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Abstract: It is significant for anesthesiologists to have a precise grasp of the recovery time of the
patient after anesthesia. Accurate prediction of anesthesia recovery time can support anesthesiologist
decision-making during surgery to help reduce the risk of surgery in patients. However, effective
models are not proposed to solve this problem for anesthesiologists. In this paper, we seek to find
effective forecasting methods. First, we collect 1824 patient anesthesia data from the eye center
and then performed data preprocessing. We extracted 85 variables to predict recovery time from
anesthesia. Second, we extract anesthesia information between variables for prediction using machine
learning methods, including Bayesian ridge, lightGBM, random forest, support vector regression,
and extreme gradient boosting. We also design simple deep learning models as prediction models,
including linear residual neural networks and jumping knowledge linear neural networks. Lastly, we
perform a comparative experiment of the above methods on the dataset. The experiment demonstrates
that the machine learning method performs better than the deep learning model mentioned above
on a small number of samples. We find random forest and XGBoost are more efficient than other
methods to extract information between variables on postoperative anesthesia recovery time.

Keywords: anesthesia technology; anesthesia recovery modeling; machine learning; deep learning

MSC: 05C82

1. Introduction

In medicine, the advancement of surgical treatment technology has promoted the
development of medicine, and anesthesia technology is a necessary guarantee for the
development of surgery [1]. Anesthetic drugs can temporarily make the body unconscious
to perform associated treatment operations for painless purposes. Before and after surgery,
anesthesiologists are the guardians of the patient [2]. They adjust the injection of anesthetic
agents by monitoring the patient’s vital signs [3]. It has been clinically confirmed that the
perfect and professional performance and care of anesthesiologists throughout the surgical
process have a great positive effect on intraoperative safety and postoperative recovery of
surgical patients [4].

The amount of injected anesthesia is closely related to the patient’s preoperative phys-
ical condition and intraoperative vital signs [5]. It also needs to consider the patient’s
postoperative recovery time. Since the indicators and intraoperative conditions of different
patients are complex and changing, the anesthesiologist must be equipped with specialized
knowledge and the ability to respond quickly to ensure the safety of the vital signs of the
patient. Nowadays, there is a shortage of anesthesiologists [6]. It is difficult to support the
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growing clinical demand. At the same time, training a professional and excellent anesthe-
siologist requires a lot of time. Due to the shortage of anesthesiologists, the workload of
anesthesiologists is large and easy to fatigue. Therefore, it is meaningful to discover an
effective method to eliminate the problem of anesthesia stress, which predicts recovery
time after anesthesia to help anesthesiologists quickly complete postoperative recovery for
each patient.

With the promotion of electronic medical records, the digitization of surgical records
has enabled much anesthesia data to be recorded for a long time. The digitization of surgical
records makes it possible to use traditional statistical learning algorithms and machine learn-
ing algorithms in the field of medical anesthesia [7,8]. Mirsadeghi [9] uses machine learning
to monitor the depth of anesthesia, which analyzes the parameters of different wavelengths
of EEG power, total power, spindle score, and so on. It reflects the EEG characteristics of the
awake anesthesia state, obtains a more accurate effect than BIS, and helps anesthesiologists
adjust the injection of the anesthesia dose during surgery. Schamberg et al. [10] develop a
deep learning neural network using the cross-entropy method to train the neural network
through reinforcement learning. They aim to employ the neural network to control the
depth of anesthesia in patients, simulating the anesthesiologist’s intraoperative decision-
making. Miyaguchi et al. [3] adopt machine learning to predict the decisions made by
anesthesiologists during surgery. They also examined the importance and contribution
of the features of each model using Shapley additive explanations. Zhao et al. [11] train
deep learning, logistic regression, support vector machine, and random forest models to
predict postoperative recovery quality based on intraoperative time series monitoring data.
All of the above methods are designed to support the decision-making of the anesthe-
siologist during surgery and help reduce the risk of surgery in patients. Deep learning
methods [12–15] and machine learning methods [16,17] are adopted to testing other medi-
cal diseases. However, postoperative monitoring of patients by anesthesiologists is equally
important. Postoperative recovery time is closely related to the intraoperative anesthesia
dose injection and the physical indicators of postoperative patients. These data are mean-
ingful for the anesthesiologist’s decision-making. Meta-learning models, such as random
forest, extreme gradient boosting (XGBoost), and deep learning models, especially the
convolutional neural network (CNN) model and deep neural network (DNN), are trained
to predict hypotension occurring between tracheal intubation and incision [18]. Deep learn-
ing and machine learning methods are proposed to help anesthesiologists make decisions
about anesthesia, such as inference of brain states under anesthesia [19] and ultrasound
image guidance [20]. Various indicators of postoperative anesthesia help anesthesiologists
better monitor patients’ vital signs after surgery, ensure smooth and safe recovery of patient
consciousness during the awakening period, and strive to reduce complications during the
awakening period [21].

Previous methods collect intraoperative and postoperative data, then successfully
adopt deep learning and machine learning methods to help anesthesiologists make deci-
sions for patients. However, previous work has the following shortcoming. Firstly, previous
work fails to predict the recovery time from anesthesia for anesthesiologists. Although
previous methods inform decision-making for anesthesiologists, these approaches do not
focus on anesthesia recovery time to inform decision-making [3,21]. This paper seeks an
effective method to help anesthesiologists estimate the recovery time from anesthesia for
each patient. Second, few studies are devoted to analyzing the importance of each feature
during or after surgery [19,20]. After the analysis, anesthesiologists can quickly make a
decision based on important features to estimate how long a patient will recover from
anesthesia without resorting to complex machine learning or deep learning models.

To settle the above shortcomings, we adopt machine learning methods and design
deep learning models to predict anesthesia recovery time. We also adopt a machine learning
interpretation toolkit, such as the SHAP toolkit [22,23], to facilitate anesthesiologists to
judge the importance of features. Our main contributions to this work are summarized in
the following.
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• We apply machine learning methods as prediction models, including Bayesian ridge [24],
lightGBM [25], random forest [26], support vector regression (SVR) [27], and XGBoost [28].

• We design simple deep learning models, including a linear residual neural network
and jumping knowledge linear neural network to predict the postoperative recovery
time. We then adopt a machine learning interpretation toolkit, such as SHAP, to help
anesthesiologists evaluate the importance of variables with visual methods.

• We last conduct experiments considering the total amount of narcotic remifentanil
in surgeons, routine physical indicators, and so on after surgeon in prediction. The
experiments demonstrate that the random forest in predicting anesthesia recovery
time is more effective than other methods.

2. Materials
2.1. Patients

Anesthesia data comes from Joint Shantou International Eye Center of Shantou Uni-
versity and The Chinese University of Hong Kong (https://www.jsiec.org/ (accessed on
1 June 2022)). This specific study was approved by the eye center. Patients are from 4 to
62 years old. Both males and females are included in this retrospective study. Anesthesia
data were obtained from the Eye Center’s database. According to the American Society of
Anesthesiologists (ASA), their physical status classifications are I–II. Most of the patients
are I. This study has been approved by the ethics committee board of the Joint Shantou
International Eye Center of Shantou University and The Chinese University of Hong Kong.

2.2. Data Collection and Preprocessing

As Table 1 shows, we collect patient information, preoperative data, intraoperative
intervention, intraoperative monitoring data, and postoperative data. Patient informa-
tion includes the age, weight, height, and gender of patients. Preoperative data consist
of preoperative body temperature, preoperative dosage, and anesthesia-relevant history.
Intraoperative intervention data mainly comprise anesthetic time, medications, inputs,
and outputs. Intraoperative monitoring data includes operation type, extubation situation,
blood content information, drug dosage, etc. When the patient arrived in the operating
room, intraoperative monitoring began, including electrocardiogram, pulse oximetry, inter-
mittent noninvasive blood pressure measurements, and bispectral index scores. Postopera-
tive data consist of postoperative complications, recovery time, postoperative temperature,
etc. All variables are used for modeling. In the end, we collected data on 1824 patients with
86 variables. Each patient was regarded as an independent sample. Finally, 1824 data were
collected. We select 85 as independent variables to predict anesthesia recovery time per
patient in the abbreviations Table A1.

We removed some useless metrics, such as patient grouping. We fill missing numeric
data by using imputation. To speed up the convergence of the neural network, all continu-
ous indexes are normalized. In all models, we convert categorical data to binary data using
a one-hot encoding method [29].

2.3. Descriptive Statistics

We adopt descriptive statistics on some features to understand the approximate dis-
tribution of the data. The dataset is divided into a training set (n = 1276), validation set
(n = 274) and test set (n = 274). As Table 1 shows, we analyze statistics of some variables in
the training set, validation set, and testing set.

https://www.jsiec.org/
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Table 1. Comparative statistics of some variables in the training set, validation set, and testing set,
where statistics are the f-values of ANOVA with * is the chi-square test value.

Variable Training Set Validation Set Test Set Statistics p-Value

Extubation time (min) 55.00
(45.00, 70.00)

60.00
(45.00, 75.00)

59.00
(45.00, 73.50) 0.232 0.793

Postoperative
body temperature (°C) 36.67 ± 0.35 36.65 ± 0.30 36.67 ± 0.32 0.659 0.518

Dexamethasone (mg) 3.00
(1.50, 5.00)

2.75
(1.50, 5.00)

3.00
(2.005.00) 0.261 0.77

Operation time (min) 30.00
(20.00, 41.75)

30.00
(20.00, 45.00)

30.00
(20.00, 42.25) 0.152 0.859

Preoperative
atropine (mg)

0.32
(0.21, 0.50)

0.35
(0.22, 0.50)

0.34
(0.22, 0.50) 0.114 0.892

Nalbuphine (mg) 3.56 ± 1.88 3.55 ± 1.92 3.57 ± 1.90 0.011 0.989

Preoperative body
temperature (°C) 36.52 ± 0.22 36.52 ± 0.21 36.51 ± 0.21 0.461 0.63

Infusion volume (mL) 170.00
(121.75, 230.00)

162.50
(120.00, 232.50)

170.00
(130.00, 220.00) 0.037 0.964

Red blood cell
distribution width (%)

11.40
(10.90, 12.10)

11.60
(11.10, 12.30)

11.30
(10.80, 11.90) 4.898 0.008

Postoperative
complications (none/yes)

1246/30
(97.60%/2.40%)

265/9
(96.70%/3.30%)

262/12
(95.60%/4.40%) 3.696 * 0.158

Total carbon
dioxide (mmol/L) 22.56 ± 2.46 22.45 ± 2.26 22.65 ± 2.50 0.442 0.643

Systemic underlying
diseases (none/yes)

1223/53
(95.80%/4.20%)

262/12
(95.60%/4.40%)

267/7
(97.40%/2.60%) 1.679 * 0.432

Whether to use
dexmedetomidine (no/yes)

1100/176
(86.20%/13.80%)

232/42
(84.70%/15.30%)

28/46
(83.20%/16.80%) 1.824 * 0.402

Whether to use
ondansetron (none/yes)

73/803
(37.10%/62.90%)

107/167
(39.10%/60.90%)

113/161
(41.20%/58.80%) 1.819 * 0.403

ETCO2 (mmHg) 38.17 ± 2.46 38.26 ± 2.66 38.33 ± 2.60 0.509 0.601

Total
cholesterol (mmol/L)

4.16
(3.72, 4.68)

4.23
(3.72, 4.76)

4.20
(3.75, 4.71) 0.885 0.413

Serum calcium (mmol/L) 2.47 ± 0.16 2.47 ± 0.14 2.46 ± 0.16 0.18 0.835

Types of muscle relaxants
(atracurium/cisatracurium)

784/492
(61.40%/38.60%)

175/99
(63.90%/36.10%)

169/105
(61.70%/38.30%) 0.566 * 0.753

Anesthesiologist - - - 0.215 * 0.898

Surgery doctor - - - 1.819 * 0.403

Type of surgery - - - 4.323 * 0.115

Recovery time (min) 72.00
(60.00, 90.00)

75.00
(60.00, 90.00)

75.00
(58.00, 90.00) 0.222 0.801

3. Methodology

Figure 1 shows the workflow for predicting anesthesia recovery information. After
collecting information from the eye center, machine learning models and deep learning
models are constructed to train the model and then predict the future anesthesia recovery
time. After the prediction, the machine learning model is interpreted by the SHAP toolkit
to visualize the importance of features.
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Figure 1. The workflow of this research. We first collect data from the eye center. Then we adopt
machine learning models and the proposed deep learning models to predict anesthesia recovery time.
we last analyze features’ importance by SHAP toolkit.

3.1. Problem Definition

In this study, we aim to learn a function F(·) to predict recovery time after anesthesia
using various preoperative, intraoperative, and patients’ postoperative indicators. Let
X ∈ RN×C denote the features of each patient. Y ∈ RN represents the recovery time of
each patient after anesthesia. Our function is formulated as Y = F(X).

3.2. Machine Learning Model

We use XGBoost, random tree regression (RTR), support vector regression (SVR),
lightGBM, and Bayesian ridge regression to predict recovery time from anesthesia. XGBoost
is a boosted tree model [30]. It is the integration of many tree models, which is the
CART regression tree model. The idea of the algorithm is to continuously add trees and
continuously perform feature splitting to grow a tree. When a tree is added, it is actually
learning a new function to fit the residual of the last prediction [31]. Random Forest
belongs to the Bagging class of algorithms. The tasks completed by the random forest
include random forest classification and regression. In the training phase, random forest
uses bootstrap sampling to collect multiple different sub-training datasets from the input
training dataset to train multiple different decision trees. In the prediction phase, random
forest averages the prediction results of multiple internal decision trees to obtain the final
result [32]. SVR is a support vector machine (SVM) implementation for regression [33].
The SVR model creates an interval band on both sides of the linear function. The loss does
not include any sample that falls within an interval [34]. In other words, only the support
vector influences its function model. For non-linear models, use the same kernel function as
SVM to map feature space for regression [35]. Finally, the optimized model is obtained by
minimizing the total loss and maximizing the interval [36]. LightGBM is a gradient boosting
framework that uses decision trees based on learning algorithms [37]. It supports efficient
parallelism, which includes feature parallelism, data parallelism, and voting parallelism. In
principle, it uses the negative gradient of the loss function as a residual approximation of
the current decision tree to fit the new decision tree. Bayesian ridge regression can be used
for regularization parameters in the estimation stage, The regularization parameters can
be changed according to the existing data during the estimation process. The estimation
of the model parameters generally uses the maximum marginal likelihood logarithm
estimation [38].
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3.3. Deep Learning Model
3.3.1. Linear Residual Neural Network

To capture hidden multivariate features of anesthesia information, we need to design
deep linear neural networks, but this may lead to network degradation [39]. Therefore, we
introduce dropout and residual connections to further alleviate this problem. We designed
a simple linear residual neural network (LRN). As Figure 2 displays, the n linear layers are
stacked to obtain deep correlations of the independent variables [40]. The output of the ith
linear layer with residual connections can be expressed as follows.

hi = concat(F(hi−1) + hi−1), (1)

where F(·) denotes a fully connected layer. hi represents the ith hidden feature. concat is a
concatenation operation. The final prediction can be expressed as Y = F(hn)

Figure 2. The network structure of LRN, where LD is the combination of linear layer and dropout
layer and FC is a fully connected layer. The concat donates concatenation with an activation function.

3.3.2. Jumping Knowledge Linear Neural Network

To adapt to local neighborhood properties and tasks in representation learning on
graphs, Xu and Li, etc., propose jumping knowledge (JK) networks to enable better
structure-aware representation [41]. Motived by JK, we propose a jumping knowledge
linear neural network (JKLNN) network to effectively capture proximity multivariate corre-
lation. As Figure 3 shows, JKLNN consists of two blocks, including a jumping knowledge
neural network (JKN) block and a prediction block. The JKN block was designed to in-
tegrate diverse hidden information by stacking linear layers with a jumping connection.
The prediction block consists of a fully connected layer with a ReLU activation function.
First, the data X ∈ RN×C will be entered into stacked n linear layers to extract shallow
and deep multivariate features. Then, concatenation and max-pooling operations integrate
multivariate features of anesthesia, which can be formulated as follows.

h = maxPooling(concat(h1, h2...hn)), (2)

where hi ∈ RN×K1 represent features of i layer and concat means concatenation operation.
hi is calculated by hi = dropout(σ(W ∗ hi−1 + b)). Z = Con1D(h) ∈ RN×K2 is the output
of the JKN block. Finally, Z is passed to the prediction block to predict the recovery time of
anesthesia. Let W and b denote respectively learnable weights and offsets, the formula of
the prediction block is summed up as:

Y = σ(W ∗ Z + b), (3)

where σ(·) is the ReLU activation function. Y ∈ RN×1 denote anesthesia recovery time for
each patient.
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Figure 3. The network structure of JKLNN, where LD is the combination of linear layer and dropout
layer to extract hidden information of multiple independent variables.

4. Experiment
4.1. Models

In this study, we predict recovery time after anesthesia based on the patient informa-
tion we collected. We conduct the following model to predict recovery time.

• XGBoost: XGBoost is an efficient and scalable implementation of gradient boost-
ing framework, which includes an efficient linear model solver and tree learning
algorithm [30].

• Random Forest: Random forest is a specific implementation of the bagging method,
which trains multiple decision trees and fuses each result of trees for classification and
regression [42].

• SVR: Support Vactor Regression (SVR) is an important application branch in SVM,
which minimizes the total deviation of all sample points from the hyperplane to
regress [43].

• LightGBM: LightGBM is a histogram-based boosting decision tree algorithm, which
has the advantages of low memory footprint, high accuracy, and support for parallel
and large-scale data processing [37].

• Bayesian Ridge: Bayesian ridge regression is a ridge regression based on gamma
prior, which introduces a regular term of gamma prior in the estimation process [38].

• LRN: We design a simple linear neural network (LRN) using residual connections to
prevent the degradation problem of deep networks [39,44].

• JKLNN: We designed the JKNN network according to the JK framework [41]. We
extend neighborhood aggregation with skip connections to multivariable information
aggregation.

4.2. Experiments and Results

We trained the collected data in the aforementioned models to predict post-anesthesia
recovery time. As shown in Table 2, we only record the best results for each method.
RMSE, MAPE, and R2 are employed as evaluation indicators to measure the quality of
the regression effect. In Table 3, dataset A includes features for preoperative detection
and postoperative monitoring. Dataset B consists of intraoperatively tested variables. All
Dataset includes dataset A and dataset B from 1824 patients, which are not divided into
training, test, and validation sets. For the specific details of datasets A and B, refer to
Table A1. The lower the RMSE and MAPE, the more significant the regression effect is. The
higher the R2, the more effective the regression effect is. Their calculation formulations are
as follows.
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Table 2. Comparative prediction effects of different methods in the training set, test set, and
validation set.

Training Set Validation Set Test Set
RMSE MAPE R2% RMSE MAPE R2% RMSE MAPE R2%

XGBoost 5.4354 5.5327 96.59 7.9977 6.057 89.30 8.1534 8.5119 88.82

random tree 3.2782 3.2073 98.55 9.3185 8.8886 88.96 8.0562 8.0973 91.76

SVR 7.9976 7.5851 91.99 9.4056 8.6467 88.09 8.7365 7.9952 89.30

lightGBM 6.0588 4.0636 95.40 10.0921 8.8926 85.38 9.5103 8.3664 86.78

Bayesian ridge 8.0368 8.2298 91.91 9.3574 8.8579 87.08 8.2402 8.3834 91.05

LRN 8.2802 9.1285 91.41 9.9867 10.412 84.10 8.9703 9.5930 88.06

JKNN 5.2090 5.3845 96.33 11.1398 10.49 83.71 10.4100 10.2850 83.90

machine learning 6.1614 5.7237 94.89 9.2343 8.2686 87.76 8.5393 8.2708 89.54

deep learning 6.7446 7.2565 93.87 10.5632 10.4509 83.91 9.6901 9.9388 85.98

Optimization (%) 9.4660 26.7799 1.072 14.3919 26.3926 4.3948 13.4762 20.1662 3.9780

Table 3. Comparative result in dataset A, dataset B, and all datasets.

Dataset A Dataset B All Dataset
RMSE MAPE R2% RMSE MAPE R2% RMSE MAPE R2%

XGBoost 7.6618 8.0445 92.62 7.74997 8.23294 92.447 5.95943 6.21569 95.53

random tree 3.4821 3.5344 98.48 4.36224 4.33359 97.61 3.43483 3.37344 98.52

SVR 9.2230 8.7731 89.30 11.3317 11.1735 83.8522 8.55791 7.95783 90.79

lightGBM 6.6830 6.0685 94.38 4.4422 3.7200 97.52 3.7860 2.7745 98.20

Bayesian ridge 8.9879 9.3141 89.84 11.1641 11.6227 84.3264 8.27508 8.47034 91.39

LRN 8.3480 8.6506 91.24 6.54145 6.93205 94.6207 4.71176 4.98967 97.21

JKNN 8.4838 8.8479 89.89 8.74712 9.19122 88.79 5.88596 5.87808 95.15

deep learning
model 8.4159 8.7492 90.5671 7.6443 8.0616 91.71 5.2989 5.4339 96.18

machine
learning model 7.2075 7.1469 92.92 7.8101 7.8165 91.15 6.0026 5.7584 94.89

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)2,

MAPE =
100%

m

i=1

∑
m

∣∣∣∣ ŷi − yi
yi

∣∣∣∣,
R2 = 1− ∑m

i=1(yi − ŷi)
2

∑m
i=1(yi − ȳi)2 ,

(4)

where ŷi is the prediction of post-anesthesia recovery time. ȳi denotes the mean prediction
of recovery time after anesthesia and m is the size of the dataset. To compare the prediction
performance of the model, we introduce the optimization percentage p, whose calculation
formula is as follows.

p = 100× |x1 − x2|
x2

% (5)

where x1 and x2 represent the MAPE, RMSE, or R2 of different forecasting models. The
meaning of p is that x1 is optimized by p over x2.

From Table 2, the result of machine learning models is the average value of XGBoost,
random forest, SVR, lightGBM, and Bayesian ridge. The result of deep learning models
is the mean of the proposed LRN and JKNN. The optimization percentage from 1.072%
to 26.7799% in Table 2 implies that machine learning models have better prediction per-
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formance than the proposed deep learning model. Therefore, we conclude that the above
machine learning methods are superior to the deep learning methods in predicting anes-
thesia recovery time. Executive experiments in training and test set reveal the optimal
performance of the random forest, so the random forest is the most effective predictive
model. The second best model to predict performance is XGBoost.

From Table 3, we can compare the performance of the model on different datasets.
According to each dataset, the random forest has the best predictive performance. The
performance of the model in both dataset A and dataset A is more ineffective than the
performance of all datasets, which certifies that the preoperative, intraoperative, and
postoperative monitoring data are all significant to predict recovery time after anesthesia.
Compared to machine learning models, deep learning models predict more accurately in
all datasets.

Combining Tables 2 and 3, the prediction effect of the deep learning model in the
training set is more invalid than the prediction in all datasets. This further proves the
following conclusion: the small training set unsuccessfully supports neural networks to
learn a large number of exact parameters for the proposed LKLNN and LRN. Data from
different data centers are often not shared, making it impossible to have huge datasets to
support model training. Due to the limitations of the experiment, the eye center is unable
to collect enough data related to anesthesia from more patients. Deep learning models have
more parameters to learn than machine learning models, so numerous data is required to
train deep learning models. So, the proposed LRN and JKNN perform ineffectively. In turn,
it demonstrates that machine learning models can be trained by small amounts of data to
capture multivariate information to predict recovery time from anesthesia. In summary,
random forests in machine learning methods are the most effective in predicting recovery
time after anesthesia.

4.3. Feature Importance

The SHAP toolkit is an interpretable machine learning library for python [22]. Feature
importance helps us assess the impact of any given variable on the performance of the
algorithm [18]. To interpret the obtained predictive models and verify the validity of
the predictions, we performed an analysis of the machine learning predictive models
using the SHAP value to estimate feature importance. SHAP values of Bayesian ridge,
random forest, SVR, and XGBoost are presented in Figure 4. Because it is not suitable to
use the SHAP tool to interpret deep learning models, we do not provide SHAP values
for the deep learning methods. We selected four machine learning models with the most
efficient prediction performance to obtain the importance of features. Among all models,
the extubation time is the most valuable feature, followed by the operation time. The third
most valuable characteristic of each model is different. Because dexamethasone (DXMS) is
the third or fourth of four models, it is comprehensively the third most important indicator
after synthesis.

Synthetically, the four most important indicators, from high to low, are extubation time,
operation time, dexamethasone (DXMS), and postoperative body temperature (PosBT). The
correlation between extubation time and anesthesia recovery time was the most significant.
Other indicators have little significance for predicting recovery time from anesthesia. This
provides an anesthesiologist with a judgmental basis to determine the recovery time
after anesthesia.
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(a) Bayesian Ridge (b) Random Forest

(c) SVR (d) XGBoost

Figure 4. Top 20 important features calculated according to mean absolute SHAP values. The
abbreviations in the figure are shown in Table A1 in the following abbreviations part.

4.4. Limitations

This study has a few limitations. For example, features used for prediction model
training were extracted only from the same eye center. The amount of collected data is
inevitably small. The data we collect only include patients treated in the eye centers, so the
distribution of data has certain geographical limitations. In the future, we plan to collect
data from multiple hospitals and employ small dataset algorithms [45] in our models, and
extend our study to other prediction tasks [46,47].

5. Conclusions

In this paper, we explore the problem of predicting recovery time after anesthesia
based on the patient’s basic information as well as past vital signs and medication use
history. Firstly, we collect patient information on anesthesia recovery time, preoperative
data, intraoperative intervention, intraoperative monitoring data, and postoperative data
from eye centers. Secondly, we design two deep learning models, including a linear
residual neural network and a jumping knowledge linear neural network. Lastly, we adopt
machine learning models and deep learning models to predict the recovery time of patients
after anesthesia. The machine learning models consist of XGBoost, random tree regression,
support vector regression, lightGBM, and Bayesian ridge regression. Executive experiments
and analysis reveal that machine learning methods perform more effectively than the linear
residual model and jumping knowledge linear neural network in the deep learning model.
This suggests that machine learning can better capture multivariate information with a
small amount of data to predict anesthesia recovery time. The pictures of the SHAP value
to explain the importance of the features demonstrate that extubation time, operation time,
and dexamethasone are most significant in predicting recovery time from anesthesia. In
our future work, we will delve into deep learning models with a large number of patients
for anesthetists.
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Appendix A

The following abbreviations in Table A1 are used in this manuscript.

Table A1. Full names and corresponding abbreviations of the collected features. Features marked
with * are from dataset A, conversely from dataset B.

Features Name

Full Name grouping * gender * age * weight * height *

Abbreviations - - - - -

Full Name Preoperative body
temperature *

Preoperative
medication (atropine

mg) *
Emergency surgery History of surgery * Basic diseases *

Abbreviations PreBT Atropine/mg - - -

Full Name ASA sizing * Infusion quantity Operation time fentanyl Classification and
muscle relaxants

Abbreviations - - - - MGC

Full Name The postoperative
complications *

Rui total fentanyl
(mu/g)

Whether to use
dexmedetomidine

Whether to use
anti-nausea drugs Naboo brown

Abbreviations PO-comp - WUDEX WUANI -

Full Name dexamethasone Tidal volume ETCO2 The clinician Vascular active drug

Abbreviations DXMS - - Clinician VAD

Full Name The surgeon Operation type Extubation time * Postoperative body
temperature * potassium

Abbreviations Surgeon - - PosBT -

Full Name sodium chlorine calcium phosphorus total carbon dioxide

Abbreviations - - - - Total CO2

Full Name The total protein albumin globulin White
ball than Total bilirubin
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Table A1. Cont.

Features Name

Abbreviations TP - - A/G TBIL

Full Name Direct bilirubin Indirect bilirubin Cereal third
transaminase

Aspertate
aminotransferase

GGTP
(gamma-glutamyl

transpeptidase)

Abbreviations DBil I-Bil ALT SGPT GGTP

Full Name Alkaline
phosphatase cholinesterase L-lactic

dehydrogenase

Alpha
hydroxybutyric acid

dehydrogenase
Creatine kinase

Abbreviations ALP - LDH Alpha-HBD CK

Full Name Creatine enzyme
isoenzyme MB Urea creatinine Uric acid Cystine protease

inhibition enzyme C

Abbreviations CK-MB - - - CPIEC

Full Name glucose fructosamine Total cholesterol triglycerides High density
cholesterol

Abbreviations - FA TC - HDL-C

Full Name Low density
cholesterol C-reactive protein White blood cell

count
Neutrophil
percentage

The lymphocyte
percentage

Abbreviations LDL-C CRP WBC NEUT% LY%

Full Name Monocyte
percentage

Eosinophil
percentage Basophils percentage The absolute value

neutral cells
The lymphocyte
absolute value

Abbreviations M% E% B% Physiol Meas Lymp Meas

Full Name Monocyte absolute
value

Eosinophils absolute
value

Basophils absolute
value Red blood cell count hemoglobin

Abbreviations Mono Meas Eosi Meas Baso Meas RBC HGB

Full Name Red blood cells
deposited

Average red blood
cell volume

The average amount
of hemoglobin

Average hemoglobin
concentration

Red blood cell
distribution width

Abbreviations RBCA RBCV MCV Means MCHC RDWR

Full Name The platelet count Platelet than the
product Mean platelet volume Platelet distribution

width Routine urine *

Abbreviations PLT PCT MPV PDW RU

Full Name Recovery time *

Abbreviations -
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