diagonal of an unreduced ST matrix A and b be the sub-diagonal, we have

C1:n = det(A− uI)

= −b2
k−1C1:k−2Ck+1:n + (ak − u)C1:k−1Ck+1:n − b2

kC1:k−1Ck+2:n

= C1:k−1Ck+1:n(C1:k/C1:k−1 − b2
kCk+2:n/Ck+1:n)

= C1:k−1Ck+1:n(Ck:n/Ck+1:n − b2
k−1C1:k−2/C1:k−1).

(2)

Proof. Let:

x = [1, C1:1/− b1, . . . , C1:n−1/(
n−1

∏
t=1
−bt)]

T ;

y = [C2:n/(
n−1

∏
t=1
−bt), . . . , Cn:n/− bn−1, 1]T ,

(3)

substitute them into (1), then we have

(A− uI)x = [0, . . . , 0, F1]
T ;

(A− uI)y = [F1, 0, . . . , 0]T ;

F1 = C1:n/ ∏n−1
i=1 (−bi)

(4)

when uniting (1) and (3).
Construct a vector z so that

z1:k = x1:k;

zk:n = η × yk:n;

(A− uI)z = [0, . . . , F2, . . . , 0]T ,

(5)

where η is a nonzero scalar.
As zk = xk, we have

η =
C1:k−1/(∏k−1

t=1 −bt)

Ck+1:n/(∏n−1
t=k −bt)

.

According to Lemma 1,
xk
F1

=
zn

F2
. (6)

Unite (4)–(6); then, the result shows.

Remark 1. (2) can also be expressed as

C1:n = C1:k−1Ck+1:n(qk − b2
k /pn−k).

In addition, although u should not be an eigenvalue of A in Lemma 1, (2) also holds for
all λi valuesof A. To prove this, we need to check the existence of x and y first, as A− λi I is a
singular matrix. We have F1 = 0 in (4), which means x and y are both eigenvectors. Consider the
eigenvectors-from-eigenvalues formula (see [37])

v2
ij

n

∏
k=1;k 6=i

(λi − λk) =
n−1

∏
k=1

(λi − λk(A	j)), (7)
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where A	j denotes the n− 1× n− 1 minor formed from A by deleting the jth row and column of
A. As A is symmetric and tridiagonal, (7) can be expressed as

v2
ij

n

∏
k=1;k 6=i

(λk − λi) = C1:j−1(λi)Cj+1:n(λi). (8)

Let i = n, from (8) we have

v2
nj

n−1

∏
k=1

(λk − λn) = C1:n−1(λn).

Consider Theorem 1; then, it shows that the eigenvector of an ST matrix has no zero components
at both ends. So, existence is guaranteed. Then, the result can be easily verified by the continuous
prolongation theorem.

Remark 2. The determinant formula is introduced in [36] (page 518, Equation (5)), which gives
a form of a general tridiagonal matrix, not having to be symmetric. (2) is the specific form for
symmetry. Nevertheless, we insist on presenting this different proof here because some intermediate
products of the derivation process consist of the basis of Theorem 4, which is one key technology to
accelerate Algorithm 5. See more details in Section 4.

Theorem 3 (Interlacing Property). If C1:k−1 and Ck:n do not have a common root, the roots of
C1:k−1Ck:n (i.e., the eigenvalues of A	k) separate the eigenvalues of A strictly; if not, the common
roots are some eigenvalues of A and the others still separate strictly. In addition, Corollary 1 also
holds for C1:k−1Ck:n and C1:n.

Proof. According to [12,38], we have

λ1 ≤ s1 ≤ λ2 ≤ s2 ≤ · · · ≤ sn−1 ≤ λn (9)

where si(i = 1, . . . , n− 1) denotes the ith eigenvalue of A	k.
If C1:k−1 and Ck:n have a common root, it can be easily seen from (2) that C1:n = 0; if

not, we have C1:n 6= 0 similarly.
So, the equal signs hold if and only if C1:k−1 and Ck:n have a common root.

With Theorem 2 and 3, we now divide the unreduced ST matrix A into A1:k−1 and
Ak+1:n, and we count the negative Sturm sequences of a tentative eigenvalue u indepen-
dently. In A1:k−1, ζ1 is the number of negative qi values (i = 1, . . . , k − 1) and ζ2 is the
negative pi values (i = 1, . . . , n− k) in Ak+1:n. Let ζ = ζ1 + ζ2; apparently, it is equal to the
number of eigenvalues of A	k that are less than u. Thus, the sign of C1:k−1Ck:n is (−1)ζ .
According to Theorem 3, this also means u ∈ (λζ , λζ+2). Theorem 2 shows the connection
between the sign of C1:k−1Ck:n and the sign of C1:n. Thus, the final ζ, which is either equal
to the previous ζ1 + ζ2 or ζ1 + ζ2 + 1, can be concluded with a cheap merging calculation.
See more details in the next section.

3. Computing One ST Eigenvalue

We now consider more details of the Divisional Bisection method. First, we introduce
Algorithm 1 for computing qi, ζ and C1:n in an unreduced n× n ST matrix A according
to [34], and the simplified variant Algorithm 2, for the determinant only.
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Algorithm 1: Bisection Iteration

Input : a, b2, n
1 // a is the diagonal of A, b is the sub-diagonal and n is the size

Output : ζ, q, C1:n
2 // q = q1:n

3 q← a1, C1:n ← 1;
4 if q < 0 then
5 ζ = 1;
6 else
7 ζ = 0;
8 end
9 for each k ∈ [1 : n] do

10 if q == 0 then
11 q← ε // ε is a positive small value
12 end
13 q← ak − b2

k−1/q;
14 C1:n ← qC1:n;
15 if q < 0 then
16 ζ ← ζ + 1;
17 end
18 end

Algorithm 2: Computing ST Determinant

Input : a, b2, n
Output : C1:n−1, C1:n

1 q← a1, C1:n−1 ← 1;
2 for each k ∈ [1 : n− 1] do
3 if q == 0 then
4 q← ε // ε is a positive small value
5 end
6 q← ak − b2

k−1/q;
7 C1:n−1 ← qC1:n−1;
8 end
9 q← an − b2

n−1/q;
10 C1:n ← qC1:n−1.

If u ∈ (λζ , λζ+2) as discussed in Section 2, we have

sign(C1:n) =


(−1)ζ , qk > b2

k /pn−k;
(−1)ζ+1, qk < b2

k /pn−k;
0, qk = b2

k /pn−k,

(10)

according to (2) and Corollary 1. Then, we have

ζ =

{
ζ, qk > b2

k /pn−k;
ζ + 1, qk < b2

k /pn−k,
(11)

and u = λζ+1 when qk = b2
k /pn−k. When qk pn−k = 0, which means (10) cannot be

calculated, we directly obtain ζ = ζ according to Theorem 3. Similarly, we have u = λζ+1
if qk and pn−k are both zeros.

In the lower level, A1:k−1 is divided into A1:t−1 and At+1:k−1. Independently, we
calculate
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1. ζ1:t−1, qt(A1:k−1), and C1:t−1 in A1:t−1 by Algorithm 1;
2. ζt+1:k−1, pk−t−1(A1:k−1) and Ct+1:k−1 in At+1:k−1 by Algorithm 1;
3. Ct+2:k−2 and Ct+1:k−2 in At+1:k−2 by Algorithm 2.

And the same in Ak+1:n.
By substituting these outputs into (2), (10) and (11),

1. ζ1:k−1, ζk+1:n;
2. C1:k−1, qk;
3. Ck+1:n, pn−k.

These are determined, and then, we have ζ1:n finally, completing one Bisection iteration.
The new Divisional Bisection iteration method is given by Algorithm 3.

Algorithm 3: Divisional Bisection Iteration

Input : a, b2, n, p
1 // u is a tentative eigenvalue, p is the number of dividing parts

Output : ζ

2 distribute a, b2 into m + w parts evenly such that m + w = p;
3 // so that each pair of ai and b2

i forms a submatrix of A
4 then get a1, . . . , am, am+1, . . . , am+w, b2

1, . . . , b2
m, b2

m+1, . . . , b2
m+w;

5 foreach i ∈ [2 : m]&&i = m + w do
6 reverse ai, b2

i ;
7 end
8 foreach i ∈ [1 : m + w] do
9 call Algorithm 1⇐ ai,b2

i ,Ni // Ni is the length of ai
10 then get ζi, qi, Ci;
11 end
12 foreach i ∈ [2 : m] ∩ [m + 1 : m + w− 1] do
13 call Algorithm 2⇐ ai(2 : end),b2

i (2 : end),Ni − 1;
14 // eliminate 1st component
15 then get C2:Ni , C2:Ni−1;
16 end
17 s← 0, Cl ← C1, ql ← q1, i← 2;
18 while i ≤ m do
19 substitute Cl , ql , Ci, qi, C2:Ni , C2:Ni−1 into (2);
20 then get Cl , ql ;
21 // Cl, ql is substituted by those of the merged matrix
22 s← s or s← s + 1 according to (10) and (11), i← i + 1;
23 end
24 Cr ← Cm+w, qr ← qm+w, i← w + m− 1;
25 while i ≥ m + 1 do
26 substitute Cr, qr, Ci, qi, C2:Ni , C2:Ni−1 into (2);
27 then get Cr, qr;
28 // Cr, qr is substituted by those of the merged matrix
29 s← s or s← s + 1 according to (10) and (11), i← i− 1;
30 end
31 substitute Cl , ql , Cr, qr into (2);
32 s← s or s← s + 1 according to (10) and (11);
33 ζ ← s + ∑ ζi.

Algorithm 3 calls Algorithm 2 to compute p− 2 extra determinants of the submatrices
compared to the traditional method. So, the parallel efficiency of Algorithm 3 is p/(2p− 2),
given that the cost of the merging part is negligible compared to the cost of Algorithms 1
and 2 called during computation. It should be noted that counting non-negative q values
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instead is more efficient if a high-order eigenvalue is desired. By replacing the iterative
process, we give the new Divisional Bisection Algorithm 4 for computing one ST eigenvalue.

Algorithm 4: Computing One ST Eigenvalue
Input : a, b, n, p, r, tol

1 // compute the rth eigenvalue with the expected precision tol
Output : λr

2 set the original interval [x, y], b← b2;
3 // x, y = ∓||A||∞, for example
4 while |y− x| ≥ 2tol do
5 u← (y− x)/2;
6 call Algorithm 3⇐ a− u, b, n, p
7 if any ζi ≥ r when executing Algorithm 3 then
8 stop Algorithm 3;
9 ζ ← r;

10 else
11 complete Algorithm 3;
12 then get ζ

13 end
14 if ζ ≥ r then
15 y← u;
16 else
17 x ← u;
18 end
19 end
20 λr ← (y− x)/2.

In addition, it can be predicted that a considerable number of Divisional Bisection
iterations will end early, especially for the lower or higher order eigenvalues. To find the
smallest eigenvalue of a matrix, for example, we can break the iteration in advance if any
ζi ≥ 1, which means the final number will inevitably exceed 1 according to Theorem 3. This
strategy can save substantial time in the early computation and more if a larger p is available.

4. Computing All ST Eigenvalues

The Bisection algorithm has many practical advantages but earns the disrepute of
being slow when computing all ST eigenvalues. A significant contributor is the excessive
number of iterations. The Bisection algorithm permits an eigenvalue to be computed with
53 iterations in IEEE double-precision arithmetic. When an eigenvalue is isolated in an
interval, we have some faster root-finders such as Laguerre’s method [12,39], the Zeroin
scheme [40,41] and the fzero scheme [42] (‘fzero’ function in Matlab). These competitors
can finish the work in less than 10 iterations but seem to stumble when eigenvalues cluster.
Another trouble is that so much more has to be completed in the inner loop [39,43] to obtain
isolating intervals, costing embarrassingly more time.

Our strategy is to obtain isolating intervals by the eigenvalues of A	k. These eigen-
values can be obtained by QR or a Bisection algorithm on each submatrix. The clustering
eigenvalues, which can be challenging problems otherwise, accelerate the calculation in our
method according to Theorem 3. The submatrix under continuing division (if necessary)
has no eigenvalues clustered eventually. Then, we can compute all the eigenvalues by
dividing and merging. For convenience, we choose the ‘fzero’ function in Matlab as the
root-finder, which requires an average of 7.5 iterations per root. Our numerical experience
supports this conclusion.

It has been found in [31,38] that the deflation properties and techniques of the DC
algorithm allow it to converge quickly when the eigenvalues of submatrices cluster or the
eigenvectors have zero ends in finite precision arithmetic. These deflation cases are quite
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common in ST matrices and should be utilized in the Divisional Bisection algorithm. Let
tol be the expected precision and si(i = 1, . . . , n− 1) be the eigenvalues of A	k+1, which
can be divided into T1 and T2. From [38] we have

A = QDQT

=

0 Q1 0
1 0 0
0 0 Q2

 ak+1 bklT
k bk+1rT

1
bklk D1 0

bk+1r1 0 D2

 0 1 0
QT

1 0 0
0 0 QT

2

 (12)

where

• T1 = Q1D1QT
1 and T2 = Q2D2QT

2 are the eigendecomposition of T1 and T2;
• lT

k is the last row of Q1;
• rT

1 is the first row of Q2;
• the diagonals of D1 and D2 are arranged in ascending order.

Now, consider how deflation occurs during the calculation and how our algorithm
can perceive it. In (12), the close eigenvalues of D1 and D2 can be easily detected, since we
do the calculation by dividing and merging. However, the connection between zero ends
of bklk or bk+1r1 and the intermediate results of Bisection iterations are not easily accessible.
Therefore, we give Theorem 4, especially Theorem 4b, to show the deflation properties
and to suggest an approach to detecting. First, we introduce the following Lemma 2 as an
auxiliary for our proof of Theorem 4.

Lemma 2. Let A1 and A2 be n× n real symmetric matrices with eigenvalues λA1
1 , . . . , λA1

n and
λA2

1 , . . . , λA2
n , respectively. Then

max
i
|λA1

i − λA2
i | ≤ ‖A1 − A2‖2.

Proof. See [44].

Theorem 4 (Deflation Properties).

a. If |si+1 − si| ≤ tol where si and s are arithmetic approximations of si and si+1, then si or si+1
is an arithmetic approximation of λi+1;

b. Let u be an arithmetic approximation to si which is one of the sT1
j ’s and si = sT1

h (h ∈ [1, k]). If

(1) (CT1
1→k−1(u)/CT1

1→k(u))(si − u) < 0;

(2) |bk|
√(

1/g−
∣∣∣CT1

1→k−1(u)/CT1
1→k(u)

∣∣∣) <
√

tol,

where g = min
j 6=t
|sT1

j − u|, then u is an arithmetic approximate eigenvalue of A, and the similar

holds in T2.

Proof.

a. It can be easily seen from Theorem 3.
b. Without loss of generality, we assume si is an isolated eigenvalue of A	k+1 because if

not, we can turn to Theorem 4a.

From (3) and (4), it shows 1/qT1
k (u) = (CT1

1→k−1(u)/CT1
1→k(u)) is the last component on

the diagonal of (T1 − uI)−1. Then, we have

1/qT1
k (u) = eT

k (T1 − uI)−1ek,

⇒ 1/qT1
k (u) = eT

k Q(D1 − uI)−1QTek,

⇒ 1/qT1
k (u) =

k

∑
j=1

v2
jk

1

sT1
j − u

(13)
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where vj is the jth eigenvector of T1.

As CT1
1→k(u) is the determinant of T1 − uI, qT1

k should be close to zero when u → si.
However, in IEEE double precision arithmetic, this is not true if v2

ik is also small when
compared to si − u. (13) can be expressed as

1/qT1
k (u) =

v2
ik

si − u
+

k

∑
j=1 6=i

v2
jk

1
sj − u

= v2
ik/(si − u) + Ri, (14)

where apparently (recall that g = minj 6=t |sT1
j − u|)

|Ri| ∈
[

0,
1
g

)
. (15)

Given that u is the previous computation result, we have |si − u| ≤ tol. When
qT1

k (u)(si − u) > 0, (14) and (15) can be united as∣∣∣v2
ik/(si − u)

∣∣∣ < 1/g +
∣∣∣1/qT1

k

∣∣∣,
⇒ |vik| <

√
(1/qT1

k + 1/g)tol.
(16)

In addition, we have

|vik| <
√
(1/qT1

k − 1/g)tol (17)

similarly when qT1
k (u)(si − u) < 0.

The condition of Theorem 4b shows |bkvik| < tol according to (17). By taking a review
of (12) and Lemma 2, the proof is completed.

Theorem 4 is satisfying because qi values of T1 and pi values of T2 happen to be
accompanying products of Algorithm 2, which can be utilized as the basic iteration of the
‘fzero’ scheme. The condition of Theorem 4b is sufficient but not necessary, as there are many
other possibilities that make |vik| < tol, even when (CT1

1→k−1(u)/CT1
1→k(u))(si − u) ≥ 0. A

trivial plan is to calculate and check vik once one si is solved and the accompanying |1/qT1
i |

is suspiciously small. Although this idea already saves a large number of unnecessary
computations compared to the DC algorithm, we are still concerned that it is too expensive
to call the Inverse Iteration algorithm here.

Our scheme is to mark those suspicious small |1/qT1
i | values by a rough discriminant,

for example |1/qT1
i | < 1, then to substitute the corresponding s̄i ± tol values into Algo-

rithm 1 to check if deflation is available. We have found in our numerical experiments that
it is difficult to cover all the deflation situations by this method, even if we set the discrimi-
nant quite loosely. Even filtrating directly by |vik|, as in the DC algorithm, would still leave
some out. We applied these methods to 20 randomly generated 2001× 2001 matrices for
computation, where T1 and T2 are both 1000× 1000 matrices. The averages were calculated
and are shown in Table 1. We collected the hit rate of the DC algorithm by checking how
many s̄i values, which had negligible corresponding vik values, were really close to λi val-
ues. In Table 1, the plan 1 refers to “rough discriminant + Inverse Iteration algorithm”, the
plan 2 refer to “rough discriminant + Algorithm 1”, and the hit rates of them were collected
similarly. It can be seen that the hit rate and accuracy of our method are acceptable or at
least no worse than the DC algorithm. The errors in Table 1 refer to the difference between
s̄i values selected during deflations and λ̄i values obtained by the Bisection method. The
data were collected on an Intel Core i5-4590 3.3 GHz CPU and 16 GB RAM machine. All
codes were written in Matlab2017b and executed in IEEE double precision. The machine
precision is eps ≈ 2.2× 10−16.
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Table 1. Comparison of deflation detecting methods (average of 20 2001× 2001 matrices).

Methods Time Cost
(s) Hit Rate Average Error

(×10−16)
Maximum Error

(×10−16)

DC algorithm / 58.5 1.39 4.44
plan 1 0.30 62.1 1.32 4.44
plan 2 0.19 62.1 0.91 1.00

We give the Divisional Bisection method for all eigenvalues by Algorithm 5 and the
following subroutine Algorithm 6.

Algorithm 5: Computing all ST Eigenvalues
Input : a, b, n, p, tol
Output : ~d

1 // all eigenvalues lie in the vector ~d in ascending order

2 distribute a, b into p parts evenly, F ← max(|ai|+ 2|bi|), calculate b2 in each part;
3 call PWK version of QR Algorithm in each part;
4 then get ~d1, . . . , ~dp // eigenvalues of each submatrix lie on ~di
5 call Algorithm 2⇐ each ai, b2

i , Ni;
6 then get qi’s correspondingly;
7 check deflation, form~t1, . . . ,~tp/2 by determined ~di(j)’s, eliminate corresponding

components in each ~di;
8 if there are clustering ~di(j)’s then
9 call Algorithm 7 to recheck;

10 // Algorithm 7 is provided in Section 5
11 end
12 while p ≥ 2 do
13 m← p/2, i← 1 s← 1;
14 while i<p do
15 ~vs ← [−F; sort([~di; ~di+1]); F];
16 s← s + 1, i← i + 2;
17 end
18 call Algorithm 6⇐ ~v1, . . . ,~vm;
19 then get ~d1, . . . , ~dm and corresponding qi’s;
20 combine each ~dj and~tj, j ∈ [1 : m];
21 // eigenvalues of each merged matrix lie on ~di

22 check deflation, form~t1, . . . ,~tm by determined ~di(j)’s, eliminate corresponding
components in each ~di;

23 p← p/2;
24 end
25 combine ~d1 and~t1, ~d← ~d1.

Algorithm 6: Fzero by Determinant
Input : a, b2, n, V, tol

1 // searh one root in a isolating interval V
Output : x, qn

2 call Algorithm 2⇐ a, b2, n;
3 call ‘fzero’ function in Matlab⇐ Algorithm 2, V, tol;
4 then get x;
5 save qn of the last iteration.
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5. Accuracy Analysis and Numerical Results
5.1. Accuracy Analysis

After the eigenvalues of the original submatrices are calculated by the QR Algorithm,
as shown by line 3 in Algorithm 5, it is not safe to take (s̄i − s̄i−1)/2 as a λi if one s̄i − s̄i−1 ≤
tol, because the QR algorithm is not always as accurate as the Bisection method or fzero
scheme. So, in practice, we do an extra check for the selected s̄i values by Theorem 4a
when checking deflation from results of the QR Algorithm. Suppose m sub-eigenvalues
(denoted by s1, . . . , sm) cluster in the interval [x, y] where y− x ≤ tol; the process is shown
as Algorithm 7.

Algorithm 7: Recheck the Results of QR
Input : clustering sub-eigenvalues s1, . . . , sm, interval [x, y]
Output : λ1, . . . , λm − 1

1 // the subscripts of λ’s denote the order in this subroutine, not
globally

2 Determine how many eigenvalues lie in [x : y] by Algorithm 1 and save the
number as w; if w = m− 1 then

3 foreach i ∈ [1 : m− 1] do
4 λi ← (si + si+1)/2;
5 end
6 else
7 foreach i ∈ [1 : w− 1] do
8 λi ← x + i ∗ (y− x)/(w− 1);
9 end

10 call Bisection algorithm to search the remain m− 1− w λ’s in
[x− 10tol, x) ∩ (y, y + 10tol].

11 end

In Algorithm 7, 10tol is a pessimistic estimation of QR algorithm error, which means
it decuples that of the Bisection error. The data in Table 2, which are present in a later
paragraph, supports our point. Line 2 in Algorithm 7 costs 2 Bisection iterations for w− 1
λ values and line 10 costs 3 to 4 per λ compared to about 7.5 iterations per λ in Algorithm 6
and 53 iterations per λ in the Bisection algorithm.

When arithmetic approximations s̄i are treated as the boundaries of isolating intervals
in the next level, they do not affect the accuracy because if the number of λ’s in an interval
is not one, Algorithm 6 fails. The troublesome number could be 0 or 2, but it is certainly
not bigger than 3. When there are 4 or more λ’s in an interval, it means there are clustering
s̄i’s of the previous results which can be perceived during the deflation check. For example,
if 4 λ’s lie in [s̄j, s̄j+1] as

s̄j < λj−1 < sj−1 < λj < sj < λj+1 < sj+1 < λj+2 < s̄j+1, (18)

we have sj−1 − s̄j < ε where ε is the previous computation error. (18) shows that s̄j−1 and
s̄j both lie in (sj−1 − ε, sj−1], which could not happen because we do the deflation check
previously.

We regard this as a beneficial situation. It can be seen in (18) that the troublesome
number arises only when s̄j < λj (or s̄j > λj+1), contrary to Theorem 3. As the accurate
sj > λj and sj − s̄j ≤ ε, we have λj − s̄j ≤ ε and then can speed up the calculation. Finally,
the accuracy of Theorem 5 is as good as the Bisection algorithm.

We checked the accuracy of Algorithm 5 by computing the eigenvalues of a 2001× 2001
Toeplitz ST matrix, which has all 2’s on its diagonal and all −1’s on its sub-diagonal. The re-
sults of each method were then compared with the exact value, i.e., λi = 2− 2 cos(iπ/2002),
and are shown in Table 2. In addition, all eigenvalues of 20 randomly generated matrices
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were calculated for testing the efficiency on serial machines, and we show the average
results of 20 in Table 3. We set p = 2 in Algorithm 5 for the serial execution.

Table 2. Accuracy Result.

Method Time Cost (s) Average Error ×eps Maximum Error ×eps

QR 0.10 4.2 32.0
PWK QR 0.09 3.9 32.0

MRRR 0.13 15.1 34.0
Bisection 1.55 1.0 6.0

Our method 0.41 1.0 6.0

Table 3. Time Cost Result.

Method Time Cost (s) of
2500 × 2500 Matrix 5000 × 5000 Matrix 10,000 × 10,000 Matrix

QR 0.16 0.86 2.30
PWK QR 0.13 0.77 1.96

MRRR 0.17 0.92 2.55
Bisection 2.25 12.49 34.10

Our method 0.61 2.30 9.21

Table 2 demonstrates that our method substantially improves the speed of the Bisection
method without losing accuracy. In addition, Table 3 confirms that Algorithm 5 is O(n2)
as its iteration based on Algorithm 2. In the following subsections, we illustrate more test
results of several different types of matrices. All results in Section 5 were collected on an
Intel Core i5-4590 3.3-GHz CPU and 16-GB RAM machine, except for the last figure, which
will be introduced in Section 5.4 specifically. All codes were written in Matlab2017b and
executed in IEEE double precision. The machine precision is eps ≈ 2.2× 1−16.

5.2. Matrices Introduction and Accuracy Test

In the following subsections, we present a numerical comparison among the Divisional
Bisection algorithm and four other algorithms for solving the ST eigenvalue problem:

1. Bisection, by calling subroutine ‘dstebz’ from LAPACK in Matlab;
2. MRRR, by calling subroutine ‘dstegr’ from LAPACK in Matlab;
3. QR, by calling subroutine ‘dsteqr’ from LAPACK in Matlab;
4. PWK version of QR (which would be denoted by QR-pwk in the figures), by calling

subroutine ‘dsterf’ from LAPACK in Matlab.

We use the following sets of test n× n matrices:

1. Matrix A:

Matrix A = tridiagonal

 1 1 · · · 1
2 2 · · · 2

1 1 · · · 1

,

i.e., the Toeplitz matrix [1,2,1] to test the accuracy and efficiency, which has λi =
2− 2 cos(iπ/(n + 1));

2. Matrix T1:

Matrix T1 = tridiagonal

 1 1 · · · 1
1 0 · · · 0

1 1 · · · 1

,

to test the accuracy and efficiency, which has λi = −2 cos(2iπ/(2n + 1)). Matrix T1 is
from [45], as well as the following Matrix T2 and T3;
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3. Matrix T2 [45]:

Matrix T2 = tridiagonal

 1 1 · · · 1
1 0 · · · 1

1 1 · · · 1

,

to test the accuracy and efficiency, which has λi = −2 cos(iπ/n);
4. Matrix T3 [45]:

Matrix T3 = tridiagonal

 1 1 · · · 1
1 0 · · · −1

1 1 · · · 1

,

to test the accuracy and efficiency, which has λi = 2 cos((2i− 1)π/(2n));
5. Matrix W [12,46], which has the ith diagonal component equal to |(n + 1)/2− i|(n is

odd) and all off-diagonal components equal to 1, to test the efficiency only as its exact
eigenvalues are not accessible;

6. Random Matrix with both diagonal and off-diagonal elements being uniformly dis-
tributed random numbers in [−1,1] to test the efficiency only as its exact eigenvalues
are not accessible.

Figures 1–4 present the test results of accuracy, where the Average Errors denote
the means of errors of all the calculated eigenvalues and the Maximal Errors denote the
maximum. Seven different sizes are used, from 800× 800 to 3200× 3200. All errors have
been divided by the machine precision eps for clarity. It can be seen that the new Divisional
Bisection algorithm has the best accuracy as well as the Bisection method, considerably
higher than the others.
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Figure 1. Results of Matrix A: (a) the Average Errors; (b) the Maximal Errors.
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Figure 2. Results of Matrix T1: (a) the Average Errors; (b) the Maximal Errors.
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Figure 3. Results of Matrix T2: (a) the Average Errors; (b) the Maximal Errors.
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Figure 4. Results of Matrix T3: (a) the Average Errors; (b) the Maximal Errors.

5.3. Efficiency Test for Computing all the Eigenvalues

Figure 5 presents the test results of time cost. Seven different sizes are used, from
800× 800 to 3200× 3200. Note that the results of the Random Matrix of each size are the
mean data of 20 tests. Therefore, we use the plural form in the figures.

When the eigenvalues clutter, as in Matrix W, the Divisional Bisection method im-
proves the Bisection method by about 70%. Such a good result can also be in Matrix
T1 and Matrix T3. However, the improvement is less than 50% in Matrix A and Matrix
T2. The reason is their submatrices have close eigenvalues to the global one but are not
equal in finite precision arithmetic. For example, the sub-eigenvalues give an interval for
Algorithm 6 and have an upper or lower bound that has a distance between λi less than
5× 10−14. The ‘fzero’ scheme uses the linear interpolation to accelerate convergence; such
a bound produces poor slopes during the linear interpolation process. As a consequence,
more iterations are needed to guarantee convergence, which finally results in the efficiency
loss of the Divisional Bisection method. Recall that Algorithm 7 is for checking similar
situations. However, a distance of 5× 10−14 could not be detected, because it does not meet
the conditions of Theorem 4.

Nevertheless, we are not pessimistic about the Divisional Bisection method. First, it
still improves more than 35% in such cases and performs well for Random Matrices. Sec-
ondly, the ‘fzero’ scheme is not a prerequisite or non-replaceable in our method, which could
be modified or substituted by a more powerful competitor in future
follow-up studies.
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Figure 5. Time cost for: (a) Matrix A; (b) Matrix T1; (c) Matrix T2; (d) Matrix T3; (e) Matrix W;
(f) Random Matrices.

5.4. Efficiency Test for Computing a Part of the Eigenvalues

All along, the Bisection method undertakes the task of computing a part of eigenvalues,
especially when the size of the matrix is large. When Algorithm 5 obtains all the sub-
eigenvalues, as shown in lines 2–11 in Algorithm 5, it is an easy task to calculate any
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parts of λi’s. For example, if eigenvalues in a certain interval are wanted, we can drop
the sub-eigenvalues which are outside and substitute ±F, in Algorithm 5 line 2 and line
15, with the upper and lower bounds of the given interval. If r1th∼r2th eigenvalues are
wanted, we need to drop the sub-eigenvalues that are of the order lower than r1− 1 or
higher than r2. When sr1−1 and sr2 are the substitutions of ±F, the problem can be solved.

Figure 6 shows the time cost in Random Matrices of four relatively large size, i.e.,
5000× 5000, 10,000 × 10,000, 15,000 × 15,000, and 20,000 × 20,000. We calculated 1%, 10%,
30%, and 50% λi’s of each size. Note the results are mean data of 40 tests, 20 for computing
λi’s in a certain interval and 20 for computing λi’s in a certain order. Given that there is
no evident difference between the test results of calculating λi’s in an interval or order, we
mixed them for averaging.
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Figure 6. Time cost for: (a) 1% λ’s; (b) 10% λ’s; (c) 30% λ’s; (d) 50% λ’s.

The results show that the Divisional Bisection method is not suitable for computing
a small group of eigenvalues, despite the matrix being relatively large. We consider 10%
as an applicable threshold. Although we can replace the QR method with the Bisection
method in Algorithm 5 line 3, which could avoid the calculation of all the sub-eigenvalues,
the result seems even worse. As the matrix size increases, the efficiency disadvantage of
the Bisection method becomes increasingly severe, which could ignore only a quite small
number of wanted λi, for example, 0.1%. In this case, the ‘fzero’ loops (line 12 to line 24 in
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Algorithm 5) become a heavy burden to the Divisional Bisection method. Therefore, we
insist on using the PWK version of the QR method in Algorithm 5.

We now consider the situation of calculating one λ in parallel. The problem also arises
when the number of wanted λ is less than the number of CPU cores or not divisible by it.
Algorithm 4 solves the problem and makes it available for computing with any number of
CPU cores. Of course, the need to compute an eigenvalue in parallel must occur in a very
large matrix. Therefore, we use three Random Matrices with sizes of 106 × 106, 107 × 107,
and 108 × 108 for the test of parallel efficiency. The results, presented in Figure 7, were
collected on an Intel Xeon(R) Core E5-2687 3.1-GHz CPU and 256-GB RAM machine, which
has 20 CPU cores. Note that the results are mean data of 20 tests.
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Figure 7. Computing one λ in parallel.

The three purple horizontal lines in Figure 7 denote the time cost of the serial Bisection
algorithm. Specifically, the top one denotes the time cost for 108 × 108 Random Matrices,
the middle 107 × 107, and the bottom 106 × 106. The parallel efficiency is unsatisfactory,
especially for the 107 × 107 and 106 × 106 Random Matrices, which are even worse than
the serial Bisection algorithm. The reason is that Matlab is not available for multi-threaded
computation. Instead, we run the codes in multi-processes. The task of copying inputs and
distributing them to the processes takes up the vast majority of the time. The script time
consumption analysis tool in Matlab confirms our point, which shows at least 75% time
was consumed during copying and distributing. Therefore, we would focus on the version
written in C or Fortran of the Divisional Bisection algorithm in future follow-up studies.
Nevertheless, Figure 7 verifies the feasibility of Algorithm 4, which to our knowledge is the
only algorithm that works in parallel for computing any one ST eigenvalue. This paper
also focuses on the serial version.

6. Conclusions

In this paper, a novel O(n2) Divisional Bisection method is given for the ST eigenvalue
problem by Algorithms 4 and 5. When computing all eigenvalues, the results show that the
time cost is reduced by more than 35–70% on serial machines compared to the Bisection
algorithm. In addition,

1. The algorithms are easy to implement fully in parallel;
2. By Algorithm 4, even one eigenvalue can be calculated in parallel and distributed on

any number of CPU cores;
3. As with the Bisection algorithm, it is flexible to set the expected accuracy and the

computing error archives machine precision;
4. By Algorithm 4, it is practicable to calculate a single eigenvalue of any order;
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5. Combining Algorithms 4 and 5, it is practicable to calculate eigenvalues in any interval
in parallel or any orders.

The Divisional Bisection method offers a novel idea for solving the ST eigenvalue
problem and a new choice, especially for readers who care about an algorithm of good
parallelization, flexibility, and warranted accuracy.
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