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Abstract

:

In simple graphs, DP-coloring is a generalization of list coloring and thus many results of DP-coloring generalize those of list coloring. Xu and Wu proved that every planar graph without 5-cycles adjacent simultaneously to 3-cycles and 4-cycles is 4-choosable. Later, Sittitrai and Nakprasit showed that if a planar graph has no pairwise adjacent 3-, 4-, and 5-cycles, then it is DP-4-colorable, which is a generalization of the result of Xu and Wu. In this paper, we extend the results on 3-, 4-, 5-, and 6-cycles by showing that every planar graph without 6-cycles simultaneously adjacent to 3-cycles, 4-cycles, and 5-cycles is DP-4-colorable, which is also a generalization of previous studies as follows: every planar graph G is DP-4-colorable if G has no 6-cycles adjacent to i-cycles where   i ∈ { 3 , 4 , 5 }  .
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1. Introduction


The concept of list coloring was introduced independently by Vizing [1] and Erdős et al. [2]. A k-list assignment L of a graph G assigns for each vertex v in G a list   L ( v )   of k colors. An L-coloring is a proper coloring c such that   c ( v ) ∈ L ( v )   for each v in   V ( G )  . A graph G is L-colorable if G has an L-coloring. If G is L-colorable for any k-list assignment L, then G is said to be k-choosable.



DP-coloring is a generalization of list coloring. Dvořák and Postle [3] introduced the concept of DP-coloring and they called it correspondence coloring. Later on, it is called DP-coloring by Bernshteyn et al. [4].



Assume L is an assignment of a graph G. H is a cover of G if it admits all the following properties:




	(i)

	
Its vertex set   V ( H )   is    ⋃  v ∈ V ( G )    (  { v }  × L  ( v )  )  =  {  ( v , c )  : v ∈ V  ( G )  , c ∈ L  ( v )  }  ;  




	(ii)

	
  H [ { v } × L ( v ) ]   is a complete graph for every   v ∈ V ( G ) ;  




	(iii)

	
The set    E H   (  { u }  × L  ( u )  ,  { v }  × L  ( v )  )    is a matching (empty matching is allowable) for each   u v ∈ E ( G )  .




	(iv)

	
If   u v ∉ E ( G ) ,   then there are no edges of H connect   { u } × L ( u )   and   { v } × L ( v )  .









An independent set in a cover H of a graph G with size   | V ( G ) |   is called an   ( H , L )  -coloring of G. If every cover H with any k-assignment L of a graph G admits an   ( H , L )  -coloring for   G ,   then we say that G is DP-k-colorable. The minimum k in which a graph G is DP-k-colorable is called the DP-chromatic number of G and denoted by    χ  D P    ( G )   .



If edges on H are defined to match exactly identical colors between   L ( u )   and   L ( v )   for each   u v ∈ E ( G ) ,   then G admits an   ( H , L )  -coloring is equivalent to G is L-colorable. Consequently, DP-coloring is a generalization of list coloring. Furthermore, this implies that    χ  D P    ( G )  ≥  χ l   ( G )  .  



Dvořák and Postle [3] proved that for every planar graph G,    χ  D P    ( G )  ≤ 5  , which extends a seminal result by Thomassen [5] on list coloring. Meanwhile, Voigt [6] constructed an example of a non-4-choosable planar graph (and thus, not DP-4-colorable). It motivates the investigation to obtain sufficient conditions for being DP-4-colorable of planar graphs. Kim and Ozeki [7] proved that every planar graph is DP-4-colorable if it does not contain k-cycles for each   k = 3 , 4 , 5 , 6  . Kim et al. [8] proved that every planar graph is DP-4-colorable if it contains neither 7-cycles nor butterflies. In [9], Kim and Yu proved that every planar graph is DP-4-colorable if it does not contain triangles adjacent to 4-cycles, which extends the result on 3- and 4-cycles. In 2019, Liu and Li [10] improved the previous result of Kim and Yu [9] by relaxing the condition of one triangle into two triangles. Chen et al. [11] showed that every planar graph that contains no 4-cycles adjacent to k-cycles where   k = 5 , 6   is DP-4-colorable. Liu et al. [12] extended the result of Kim and Ozeki [7] on 3-, 5-, and 6-cycles by proving that every planar graph contains no k-cycles adjacent to triangles is DP-4-colorable. Xu and Wu [13] proved that every planar graph, which contains no 5-cycles adjacent simultaneously to 3-cycles and 4-cycles is 4-choosable. Recently, Sittitrai and Nakprasit [14] showed that every planar graph that contains no pairwise adjacent 3-, 4-, and 5-cycle is DP-4-colorable which generalizes the result of Xu and Wu [13].



In this work, the results on 3-, 4-, 5-, and 6-cycles are extended by the result on Theorem 1, which generalizes the aforementioned results by Chen et al. [11] and Liu et al. [12].



Theorem 1.

Every planar graph without 6-cycles simultaneously adjacent to 3-cycles, 4-cycles, and 5-cycles is DP-4-colorable.





Then we have the following two Corollaries. Moreover, some results on [11,12] are some part of Corollary 1 for   i = 4   and   i = 3  , respectively.



Corollary 1.

Every planar graph without 6-cycles adjacent to i-cycles is DP-4-colorable for each   i ∈ { 3 , 4 , 5 }  .





Corollary 2.

Every planar graph without 6-cycles simultaneously adjacent to i-cycles and j-cycles is DP-4-colorable for each   i , j ∈ { 3 , 4 , 5 }   and   i ≠ j  .






2. Preliminaries


First, some notations and definitions are introduced in this section. Let G be a plane graph. The vertex set, edge set, and face set of the graph G are denoted, respectively, by   V ( G ) , E ( G ) ,   and   F ( G ) .   We use   B ( f )   to denote the boundary of a face   f .   Two faces f and g are adjacent if   B ( f )   and   B ( g )   are adjacent. A wheel   W n   is a graph of n vertices formed by connecting all vertices of an   ( n − 1 )  -cycle (these vertices are called external vertices) to a single vertex (hub). A k-vertex,   k +  -vertex, and   k −  -vertex is a vertex of degree k, at least k, and at most   k ,   respectively. Similar notation is applied to cycles and faces.



Note that some faces may appear several times in the order. If a face is incident to at least two   5 +  -vertices (respectively, exactly one   5 +  -vertex, no   5 +  -vertices), it is called rich (semi-rich, poor, respectively).



A semi-rich 5-face is a proper semi-rich 5-face if each incident edge with two endpoints of degree 4 is on the boundary of a 3-face, otherwise it is called an improper semi-rich 5-face.



A bounded face is an extreme face if it has a vertex incident to the unbounded face. An inner face is a bounded face but is not an extreme face.



An edge   u v   is a chord in an embedding cycle C if   u , v ∈ V ( C )   but   u v   is not in   E ( C ) .   If a chord is inside   C ,   then it is called an internal chord, otherwise it is called an external chord. A graph   C ( m , n )   is obtained from a cycle    x 1   x 2  …  x  m + n − 2     with an internal chord    x 1   x m  .   For example, cycles   u v w   and   v w x y z   form   C ( 3 , 5 ) .   A graph   C ( l , m , n )   is obtained from a cycle    x 1   x 2  …  x  l + m + n − 4     with internal chords    x 1   x l    and    x 1   x  l + m − 2   .   The previous definition can be extended similarly to a graph   C ( m , n , p , q ) .   The graphs   i n t ( C )   and   e x t ( C )   are induced by vertices inside and outside a cycle   C ,   respectively. A separating cycle C is a cycle with non-empty   i n t ( C )   and   e x t ( C ) .  



Let  A  denote the family of planar graphs without   6 −  cycle simultaneously adjacent 3-, 4-, and 5-cycle.



To prove that every planar graph without 6-cycles simultaneously adjacent to 3-cycles, 4-cycles, and 5-cycles is DP-4-colorable, we prove a stronger result as follows.



Theorem 2.

If   G ∈ A   with a precolored 3-cycle, then the precoloring can be extended to be a DP-4-coloring of G.






3. Structures


Let G be a minimal counterexample to Theorem 2 with respect to the order   | V ( G ) | .   Then, (i)   G ∈ A   and (ii) G is a minimal graph with a precoloring of a 3-cycle that cannot be extended to be a DP-4-coloring in   G .   Some tools in [14] are used to deal with graphs satisfying (ii). We assume that G contains a 3-cycle since every planar graph without 3-cycles is DP-4-colorable [9].



Thus we let   C 0   be a 3-cycle in G that is precolored.



Lemma 1

(Lemma 3.1 in [14]). G has no separating 3-cycles (See the proof in Lemma A1).





It follows from Lemma 1 that we may assume   C 0   to be the boundary of the unbounded face of   G .  



Lemma 2

(Lemma 3.3 in [14]). Each vertex in   i n t (  C 0  )   has degree at least four (See the proof in Lemma A3).





Lemma 3.

The following statements hold.




	(i)

	
A bounded   6 −  -face has its boundary as a cycle.




	(ii)

	
If a bounded   k 1  -face f and a bounded   k 2  -face g with    k 1  +  k 2  ≤ 8   are adjacent, then   B  ( f )  ∪ B  ( g )  = C  (  k 1  ,  k 2  )  .  




	(iii)

	
Let a bounded 3-face f and a bounded 4-face g be adjacent. If f or g is adjacent to a bounded 3-face h, then   B ( f ) ∪ B ( g ) ∪ B ( h )   is a 6-cycle with two internal chords.











Proof. 






	(i)

	
Clearly, a boundary of a   5 −  -face is a cycle. Consider a bounded 6-face   f .   A boundary closed walk is in a form of   u v w x y w u   if   B ( f )   is not a cycle. By Lemma 2, u or x has degree at least   4 .   It follows that   u v w   or   x y w   is a separating 3-cycle, contrary to Lemma 1.




	(ii)

	
It suffices to show that   B ( f )   and   B ( g )   share exactly two vertices.



If   B ( f ) = u v w , B ( g ) = v w x   and   u = x ,   then f or g is the unbounded face, a contradiction.



If   B ( f ) = u v w , B ( g ) = v w x y   and   u = x   or   y ,   then   d ( w ) = 2   or   d ( v ) = 2 ,   which contradicts Lemma 2.



If   B ( f ) = u v w , B ( g ) = v w x y z   and   u = x   or   z ,   then   d ( w ) = 2   or   d ( v ) = 2 ,   which contradicts Lemma 2. If   B ( f ) = u v w , B ( g ) = v w x y z   and   u = y ,   then   v y z   or   w x y   is a separating 3-cycle, which contradicts Lemma 1.



If   B ( f ) = s t u v , B ( g ) = u v w x   and   s = w ,   then   d ( v ) = 2 ,   which contradicts Lemma 2. If   B ( f ) = s t u v , B ( g ) = u v w x   and   s = x ,   then   u t x   or   v w x   is a separating 3-cycle, which contradicts Lemma 1. The remaining cases are similar.




	(iii)

	
Lemma 3 (ii) yields that   B ( f ) ∪ B ( g )   is a 5-cycle with one chord. Similar to the proof of Lemma 3 (ii), one can show that   B ( h )   and   B ( f ) ∪ B ( g )   share exactly two vertices. This yields a desired result.









□





Lemma 4.

If C is a 6-cycle and has a triangular chord, then C has only one chord. Moreover, every 6-cycle has at most one internal chord.





Proof. 

Let C be a 6-cycle   t u v x y z   and let   t v   be its triangular chord. Suppose to the contrary that C has at least two chords. Since C is adjacent to a 3-cycle   t u v   and a 5-cycle   u v x y z  , it suffices to show that C is adjacent to a 4-cycle. By symmetry, we assume another chord e of C is   u x , u y , t x , t y ,   or   x z .  



If   e = u x ,   then C is adjacent to a 4-cycle   t u x v .  



If   e = u y ,   then C is adjacent to a 4-cycle   u v x y .  



If   e = t x ,   then C is adjacent to a 4-cycle   t u v x .  



If   e = t y ,   then C is adjacent to a 4-cycle   v x y t .  



If   e = x z ,   then C is adjacent to a 4-cycle   t v x z .  



Thus, C has exactly one chord. Note that C has a triangular chord if C has at least two internal chords. It follows that every 6-cycle has at most one internal chord. □





A cluster in a plane graph G is a subgraph of G consisting of 3-cycles from a minimal set of bounded 3-faces such that they are not adjacent to other bounded 3-faces outside the set. A k-cluster is formed by k bounded 3-faces. An adjacent face of an i-cluster   H i   is a face that is adjacent to some bounded 3-face in   H i  . Since   G ∈ A  , one can observe that every cluster in G is a   4 −  -cluster where a 4-cluster is isomorphic to   W 5  .



Lemma 5.

The following statements hold.




	(i)

	
If a 4-face f is adjacent to an inner 3-face g, then f is not adjacent to other inner 3-faces and f is not adjacent to any 4-faces.




	(ii)

	
If an inner 3-face f is adjacent to a 5-face   g ,   then f and g are not adjacent to any 4-faces.




	(iii)

	
Every adjacent face of a 2-cluster is a   6 +  -face or the unbounded 3-face D.




	(iv)

	
Every adjacent face of a   3 +  -cluster is a   7 +  -face or the unbounded 3-face D.











Proof. 






	(i)

	
Let f be a 4-face adjacent to an inner 3-face g and another face h.



Suppose to the contrary that h is an inner 3-face or a 4-face.



If h is an inner 3-face, then   B ( f ) ∪ B ( g ) ∪ B ( h )   is a 6-cycle with two internal chords by Lemma 3 (iii), contrary to Lemma 4.



If h is a 4-face, then Lemma 3 (ii) yields a 6-cycle from   B ( f ) ∪ B ( h )  , which is adjacent to a 5-cycle from   B ( f ) ∪ B ( g )  , a 4-cycle from   B ( f )  , and a 3-cycle from   B ( g )  , contrary to   G ∈ A .  




	(ii)

	
Let an inner 3-face f and a 5-face g be adjacent. Lemma 3 (ii) yields that   B ( f ) ∪ B ( g )   contains a 6-cycle. Thus, f or g is not adjacent to any 4-faces since   G ∈ A  .




	(iii)

	
Let f and g be bounded 3-faces in a 2-cluster   H 2   and let h be a bounded face adjacent to f. By the definition, h is not a bounded 3-face.



If h is a 4-face, then Lemma 3 (iii) yields that   B ( f ) ∪ B ( h ) ∪ B ( g )   contains a 6-cycle with two internal chords, contrary to Lemma 4.



If h is a 5-face, then it follows from Lemmas 3 (i) and (ii) that a 6-cycle from   B ( f ) ∪ B ( h )   is adjacent to a 5-cycle from   B ( h )  , a 4-cycle from   B ( f ) ∪ B ( g )  , and 3-cycle from   B ( f )  , contrary to   G ∈ A .  



Thus, h is a   6 +  -face or the unbounded face.




	(iv)

	
Let    f 1  ,  f 2  ,   and   f 3   be the bounded 3-faces of   3 +  -cluster   H 3   in a consecutive order.



By similar arguments as in the proof of (iii), it follows that   H 3   cannot be adjacent to a bounded   5 −  -face.



Let   H 3   be adjacent to a 6-face   f 4  . By Lemma 3 (ii) and an argument similar to its proof, one can show that   H 3   is a 5-cycle with two chords. Since   B (  f 4  )   is a 6-cycle by Lemma 3 (i), we have a 6-cycle adjacent to a 3-, a 4-, and a 5-cycle in   H 3  , contrary to   G ∈ A .  



If   H 3   is adjacent to a 6-face   f 4  , then by Lemma 3 (ii), a 6-cycle   B (  f 4  )   is adjacent to a 3-, a 4-, and a 5-cycle, which are in   H 3  , contrary to   G ∈ A  .









□





For Corollary 3 (i), it is proved by the fact that every   5 +  -vertex is not adjacent to four consecutive bounded 3-faces. Thus, each   5 +  -vertex has at least two   4 +  -faces. For Corollary 3 (ii), it is proved by Lemmas 5 (iii) and (iv) that each 3-face in   H 2 +   is not adjacent to a 5-face. Thus, each   5 +  -vertex has at least three   4 +  -faces.



Corollary 3.

Let v be a k-vertex in G where   v ∉ V (  C 0  )   and   k ≥ 5 .   It follows that:




	(i)

	
v is incident to at most   k − 2   bounded 3-faces;




	(ii)

	
v is incident to at most   k − 3   bounded 3-faces, if v has an incident 5-face.











Proof. 

If v is incident to   k − 1   bounded 3-faces, then there are four consecutive bounded faces forming a 4-cluster that is not a wheel, contrary to   G ∈ A  . This proves (i). It follows from Lemmas 5 (iii) and (iv) that each 3-face in a   2 +  -cluster is not adjacent to a 5-face. Thus, each   5 +  -vertex incident to a 5-face must be incident to at least three   4 +  -faces. This proves (ii). □





Lemma 6

(Lemma 3.6 in [14]).   C (  l 1  , … ,  l k  )   is defined to be a cycle   C =  x 1  …  x m    with k internal chords such that   x 1   is their common endpoint and   V  ( C )  ∩ V  (  C 0  )  = ∅  . Suppose   x 2   or   x m   is not the endpoint of any chords in   C .   If   d (  x 1  ) ≤ k + 3 ,   then some   i ∈ { 2 , 3 , … , m }   satisfies   d (  x i  ) ≥ 5   (See the proof in Lemma A4).





Lemma 7.

Let a 4-vertex v be incident to bounded faces    f 1  , … ,  f 4    in cyclic order and let   F = B  (  f 1  )  ∪ B  (  f 2  )   , where   V  ( F )  ∩ V  (  C 0  )  = ∅ .   If    ( d  (  f 1  )  , d  (  f 2  )  )  =  ( 3 , 3 )    or   ( 3 , 5 )  , then there is a vertex   w ∈ V ( F ) − { v }   such that   d ( w ) ≥ 5 .  





Proof. 

If    ( d  (  f 1  )  , d  (  f 2  )  )  =  ( 3 , 3 )   , it follows from Lemma 3 (ii) that   F = C ( 3 , 3 )  . Moreover, F has exactly one chord, otherwise there is a separating 3-cycle, which contradicts Lemma 1.



If    ( d  (  f 1  )  , d  (  f 2  )  )  =  ( 3 , 5 )   , it follows from Lemma 3 (ii) that   F = C ( 3 , 5 )  . Moreover, F has exactly one chord by Lemma 4.



The proof is complete by Lemma 6. □





Lemma 8.

Let v be a 5-vertex with incident bounded faces    f 1  , … ,  f 5    in a cyclic order. Let   F =  B 1  ∪  B 2  ∪  B 3    where   B i   denote   B (  f i  )   and   V  ( F )  ∩ V  (  C 0  )  = ∅ .   If    ( d  (  f 1  )  , d  (  f 2  )  , d  (  f 3  )  )  =  ( 5 , 3 , 5 )  ,   then there exists   w ∈ V ( F ) − { v }   such that   d ( w ) ≥ 5 .  





Proof. 

Let    B 1  =  x 1   x 2   x 3   x 4   x 5  ,     B 2  =  x 1   x 5   x 6  ,   and    B 3  =  x 1   x 6   x 7   x 8   x 9   , where    x 1  = v .   It follows from Lemma 3 (ii) that    B 1  ∪  B 2    is a   C ( 3 , 5 )   and    B 2  ∪  B 3    is a   C ( 3 , 5 )  . Suppose to the contrary that F is not a   C ( 5 , 3 , 5 )  . Then, there is   i ∈ { 2 , 3 , 4 }   and   j ∈ { 7 , 8 , 9 }   such that    x i  =  x j   . If   i = 2 ,   then a 6-cylcle    x 1   x 5   x 6   x 7   x 8   x 9    has a triangular chord    x 1   x 6    and a chord    x 1   x j  ,   contrary to Lemma 4. If   i = 2 ,   then a 6-cylcle    x 1   x 5   x 6   x 7   x 8   x 9   , has a triangular chord    x 1   x 6    and a chord    x 5   x j  ,   contrary to Lemma 4.



Suppose that   i = 3 .   Note that a 6-cycle   C =  x 1   x 5   x 6   x 7   x 8   x 9    is adjacent to a 3-cycle    x 1   x 5   x 6    and a 5-cycle    x 1   x 6   x 7   x 8   x 9   . It suffices to show that C is adjacent to a 4-cycle to get a contradiction. If    x 3  =  x 7   , then C is adjacent to a 4-cycle    x 1   x 2   x 7   x 6   . If    x 3  =  x 8   , then C is adjacent to a 4-cycle    x 1   x 2   x 8   x 9  .   If    x 3  =  x 9   , then C is adjacent to a 4-cycle    x 1   x 5   x 4   x 9  .  



Thus,   F = C ( 5 , 3 , 5 )  . By Lemma 6, it remains to show that   x 2   or   x m   is not an endpoint to a chord in   C ,   say    x 1   x 2  ⋯  x 9  .   Suppose C has a chord   e =  x 2   x i  ,   otherwise the desired condition is obtained. If    x 2   x 9  ∈ E  ( G )   , then we have separating 3-cycle    x 1   x 2   x 9  ,   contrary to Lemma 1. By Lemma 4, we have   i ∉ { 4 , 5 , 6 } .   Then,    x i  =  x 7    or    x 8  .   By Lemma 4,   x 9   is not adjacent to   x 6   or    x 7  .   Thus, a chord of   C ′   cannot have   x 9   as its endpoint. □





Corollary 4.

Let v be a 4-vertex incident to bounded faces    f 1  , … ,  f 4    in cyclic order, where   f 1   is an inner 5-face,   f 2   is an inner 3-face,   f 3   is an inner 5-face, and   f 4   is an arbitrary face. If   f 3   is a poor 5-face, then   f 1   is a rich 5-face or an improper semi-rich 5-face.





Proof. 

Let    B 1  =  x 1   x 2   x 3   x 4   x 5  ,     B 2  =  x 1   x 5   x 6  ,   and    B 3  =  x 1   x 6   x 7   x 8   x 9   , where    x 1  = v .   Let   f 3   be a poor 5-face. Then,    x 1  ,  x 6  ,  x 7  ,  x 8  ,   and   x 9   are 4-vertices. By Lemma 7,   x 5   is a   5 +  -vertex. If    x 2  ,  x 3  ,   or   x 4   is a   5 +  -vertex, then   f 1   is a rich 5-face. Now suppose that    x 2  ,  x 3  ,   and   x 4   are 4-vertices. If   f 4   is a not a 3-face, then   f 1   is an improper semi-rich 5-face. If   f 4   is a 3-face, then   x 2   is a   5 +  -vertex by considering   f 1   and   f 4   into Lemma 7, a contradiction. □






4. Discharging Process


In this section, we use the discharging procedure to get a contradiction and complete the proof of Theorem 2.



For each vertex and bounded face   x ∈ V ( G ) ∪ F ( G )  , let an initial charge of x be   μ ( x ) = d ( x ) − 4   and let   μ ( D ) = d ( D ) + 4 = 7   where D is the unbounded face. By Euler’s Formula,    ∑  x ∈ V ∪ F   μ  ( x )  = 0  . Let    μ *   ( x )    be the charge after the discharge procedure of   x ∈ V ∪ F .   To get a contradiction, we prove that    μ *   ( x )  ≥ 0   for each   x ∈ V ( G ) ∪ F ( G )   and    μ *   ( D )  > 0 .  



Let   w ( x → f )   be the transferred charge from x to a face f where x is a vertex or a face.



The discharging rules:



(R1) Let v be a 5-vertex where   v ∉ V (  C 0  )   and f be an incident 3-face of v.



   w  ( v → f )  =       1 2  ,      if  v  is  incident  to  some   5 - faces  ,        1 7  ,      if  v  is  not  incident  to  any   5 - faces   and         f  is  not  adjacent  to  any  incident   3 - faces   of  v ,        3 7  ,      if  v  is  not  incident  to  any   5 - faces   and         f  is  adjacent  to  exactly  one  incident   3 - face   of  v .        



(R2) Let v be a   6 +  -vertex where   v ∉ V (  C 0  )   and f be an incident 3-face of v.



   w  ( v → f )  =       2 3  ,      if  v  is  incident  to  some   5 - faces  ,        1 2  ,      if  v  is  not  incident  to  any   5 - faces  .        



Let g be a k-face with k incident vertices, say   v 1  ,    v 2  , ⋯ ,  v k    in cyclic order, and with k adjacent faces, say   f 1  ,    f 2  , ⋯ ,  f k    in cyclic order. Let   f i   be incident to   v i   and   v  i + 1    (i is taken modulo k).



(R3) Let g be a 4-face.



  w  ( g →  f i  )  =  1 3    if   f i   is an inner 3-face.



(R4) Let g be a 5-face.



  w  ( g →  f i  )  =  1 5    if   f i   is a 4-face.



	
Let g be an inner poor 5-face.



  w  ( g →  f i  )  =  1 5    if   f i   is an inner 3-face.



	
Let g be an inner proper semi-rich 5-face.



  w  ( g →  f i  )  =  1 3    if   f i   is an inner 3-face where both   v i   and   v  i + 1    are 4-vertices.



	
Let g be an inner rich 5-face or an inner improper semi-rich 5-face.



   w  ( g →  f i  )  =        1 6  ,      if   f i   is  an  inner  3  - face   where  exactly  one  of   v i   and   v  i + 1    is  a  4  - vertex  .         1 3  ,      if   f i   is  an  inner  3  - face   where  both   v i   and   v  i + 1    are  4  - vertices  .        



	
Let g be an extreme 5-face.



  w  ( g →  f i  )  =  2 3    if   f i   is an inner 3-face.






(R5) Let g be a k-face where   k ≥ 6  .



  w  ( g →  f i  )  =      θ  (  f i  )  + χ  (  f  i + 1   )  θ  (  f  i + 1   )  + χ  (  f  i − 1   )  θ  (  f  i − 1   )  ,     if   f i   is  a   4 −   - face  ,       0 ,     otherwise .        where   χ  (  f i  )  =       1 2  ,     if   f i   is  not  a   4 −   - face  ,       0 ,     otherwise .        and   θ  (  f i  )  =   d ( g ) − 4   d ( g )     for each   i ∈ { 1 , 2 , ⋯ , n }  .



(R6) The unbounded face D incident to a vertex v receives charge   μ ( v )   from v but gives 1 to each of its intersecting 3-faces and 5-faces.



It follows from (R6) that    μ *   ( v )  = 0   for every   v ∈ V (  C 0  ) .   By this, we consider only a vertex v such that   v ∉ V (  C 0  ) .  



CASE 1:v is a 5-vertex.



	
v is incident to some 5-faces.



Then, v has at most two incident 3-faces by Corollary 3. Thus,    μ *   ( v )  ≥ μ  ( v )  − 2 ×  1 2  = 0   by (R1).



	
v is not incident to any 5-faces.



It follows from Corollary 3 that v is incident to at most three 3-faces. Then, v has at most two incident 3-faces, which are adjacent to exactly one incident 3-face of v. Thus,    μ *   ( v )  ≥ μ  ( v )  − 2 ×  3 7  −  1 7  = 0   by (R1).






CASE 2:v is a   6 +  -vertex.



	
v is incident to some 5-faces.



It follows from Corollary 3 that v is incident to not more than   d ( v ) − 3   of 3-faces. Thus,    μ *   ( v )  ≥ μ  ( v )  −  ( d  ( v )  − 3 )  ×  2 3  =  ( d  ( v )  − 4 )  −  (   2 d ( v )  3  − 2 )  =   d ( v )  3  − 2 ≥ 0   by (R2) and   d ( v ) ≥ 6  .



	
v is not incident to any 5-faces.



It follows from Corollary 3 that v is incident to at most   d ( v ) − 2   3-faces. Thus,    μ *   ( v )  ≥ μ  ( v )  −  ( d  ( v )  − 2 )  ×  1 2  =  ( d  ( v )  − 4 )  −  (   d ( v )  2  − 1 )  =   d ( v )  2  − 3 ≥ 0   by (R2) and   d ( v ) ≥ 6  .






For a 3-face in an i-cluster   H i  , we consider the total of charges in the same cluster. That is   μ (  H i  ) = − i   and we show that    μ *   (  H i  )  ≥ 0   instead.



CASE 3:f is a 3-face in an i-cluster, say   H i   where    | V   (  H i  )  ∩ V  (  C 0  )   | ≥ 1   .



	
If    | V   (  H 1  )  ∩ V  (  C 0  )   | ≥ 1   , then    μ *   (  H 1  )  ≥ μ  (  H 1  )  + 1 = 0   by (R6).



	
If    | V   (  H 2  )  ∩ V  (  C 0  )   | = 1   , then each adjacent face of   H 2   is a   6 +  -face by Lemma 5 (iii). Thus,    μ *   (  H 2  )  ≥ μ  (  H 2  )  + 1 + 4 ×  1 3  > 0   by (R5) and (R6).



	
If    | V   (  H 2  )  ∩ V  (  C 0  )   | ≥ 2   , then each 3-face in   H 2   is an extreme 3-face. Thus,    μ *   (  H 2  )  ≥ μ  (  H 2  )  + 2 × 1 = 0   by (R6).



	
If    | V   (  H 3  )  ∩ V  (  C 0  )   | = 1   , then each adjacent face of   H 3   is a   7 +  -face by Lemma 5 (iv). Thus,    μ *   (  H 3  )  ≥ μ  (  H 3  )  + 1 + 5 ×  3 7  > 0   by (R5) and (R6).



	
If    | V   (  H 3  )  ∩ V  (  C 0  )   | = 2   , then   H 3   is adjacent to at least four   7 +  -faces by Lemma 5 (iv). Moreover, there are at least two extreme 3-faces in   H 3  . Thus,    μ *   (  H 3  )  ≥ μ  (  H 3  )  + 2 + 4 ×  3 7  > 0   by (R5) and (R6).



	
If    | V   (  H 3  )  ∩ V  (  C 0  )   | = 3   , then each 3-face in   H 3   is an extreme 3-face. Thus,    μ *   (  H 3  )  ≥ μ  (  H 3  )  + 3 × 1 = 0   by (R6).



	
If    | V   (  H 4  )  ∩ V  (  C 0  )   | = 1   , then there are two extreme 3-faces in   H 4   and each adjacent face of   H 4   is a   7 +  -face by Lemma 5 (iv). If each vertex in   V  (  H 4  )  − V  (  C 0  )    is a 4-vertex, we have    μ *   (  H 4  )  ≥ μ  (  H 4  )  + 2 + 2 ×  9 14  + 2 ×  6 7  > 0   by (R5) and (R6). Otherwise, there is a vertex in   V  (  H 4  )  − V  (  C 0  )   , which is not a 4-vertex, then we have    μ *   (  H 4  )  ≥ μ  (  H 4  )  + 2 + 6 ×  3 7  > 0   by (R1), (R2), (R5), and (R6).



	
If    | V   (  H 4  )  ∩ V  (  C 0  )   | = 2   , then there are at least three extreme 3-faces in   H 4  . Moreover,   H 3   is adjacent to at least three   7 +  -faces by Lemma 5 (iv). Thus,    μ *   (  H 4  )  ≥ μ  (  H 4  )  + 3 × 1 + 3 ×  3 7  > 0   by (R5) and (R6).



	
If    | V   (  H 4  )  ∩ V  (  C 0  )   | = 3   , then each 3-face in   H 4   is an extreme 3-face. Thus,    μ *   (  H 4  )  ≥ μ  (  H 4  )  + 4 × 1 = 0   by (R6).






CASE 4:f is an inner 3-face in a 1-cluster.



Let   v 1  ,    v 2  ,  v 3    be three incident vertices in cyclic order and   f 1  ,    f 2  ,  f 3    be three adjacent faces in cyclic order. Moreover, let   f i   be incident to   v i   and   v  i + 1    (i is taken modulo 3) (See Figure 1).



Subcase 4.1:f is not adjacent to any 5-faces.



Thus,    μ *   ( f )  ≥ μ  ( f )  + 3 ×  1 3  = 0   by (R3) and (R5).



Next, we consider that f is adjacent to some 5-faces in Subcases 4.2 to 4.5. It follows from Lemma 5 (ii) and the assumption of Case 4 that f is not adjacent to a   4 −  -faces.



Subcase 4.2: An inner 3-face f is adjacent to some extreme 5-faces.



WLOG, let   f 1   be an extreme 5-face. Then,   w  (  f 1  → f )  =  2 3    by (R4).



	
  f i   is not an inner 5-face where   i = 2   or 3.



Then,   f i   is an extreme 5-face or a   6 +  -face. Thus,   w  (  f i  → f )  ≥  1 3    by (R4) and (R5). Therefore,    μ *   ( f )  ≥ μ  ( f )  +  2 3  +  1 3  = 0 .  



	
  f 2   and   f 3   are inner 5-faces.



- If   v i   is a   5 +  -vertex for some   i ∈ { 1 , 2 , 3 }  , then   w  (  v i  → f )  =  1 2    by (R1) and (R2). Thus,    μ *   ( f )  ≥ μ  ( f )  +  2 3  +  1 2  > 0  .



- If   v i   is a 4-vertex for each   i ∈ { 1 , 2 , 3 }  , then   w  (  f 2  → f )  ≥  1 5    and   w  (  f 3  → f )  ≥  1 5    by (R4). Thus,    μ *   ( f )  ≥ μ  ( f )  +  2 3  + 2 ×  1 5  > 0 .  






We now consider the cases that each adjacent 5-face of f is not an extreme 5-face.



Subcase 4.3:f is a poor 3-face.



It follows from Lemma 7 that   f i   is not a poor 5-face for each   i ∈ { 1 , 2 , 3 }  . Thus,    μ *   ( f )  ≥ μ  ( f )  + 3 ×  1 3  = 0   by (R4) and (R5).



Subcase 4.4:f is a semi-rich 3-face.



Let   v 1   be a   5 +  -vertex. By symmetry, we only consider two following cases.



	
  f 2   is a poor 5-face.



Then   w  (  f 2  → f )  ≥  1 5    by (R4). Note that if   f i   is an improper semi-rich 5-face, a rich 5-face, or a   6 +  -face where   i ∈ { 1 , 3 }  , then   w  (  f i  → f )  ≥  1 6    by (R4) and (R5).



- If   f i   is a 5-face for   i = 1   or 3, then   f i   is an improper semi-rich 5-face or a rich 5-face by Corollary 4. It follows that   w  (  v 1  → f )  ≥  1 2    by (R1) and (R2). Thus,    μ *   ( f )  ≥ μ  ( f )  + 2 ×  1 6  +  1 5  +  1 2  > 0  .



- If   f 1   and   f 3   are   6 +  -faces, then   w  (  v 1  → f )  ≥  1 7    by (R1) and (R2). Thus,    μ *   ( f )  ≥ μ  ( f )  + 2 ×  1 3  +  1 5  +  1 7  > 0  .



	
  f 2   is a   5 +  -face but not a poor 5-face.



Then   w  (  f 2  → f )  ≥  1 3    by (R4) and (R5). If   f 1   and   f 3   are   6 +  -faces, then    μ *   ( f )  ≥ μ  ( f )  + 3 ×  1 3  = 0   by (R5). If   v 1   is a   6 +  -vertex and   f 1   or   f 3   is a 5-face, then    μ *   ( f )  ≥ μ  ( f )  +  1 3  +  2 3  = 0   by (R2). Thus, it remains to check the case that   f 1   or   f 3   is a 5-face and   v 1   is a 5-vertex. Note that   w  (  v 1  → f )  ≥  1 2    by (R1).



- If   f 1   and   f 3   are 5-faces, then   f i   is a rich 5-face for   i = 1   or 3 by Lemma 8. It follows that   w  (  f i  → f )  =  1 6    by (R4). Thus,    μ *   ( f )  ≥ μ  ( f )  +  1 3  +  1 2  +  1 6  = 0  .



- If   f 1   is a 5-face and   f 3   is a   6 +  -face, then   w  (  f 3  → f )  ≥  1 3    by (R5). Thus,    μ *   ( f )  ≥ μ  ( f )  + 2 ×  1 3  +  1 2  = 0  .






Subcase 4.5:f is an inner rich 3-face.



Let   v 1   and   v 2   be   5 +  -vertices. Recall that    f 1  ,  f 2   , and   f 3   are inner   5 +  -faces and at least one of them is a 5-face. By symmetry, we only consider two following cases.



	
  f 1   is a 5-face or   f 2   and   f 3   are 5-faces.



That makes   v 1   and   v 2   incident to some 5-faces. Then,   w  (  v 1  → f )  ≥  1 2    and   w  (  v 2  → f )  ≥  1 2    by (R1) and (R2). Thus,    μ *   ( f )  ≥ μ  ( f )  + 2 ×  1 2  = 0  .



	
  f 1   is a   6 +  -face and either   f 2   or   f 3   is a   6 +  -face.



WLOG, let   f 2   be a 5-face. That makes   v 2   incident to some 5-faces. Then   w  (  f 1  → f )  ≥  1 3    and   w  (  f 3  → f )  ≥  1 3    by (R5) and   w  (  v 2  → f )  ≥  1 2    by (R1) and (R2). Thus,    μ *   ( f )  ≥ μ  ( f )  + 2 ×  1 3  +  1 2  > 0  .






CASE 5:f is a 3-face in a 2-cluster   H 2   where    | V   (  H 2  )  ∩ V  ( D )   | = 0   .



Let   H 2   be a 4-cycle    v 1   v 2   v 3   v 4    with a chord    v 1   v 3   . Let   f 1  ,    f 2  ,  f 3  ,  f 4    be four adjacent faces of   H 2   in cyclic order. Moreover, let   f i   be incident to   v i   and   v  i + 1    (i is taken modulo 4) (See Figure 2). It follows from Lemma 5 (iii) that   f 1  ,    f 2  ,  f 3   , and   f 4   are   6 +  -faces. By symmetry, we only consider two following cases.



	
  v 1   and   v 3   are 4-vertices.



Then   w  (  f i  →  H 2  )  ≥  1 2    for   i ∈ { 1 , 2 , 3 , 4 }   by (R5). Thus,    μ *   (  H 2  )  ≥ μ  (  H 2  )  + 4 ×  1 2  = 0  .



	
  v 1   is a   5 +  -vertex and   v 3   is a   4 +  -vertex.



Then   w  (  v 1  →  H 2  )  ≥ 2 ×  3 7    by (R1) and (R2), and   w  (  f i  →  H 2  )  ≥  1 3    for   i ∈ { 1 , 2 , 3 , 4 }   by (R5). Thus,    μ *   (  H 2  )  ≥ μ  (  H 2  )  + 4 ×  1 3  + 2 ×  3 7  > 0  .






CASE 6:f is a 3-face in a 3-cluster   H 3   where    | V   (  H 3  )  ∩ V  ( D )   | = 0   .



Let   H 3   be a 5-cycle    v 1   v 2   v 3   v 4   v 5    with two chords    v 1   v 3    and    v 1   v 4   . Let   f 1  ,    f 2  ,  f 3  ,  f 4  ,  f 5    be five adjacent faces of   H 3   in cyclic order. Moreover, let   f i   be incident to   v i   and   v  i + 1    (i is taken modulo 5). Note that   f 1   and   f 5   may be the same face (See Figure 3). It follows from Lemma 5 (iv) that   f 1  ,    f 2  ,  f 3  ,  f 4   , and   f 5   are   7 +  -faces. By symmetry, we only consider the two following cases.



	
  v 3   and   v 4   are 4-vertices.



Then   w  (  f 1  →  H 3  )  ≥  3 7    and   w  (  f 5  →  H 3  )  ≥  3 7    by (R5),   w  (  f 2  →  H 3  )  ≥  9 14    and   w  (  f 4  →  H 3  )  ≥  9 14    by (R5), and   w  (  f 3  →  H 3  )  =  6 7    by (R5). Thus,    μ *   (  H 3  )  ≥ μ  (  H 3  )  + 2 ×  3 7  + 2 ×  9 14  +  6 7  = 0  .



	
  v 3   is a   5 +  -vertex and   v 4   is a   4 +  -vertex.



Then   w  (  v 3  →  H 3  )  ≥ 2 ×  3 7    by (R1) and (R2), and   w  (  f i  →  H 3  )  ≥  3 7    for   i ∈ { 1 , 2 , 3 , 4 , 5 }   by (R5). Thus,    μ *   (  H 3  )  ≥ μ  (  H 3  )  + 7 ×  3 7  = 0 .  






CASE 7:f is a 3-face in a 4-cluster   H 4   where    | V   (  H 4  )  ∩ V  ( D )   | = 0   .



Let   H 4   be the wheel   W 5   where   v 5   is a hub and   v 1  ,   v 2  ,  v 3  ,   and   v 4   are external vertices in cyclic order. Let   f 1  ,    f 2  ,  f 3  ,  f 4    be four adjacent faces of   H 4   in cyclic order. Moreover, let   f i   be incident to   v i   and   v  i + 1    (i is taken modulo 4) (See Figure 4). By Lemma 5 (iv),   f 1  ,    f 2  ,  f 3   , and   f 4   are   7 +  -faces. Moreover, at least two vertices in   {  v 1  ,  v 2  ,  v 3  ,  v 4  }   are   5 +  -vertices by Lemma 7. By symmetry, we only consider the three following cases.



	
  v 1   and   v 2   are   5 +  -vertices and   v 3   and   v 4   are 4-vertices.



Then   w  (  f 1  →  H 4  )  ≥  3 7   ,   w  (  f 2  →  H 4  )  ≥  9 14   ,   w  (  f 4  →  H 4  )  ≥  9 14   ,   w  (  f 3  →  H 4  )  =  6 7    by (R5),   w  (  v 1  →  H 4  )  ≥ 2 ×  3 7    and   w  (  v 2  →  H 4  )  ≥ 2 ×  3 7    by (R1) and (R2). Thus,    μ *   (  H 4  )  ≥ μ  (  H 4  )  + 2 ×  9 14  +  6 7  + 5 ×  3 7  > 0  .



	
  v 1   and   v 3   are   5 +  -vertices and   v 2   and   v 4   are 4-vertices.



Then   w  (  f i  →  H 4  )  ≥  9 14    for   i ∈ { 1 , 2 , 3 , 4 }   by (R5), and   w  (  v 1  →  H 4  )  ≥ 2 ×  3 7    and   w  (  v 3  →  H 4  )  ≥ 2 ×  3 7    by (R1) and (R2). Thus,    μ *   (  H 4  )  ≥ μ  (  H 4  )  + 4 ×  9 14  + 4 ×  3 7  > 0  .



	
   v 1  ,  v 2   , and   v 3   are   5 +  -vertices and   v 4   is a   4 +  -vertex.



Then   w  (  f i  →  H 4  )  ≥  3 7    for   i ∈ { 1 , 2 , 3 , 4 }   by (R5) and   w  (  v i  →  H 4  )  ≥ 2 ×  3 7    for   i ∈ { 1 , 2 , 3 }   by (R1) and (R2). Thus,    μ *   (  H 4  )  ≥ μ  (  H 4  )  + 10 ×  3 7  > 0  .






CASE 8:f is a 4-face adjacent to an inner 3-face, say h.



Since h is an inner 3-face, we have   | B ( f ) ∩ B ( D ) | ≤ 2   where D is the unbounded 3-face. Consequently, there are at least two adjacent faces of f, which are not h and D. Moreover, they are   5 +  -faces by Lemma 5 (i). Thus    μ *   ( f )  ≥ μ  ( f )  −  1 3  + 2 ×  1 5  > 0   by (R3), (R4), and (R5).



CASE 9:f is a 5-face.



	
Let f be adjacent to some 4-faces.



Then f is not adjacent to any 3-faces by Lemma 5 (ii). Thus,    μ *   ( f )  ≥ μ  ( f )  − 5 ×  1 5  = 0   by (R4).



	
Let f be an inner poor 5-face.



Then    μ *   ( f )  ≥ μ  ( f )  − 5 ×  1 5  = 0   by (R4).



	
Let f be an inner semi-rich 5-face.



- If f is a proper semi-rich 5-face, then   B ( f )   has three edges with two 4-endpoints. Thus,    μ *   ( f )  ≥ μ  ( f )  − 3 ×  1 3  = 0   by (R4).



- If f an improper semi-rich 5-face, then   B ( f )   has at most two edges with two 4-endpoints and at most two edges with exactly one   5 +  -endpoint. Thus,    μ *   ( f )  ≥ μ  ( f )  − 2 ×  1 3  − 2 ×  1 6  = 0   by (R4).



	
Let f be an inner rich 5-face.



Then f has at least two incident   5 +  -vertices.



If two incident   5 +  -vertices are not adjacent in   B ( f )  , then   B ( f )   has at most one edge with two 4-endpoints. Thus,    μ *   ( f )  ≥ μ  ( f )  −  1 3  − 4 ×  1 6  = 0   by (R4). It remains to consider the case that f has exactly two incident   5 +  -vertices and they are adjacent in   B ( f ) .   Then   B ( f )   has two edges with two 4-endpoints and two edges with exactly one   5 +  -endpoint. Thus,    μ *   ( f )  ≥ μ  ( f )  − 2 ×  1 3  − 2 ×  1 6  = 0   by (R4).



	
Let f be an extreme 5-face.



Then f has at most an adjacent inner 3-face. Thus,    μ *   ( f )  ≥ μ  ( f )  + 1 − 3 ×  2 3  = 0   by (R4) and (R6).






CASE 10:f is an m-face where   m ≥ 6  .



Then, by (R5) we have   w  ( f →  f i  )  ≤  ( 1 − 2 χ  (  f i  )  )  θ  (  f i  )  + χ  (  f  i + 1   )  θ  (  f  i + 1   )  + χ  (  f  i − 1   )  θ  (  f  i − 1   )   .


      μ *   ( f )      = μ  ( f )  −  ∑  i = 1  m  w  ( f →  f i  )           ≥ μ  ( f )  −  ∑  i = 1  m   (  ( 1 − 2 χ  (  f i  )  )  θ  (  f i  )  + χ  (  f  i + 1   )  θ  (  f  i + 1   )  + χ  (  f  i − 1   )  θ  (  f  i − 1   )  )           = μ  ( f )  −  ∑  i = 1  m   ( θ  (  f i  )  − 2 χ  (  f i  )  θ  (  f i  )  + 2 χ  (  f i  )  θ  (  f i  )  )           = m − 4 − m (   m − 4  m  )          = 0 .     











CASE 11: The unbounded face D.



Let the number of intersecting 3-faces and 5-faces of D be denoted by    f ′  .   Let   E (  C 0  , V  ( G )  −  C 0  )   denote the set of edges between   V  ( G )  −  C 0    and   C 0   where this set has size   e (  C 0  , V  ( G )  −  C 0  ) .   Then by (R6),


      μ *   ( D )      = 3 + 4 +  ∑  v ∈  C 0     ( d  ( v )  − 4 )  −  f ′           = 1 +  ∑  v ∈  C 0     ( d  ( v )  − 2 )  −  f ′           = 1 + e  (  C 0  , V  ( G )  −  C 0  )  −  f ′  .     











So we may consider that D sends charge 1 to each edge   e ∈ E (  C 0  , V  ( G )  −  C 0  )  . So each intersecting 3-face and 5-face contains at least two edges in   E (  C 0  , V  ( G )  −  C 0  )  . It follows that   e  (  C 0  , V  ( G )  −  C 0  )  −  f ′  ≥ 0  . Thus,    μ *   ( D )  > 0 .  



This completes the proof.




5. Conclusions


We prove that every planar graph without 6-cycles simultaneously adjacent to 3-cycles, 4-cycles, and 5-cycles is DP-4-colorable. This result is a special case of two following open problems.



1. Every planar graph without i-cycles simultaneously adjacent to j-cycles, k-cycles, and l-cycles is DP-4-colorable for   { i , j , k , l } = { 3 , 4 , 5 , 6 }  .



2. Every planar graph without 3-, 4-, 5-, and 6-cycles that are pairwise adjacent is DP-4-colorable.
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Appendix A


Lemma A1

([14]). G has no separating 3-cycles.





Proof. 

Suppose to the contrary that G contains   C 0  , which is a separating 3-cycle. Consider a 3-cycle C, which is precolored. Note that C and   C 0   may be different. By symmetry, one may assume   V  ( C )  ⊆ V  (  C 0  )  ∪ i n t  (  C 0  )  .   By minimality, a precoloring can be extended from C to   V  (  C 0  )  ∪ i n t  (  C 0  )  .   After   C 0   is colored, one can extend the coloring of   C 0   to   e x t (  C 0  )  . In this way, we obtain a DP-4-coloring of G, a contradiction. □





To prove Lemmas A3 and A4, Ref. [14] gave the definition of residual list assignment and Lemma A2 as follows.



Let G be a graph with a list assignment L and let H be its cover. Let F be an induced subgraph of G and    G ′  = G − F .   A restriction of L on   G ′   is a list assignment, say   L ′   such that    L ′   ( u )  = L  ( u )    for every vertex u in    G ′  .  



If a graph    H ′  = H  [  {  { v }  × L  ( v )  : v ∈ V  (  G ′  )  }  ]  ,   then we say   H ′   is a restriction of H on   G ′  . Assume   G ′   has an   (  H ′  ,  L ′  )  -coloring such that   I ′   is an independent set in   H ′   with    |   I ′   | = | V  ( G )  | − | V  ( F )  | .   



Define a residual list assignment   L *   of F to be


   L *   ( x )  = L  ( x )  −  ⋃  u x ∈ E ( G )    {  c ′  ∈ L  ( x )  :  ( u , c )   ( x ,  c ′  )  ∈ E  ( H )   and   ( u , c )  ∈  I ′  }   








for every   x ∈ V ( F ) .  



Define residual cover   H *   to be   H [  {  { x }  ×  L *   ( x )  : x ∈ V  ( F )  }  ] .  



Lemma A2.

Let   I ′   be an   (  H ′  ,  L ′  )  -coloring of    G ′  .   It follows that a residual cover   H *   becomes a cover of F with a list assignment    L *  .   Additionallay, F is   (  H *  ,  L *  )  -colorable implies G is   ( H , L )  -colorable.





Proof. 

The first part follows immediately from the definitions of a cover and a residual cover.



Suppose that F is   (  H *  ,  L *  )  -colorable. Consequently,   H *   has an independent set   I *   with the size    |   I *   | = | F | .    The definition of residual cover implies that no edges connect between   H *   and    I ′  .   Furthermore,   I ′   and   I *   are disjoint. Put them together, we have   I =  I ′  ∪  I *    is an independent set of H such that   | I | = ( | V ( G ) | − | V ( F ) | ) + | V ( F ) | = | V ( G ) | .   So we can conclude that G is   ( H , L )  -colorable as desired. □





Lemma A3

([14]). Each vertex in   i n t (  C 0  )   has degree of at least four.





Proof. 

Suppose otherwise that G has a vertex v of degree less than   4 .   Let L be a 4-assignment in G and H be a cover of G in which G has no   ( H , L )  -coloring. By minimality, we have    G ′  = G − x   with an   (  H ′  ,  L ′  )  -coloring where   L ′   (respectively,   H ′  ) is a restriction of L (respectively, H) on    G ′  .   Thus, there is an independent set   I ′   with    |   I ′   | = |   G ′   |    in    H ′  .   Let   L *   be a residual list assignment. Since   d ( x ) ≤ 3   and   | L ( v ) | = 4 ,   it follows that    |   L *    ( v )  | ≥ 1 .    It is obvious that   { ( v , c ) }   with   c ∈  L *   ( v )    is an independent set in   G [ { v } ] .   It follows that   G [ { v } ]   is   (  H *  ,  L *  )  -colorable. Lemma A2 yields that G is   ( H , L )  -colorable. This contradiction completes the proof. □





Lemma A4.

Assume   C (  l 1  , … ,  l k  )   is a cycle   C =  v 1  …  v m    with k internal chords that share an endpoint   v 1   with   V  ( C )  ∩ V  (  C 0  )  = ∅  . Suppose   v m   is not an endpoint of a chords in   C .   If   d (  v 1  ) ≤ k + 3 ,   then there exists    v i  ∈ V  ( C )  −  {  v 1  }    such that   d (  v i  ) ≥ 5 .  





Proof. 

Let   v m   be not an endpoint of a chord in   C .   Suppose otherwise that   d (  v i  ) ≤ 4   for each    v i  ∈ V  ( C )  −  {  v 1  }  .   Assume G has a 4-assignment L with a cover H in which G has no   ( H , L )  -coloring. By minimality,    G ′  = G −  {  v 1  , … ,  v m  }    has an   (  H ′  ,  L ′  )  -coloring where   L ′   (respectively,   H ′  ) is a restriction of L (respectively, H) in    G ′  .   Thus an independent set   I ′   in   H ′   with    |   I ′   | = |   G ′   |    exists.



Let   L *   be a residual list assignment on   F .   From   | L ( v ) | = 4   for every   v ∈ V ( G ) ,   it follows that    |   L *   (  v 1  )   | ≥ 3    and    |   L *    ( v )  | ≥ 3    for each vertex   v ∈ V ( C )   such that    v 1  v   is an edge whereas    |   L *   (  v i  )   | ≥ 2    for each remaining vertex   v i   in   V ( C ) .   Assume   H *   is a residual cover of   F .   Recall that   v m   is not an endpoint of a chord in   C .   It follows that there exists a color c in    L *   (  v 1  )    with    |   L *   (  v m  )  −  {  c ′  :  (  v 1  , c )   (  v m  ,  c ′  )  ∈ E  (  H *  )  }   | ≥ 2 .    Greedily coloring   v 2  ,    v 3  , … ,  v m    sequently, we have an independent set   I *   where its size    |   I *   | = m = | F | .    It follows that F is   (  H *  ,  L *  )  -colorable. By Lemma A2, we have G is   ( H , L )  -colorable, which is a contradiction. □
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Figure 1. The configuration in CASE 4. 
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Figure 2. The configuration in CASE 5. 
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Figure 3. The configuration in CASE 6. 
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Figure 4. The configuration in CASE 7. 
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