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Abstract: With developments in artificial intelligence (Al), it is possible for novel applications to
utilize deep learning to compose music by the format of musical instrument digital interface (MIDI)
even without any knowledge of musical theory. The composed music is generally evaluated by
human-based Turing test, which is a subjective approach and does not provide any quantitative
criteria. Therefore, objective evaluation approaches with many general descriptive parameters are
applied to the evaluation of MIDI data while considering MIDI features such as pitch distances,
chord rates, tone spans, drum patterns, etc. However, setting several general descriptive parameters
manually on large datasets is difficult and has considerable generalization limitations. In this paper,
an enhanced evaluation method based on random masking and sequence-to-sequence (Seq2Seq)
model is proposed to evaluate MIDI data. An experiment was conducted on real MIDI data, generated
MIDI data, and random MIDI data. The bilingual evaluation understudy (BLEU) is a common MIDI
data evaluation approach and is used here to evaluate the performance of the proposed method in a
comparative study. In the proposed method, the ratio of the average evaluation score of the generated
MIDI data to that of the real MIDI data was 31%, while that of BLEU was 79%. The lesser the ratio,
the greater the difference between the real MIDI data and generated MIDI data. This implies that the
proposed method quantified the gap while accurately identifying real and generated MIDI data.

Keywords: music evaluation; musical instrument digital interface; sequence-to-sequence model;
random masking; deep learning

MSC: 68T37

1. Introduction

With rapid developments in the field of artificial intelligence (AI), deep learning has
been implemented in many areas. Deep learning [1,2] is utilized for extracting hidden
features of data, such as texts, images, and sounds, and then learning the inherent rules
from the hidden features. In deep learning, neural networks [3,4] simulate the human brain
for analysis and learning data, which imitates the data interpretation mechanism of the
human brain for proposes such as data mining [5], machine translation [6], multimedia
learning [7], image reconstruction [8], recommendation [9], and speech technology [10].
Recently, the potential of deep learning in the field of music has been explored and has
applications such as genre classification [11-13], music recommendation [14,15], and music
generation [16,17]. Deep-learning-based applications can be used to compose music even
without the knowledge of music theory.

However, there is a need to evaluate the quality of the generated musical instrument
digital interface (MIDI) data. These data are normally evaluated using their similarity
to real MIDI data by tests such as the Turing test [18], which subjectively evaluates the

Mathematics 2022, 10, 2747. https:/ /doi.org/10.3390/math10152747

https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math10152747
https://doi.org/10.3390/math10152747
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3732-5346
https://doi.org/10.3390/math10152747
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10152747?type=check_update&version=1

Mathematics 2022, 10, 2747

20f17

data using parameters such as pitch distances, chord rates, tone spans, drum patterns, etc.
There have been other attempts to replace subjective human assessments by objective MIDI
data evaluation approaches based on statistics and algorithms [19-22]. As a large number
of general descriptive parameters [23] for the objective MIDI data evaluation approach
have to be set manually, there approaches have some limitations in generalization and are
challenging to apply to large datasets. General descriptive parameters refer to descriptions
of musical features that are set as evaluation metrics, including pitch, pitch distance, chord
rate, pitch span, drum pattern, etc.

MIDI data evaluations are categorized into subjective evaluation and objective eval-
uation. Most subjective evaluation approaches follow the Turing test, which is used to
determine whether MIDI data are composed by a human or using deep learning. To
this end, evaluating the quality of the MIDI data with subjective evaluations utilizing
query metrics based on musical theory is critical [24]. However, subjective evaluation of
MIDI data results in prejudiced outcomes, in which different people will achieve distinct
evaluation results when evaluating the same MIDI data, and it is time-consuming as well.

The objective evaluation of MIDI data was introduced as a tool for performing subjec-
tive evaluation. Numerous studies have utilized objective evaluations of music [19-22,25,26],
classified into the following types. The first type is statistical metric [19-22], which evalu-
ates target samples based on the common features or value ranges obtained by statistical
analysis on reference data. Statistical metric goes along with general information about the
music domain, such as pitch range, duration range, polyphonic rate, and drum pattern.
Statistical metric utilizes general knowledge of the music domain to solve the multi-criteria
features and evaluation problems of MIDI data generation tasks [16,17]. Specifically, statisti-
cal metric integrates knowledge in music and enables detailed assessments based on music
features. For example, MuseGAN [19] applies statistical analysis to evaluate MIDI data,
where evaluation metrics include: (1) the ratio of empty bars (EB)—the ratio of bars without
notes to the total number of bars (EB empty bars in music indicates to performer that
they have nothing to play); (2) used pitch classes (UPC)—the number of scale tones used
per bar (scales tones are from 0 to 12); (3) the ratio of “qualified” notes (QN)—a note no
shorter than three time steps to be qualified and is indicative of whether the music is overly
fragmented; (4) drum pattern (DP)—the ratio of notes in 8-beat or 16-beat patterns; and
(5) pitch distance (TD)—the measure of the distance between a pair of tracks. Continuous
RNN-GAN (C-RNN-GAN) [20] is a music generation approach based on continuous recur-
rent neural networks (RNN) with generative adversarial networks (GAN). The evaluation
metrics of this approach are statistical. There are four metrics: (1) tone span—the number
of the steps of the half-tone between the lowest tone and the highest tone in a sample;
(2) polyphony—measure of how often several tones is played simultaneously; (3) scale
consistency—finding the pitch of scale that best matches the standard scale to calculate
scale consistency; and (4) repetitions—measure of the number of repetitions of a short
subsequence. The single-step approach to musical tempo estimation [21] is used to evaluate
single-step tempo directly from spectral features based on convolutional neural network
(CNN) [27], which is a feedforward neural network with deep structure that includes
convolutional computation. Multi-pitch detection, voice separation, metrical alignment,
note value detection, and harmonic analysis (MV2H) [22] based on musical knowledge
are introduced. Statistical metrics exhibit considerable interpretability and versatility as
well as effectiveness. However, statistical metrics are complex and manually set; these
statistical metrics cannot cover the features of MIDI data globally. Another limitation of
these statistical metrics is that excellent performance on one criterion does not guarantee
excellent performance on other criteria.

The second type is the probabilistic metric [25,26], which calculates probability of
target samples as score for the evaluation by analyzing reference data. Probabilistic metric
is based on likelihood or density estimation without any domain knowledge about music.
The difference compared with statistical metric is that probabilistic metric tends to consider
features comprehensively rather than separately. Recently, the probabilistic metric has been
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increasingly used in MIDI data generation tasks to evaluate the quality of the generated
MIDI data. It entails analyzing MIDI data features without general descriptive parame-
ters. For example, COCONET [25], a frame-wise evaluation approach, was introduced
to calculate the log-likelihood between real and generated MIDI data at each time step.
Log-likelihood is the natural logarithm of the likelihood, which models the joint probability
of observed data to estimate the probability of the unknown data. Even with an increase
in sample size, log-likelihood exhibits excellent convergence and low computational com-
plexity. Bilingual evaluation understudy (BLEU) metric [26] was first used in machine
translation, and it is currently most widely used in the field of music evaluation. BLEU is
used to model the fitting of discrete piano key patterns and is advantageous owing to its
fast computation and low computational costs.

In this paper, the enhanced evaluation method of MIDI data based on random mask-
ing and sequence-to-sequence (Seq2Seq) model [28] with attention mechanism [29] was
proposed to evaluate MIDI data automatically without general descriptive parameters,
where random masking is a common preprocessing approach to mask input sequence
randomly for encoders and Seq2Seq implements the conversion from one sequence to
another sequence. The proposed method is classified into two phases: the training and
execution phases. The training phase consists of preprocessor [30], Seq2Seq model trainer,
and indices equalizer. In the training phase, the Seq2Seq model is trained to extract hidden
features using real MIDI data. To improve the feature extraction capability of the Seq2Seq
model trainer, a preprocessor is used to convert notes to vectors and mask real MIDI data.
Finally, the indices equalizer calculates the accuracy. The execution phase consists of the
preprocessor, Seq2Seq model executer, and score calculator. In the execution phase, the
preprocessor and Seq2Seq model executer are joined to calculate an evaluation score. First,
the preprocessor is used to convert notes to vectors and mask the generated MIDI data,
similar to the training phase. Next, the trained Seq2Seq model is used within the Seq2Seq
model executer, which extracts hidden features. Finally, the score calculator calculates an
evaluation score. The main contributions of the proposed method are as follows:

(1)  When the accuracy of estimating the masked part of the masked sequence reaches the
threshold, the coverage area of the mask is expanded, thus prompting the Seq2Seq
model to estimate more unknowns with less information.

(2) In the enhanced evaluation method, the Seq2Seq model and attention mechanism are
used; the ability of the model to be used globally is critical.

(3) The random mask processor and Seq2Seq model analyze the musical features of the
MIDI data without manual setting of the general descriptive parameters. Hence, we
achieve automatic evaluation of the quality of the generated MIDI data.

2. Related Works

In this section, the core categories of MIDI data objective evaluation approaches, such
as statistical metrics [19-22] and probabilistic metrics [25,26,31], used in recent MIDI data
generation studies are discussed in detail.

2.1. MIDI Data Objective Evaluation Approaches

Statistical metrics denote various human interpretable standard metrics, also called
statistical descriptors of music, which were introduced to address multi-criteria features
and evaluation problems of MIDI data generation systems [32]. Statistical criteria are
defined by the range of values for each feature summed up by analyzing real MIDI data.
Specifically, these metrics integrate musical knowledge as features, such as pitch range,
duration range, polyphonic rate, and drum pattern. These metrics can be evaluated in
detail based on musical feature rules. For example, MuseGAN [19] introduced some intra-
track and inter-track objective metrics (EB, UPC, QN, DP, and TD) for evaluating MIDI
data. In C-RNN-GAN [20], rhythm-related (modeling of polyphony, scale consistency,
repetitions, and tone span) metrics were used to evaluate the generated MIDI data. CNN
can improve music information retrieval performance for procedures, such as single-step
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tempo estimation [21]. In automatic music transcription (AMT), MV2H [22] was introduced
for both multi-pitch detection and musical analysis. Statistical metrics in which domain
knowledge is considered exhibits not only interpretability but also versatility and effec-
tiveness. However, music rules are diverse and changeable, and hence, selecting suitable
statistical metrics can be challenging. Additionally, these metrics cannot cover the global
features of MIDI data. Another limitation of these metrics is that excellent performance
on one criterion cannot guarantee similar performance on other criteria. The proposed
method is based on probabilistic metric, which can be used to automatically analyze related
musical features without general descriptive parameters to improve this problem. For
example, COCONET [25] was evaluated based on log-likelihood, which exhibits excellent
convergence and low computational cost. BLEU [26] is one of the most popular metrics
for evaluating Seq2Seq tasks, whose goal is conversion from one sequence to another
sequence in the domain of machine translation, text summarization, and chatbot. BLEU
is a computationally fast and low-cost approach. However, its generalization ability and
performance are not satisfactory. A variant of the fundamental frequency (fy) [31] was pro-
posed, in which an improvement over the existing single fp metric was proposed. For the
variant of fy, it was possible to represent the estimated voicing as a continuous likelihood
instead of a binary quantity, and a weighting on pitch accuracy was introduced. To assess
the accuracy of the estimation of fj, a common strategy of evaluating the output of the
algorithm against manually annotated references was adopted. However, manual genera-
tion of fy annotations is laborious and sometimes not feasible, which further necessitates
automatic approaches.

2.2. Comparison of Objective MIDI Data Evaluation Approaches

Table 1 details the differences between the existing objective MIDI data evaluation
approaches and the proposed method. MIDI data objective evaluations were compared
based on four items: (1) metric type—statistical or probabilistic; (2) metrics—what eval-
uation criteria or approaches were used; (3) general descriptive parameters—indicative
of whether there was manual setting of general descriptive parameters; and (4) global
consideration—whether they considered and analyzed based on global features. Tradi-
tional MIDI data objective evaluation approaches mandate setting of general descriptive
parameters and rules. However, the proposed method evaluates MIDI data by automat-
ically analyzing MIDI data features without setting general descriptive parameters. In
addition, the Seq2Seq model is based on an attention mechanism, which is a mechanism
that can focus on important information by considering global contents.

Table 1. Differences between previous approaches and the proposed method.

General

Research Work Metric Type Metrics Descriptive G.lobal .
Consideration
Parameters
MuseGAN [19] Statistical EB, UPC, QN, DP, TD v/ v
C-RNN-GAN [20] Statistical Polyphony, Scale Consistency, Repetitions, v
Tone Span
Voice Separation, Multi-pitch Detection,
MV2H [22] Statistical Metrical Alignment, Note Value Detection, v v
etc.
COCONET [25] Probabilistic Log-likelihood X X
BLEU [26] Probabilistic BLEU X X
The Proposed — Seq2Seq Model and Random Mask
Method Probabilistic Processor X v
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3. Enhanced Evaluation Method

In this section, an enhanced evaluation method was proposed to objectively evaluate
the generated MIDI data composed using Al models. The proposed method is an evaluation
method that automatically extracts musically meaningful features.

3.1. Overview

The enhanced evaluation method is categorized into two phases: the training phase
and execution phase. As illustrated in Figure 1, the training phase consists of three parts:
the preprocessor, Seq2Seq model trainer, and indices equalizer. In the preprocessor, real
MIDI data are converted into bar sequence ¢ using a note converter by considering the
notes in each bar. Next, the bar sequence c is converted into the input index sequence s*
and the target index sequence s” by the index converter, where st is used as the input for
the encoder, and sP is used as the input for the decoder after random masking. Finally, the
random mask processor, whose function is to mask the random part of a sequence, masks

each index of the target index sequence s” and outputs the masked sequence mP.

real MIDI

—————

data

Random i : i

Note c Index © Voa Accuracy i

> Mask N '

Converter Converter I ' Calculator i
Processor : : '

1 1 Yy :

Preprocessor i i Indices Equalizer '

mu/‘
h Deiderl

) 4

Figure 1. Training phase of the enhanced evaluation method.

In the Seq2Seq model trainer, the encoder and decoder of the Seq2Seq model are
trained. The input of the encoder is the input index sequence s. The encoder extracts the
hidden feature / from sf. The hidden feature / contains the relationship between the index
and adjacent indices. The inputs of the decoder are masked sequence m" obtained from
preprocessor and the hidden feature k. The goal of decoder is to estimate the masked part
of mP based on h and output the estimated sequence e.

In the indices equalizer, the accuracy a is calculated using the accuracy calculator by
comparing each index in the same position of the estimated sequence e and the target index
sequence s”. As the number of matched indices increases, the accuracy a also increases.
Higher accuracy denotes that the decoder of the Seq2Seq model is trained accurately to
estimate the indices of masked bars in masked sequence mP based on the hidden feature
extracted from the encoder of the Seq2Seq model. The most critical aspect of the training
phase is enabling the Seq2Seq model to gradually estimate the indices of masked bars based
on fewer indices of unmasked bars. As the accuracy a reaches a threshold, the number
of the indices of masked bars in masked sequence mP increases, which means that the
proportion of the masked area increases in the random mask processor. In the random
mask processor, n-gram [33] is used here to represent contiguous masked bars, where the
gram denotes a masked bar, and 7 indicates the number of masked bars.

As displayed in Figure 2, the execution phase consists of three parts: the preprocessor,
Seq25eq model executer, and score calculator. In the preprocessor, generated MIDI data are
converted into the masked sequence mP ', similar to the training phase. However, in this
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generated
MIDI data

preprocessor, the proportion of masking is fixed using the final parameter of the training
phase. To improve the evaluation performance, one of the masking strategies is selected to
be utilized on the generated MIDI data to attain a masked sequence.

Random b pr| Probabili :
Note ¢’ Index P One-Hot L e .ty '
— Mask nEEE » Distribution H——u
Converter Converter Pl Converter i
Processor po Comparer |
Preprocessor i1 Score Calculator .

Seq2Seq Model
Executer is Seq2Seq
Model Trainer trained
after the training phase.

Figure 2. Execution phase of the enhanced evaluation method.

In the Seq2Seq model executer, the encoder and decoder in the trained Seq2Seq model
are used to estimate the indices of masked bars in masked sequence mP'. The encoder
receives the input index sequence sE' as the input to extract hidden feature #’. Each masked
sequence mP " and extracted hidden feature /' are passed to the decoder. In the decoder,
SoftMax function [34] is used to output an estimated probability distribution p. Specifically,
the SoftMax function is an activation function, which can normalize the output of the
network to a probability distribution.

In the score calculator, instead of comparing the target index sequence s” " with the
estimated sequences ¢’, the estimated probability distribution p is compared with the target
index sequence s” " to ensure an accurate evaluation score, as the note combination in music
is non-unique and changeable. A particular note can be combined with various notes in
numerous approaches. Therefore, probability distributions rather than estimated sequence
e’ are used as the criteria when calculating an evaluation score 1. To compare the target

D’ with the estimated probability distribution p using the probability

D

index sequence s
distribution comparer, the target index sequence s " is converted into a vector vP', which
exhibits the same dimension as the estimated probability distribution p through one-hot
converter, based on one-hot encoding [35]. It converts the index into a one-hot vector, and
the one-hot vector consists of one bit with a value 1 and all other bits with value 0. The
higher the evaluation score u is, the more superior the quality of the generated MIDI data.

3.2. Preprocessor

For the preprocessor, real MIDI data are inputted for the training phase and generated
MIDI data for the execution phase. We assume that only one melody track exists in each
MIDI data. Multiple melodies should be considered in future studies. As displayed
in Figure 3, real MIDI data or generated MIDI data are changed into a bar sequence ¢
of the training phase or a bar sequence ¢’ of the execution phase by the note converter.
Each element of a bar sequence, c or ¢/, contains the information of all notes of one bar.
During the training phase, the bar sequence c is converted into two index sequences by the
index converter. The two index sequences are input index sequence s or the target index

sequence sP.
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Input Index Sequence
sE (Training Phase)
or
Bar Sequence s¥" (Execution Phase)
¢ (Training Phase _.Djj]
(Training Phase) L]
real MIDI data ¢'(Execution Phase)
(Training Phase) Note _.| | I | | | [ | { | | Index Target Index Sequence Masked Sequence
or — |—’ — s (Training Phase D (Traini
generated MIDI data | Converter ! Converter ( are ) " (Traug;lg Phase)
(Execution Phase) s?" (Execution Phase) | Random by n-gram mP’ (Execution Phase)
T vk (25 T

bar #1

bar #2

Processor

Figure 3. Preprocessor of the enhanced evaluation method, which consists of the note converter,
index converter, and random mask processor.

During the execution phase, the bar sequence ¢’ is converted into the input index
sequence st or the target index sequence sP
the target index sequence s” b

', as in the case of the training phase. Finally,

" is masked by the random mask processor; therefore,
masked sequences mP or mP" are obtained. The masked bars are determined by the n-gram,
which is controlled by accuracy during the training phase.

The conversion process of the note converter is detailed in Figure 4. The real MIDI
data or generated MIDI data are represented by PianoRoll [36]. The vertical axis represents
pitches, and the horizontal axis represents the durations of the corresponding pitches. Each
bar consists of four columns in the case of 4/4 beats, and each column represents a duration
of a quarter note. We only considered the MIDI data in 4/4 beats and will focus on other
beats in the future. In the bar sequence c or ¢’, the smallest units we considered in each bar
are determined to be 1/16 beats; therefore, the length of each bar is 16. Each element in a
bar of the bar sequence c or ¢’ represents a pitch and an octave. In the “D4”, “D” represents
a pitch and “4” an octave.

or s

real MIDI data (Training Phase) or generated MIDI data (Execution Phase)

bar #3 bar #4 bar #n/2 bar #n/2+1 bar #n/24+2 bar #n/24+3 bar #n/2+4

bar #n

E1 ||

b4

| || I
B ||
I
)
D
& Eﬁ = D4, G4, C4, C4, D4, D4, E4, E4, E4, C4,
qg o :; D4, G4, C4, C4, D4, D4, E4, E4, E4, C4,
g _ED‘S-B D4, G4, C4, C4, e D4, D4, E4, E4, E4, C4,
wnn 2 =
L 'm D 5 ey ; 5 n ceap D : , o)
=) Al a3 G4 G4 C4 C4 E4 D4 D4 D4 Rest
o =
5]
b & 2 i Q2 7 3 @ T &
g 3 5 5 = & g i o 3
=} a = o 5 = = = = =
* * e #*
= 1 o = =
o} (s} v 1)
E=) =] = =]

Figure 4. Conversion process of the note converter.

In the index converter, the bar sequences c or ¢” are converted to the index sequences
s or s’, respectively, based on the note-index lookup dictionary, as presented in Table 2.
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Input Index Sequence

Each note that appears in real MIDI dataset exhibits a unique index in the note-index
lookup dictionary. Furthermore, “Mask” is set to —1 to facilitate the masking operations
of bar sequence c or ¢’. Figure 5 depicts how bar sequence c or ¢’ is converted to input
: E o oF : D oy oD’ : ;
index sequences (s” or s* ) and target index sequence (s~ or s~ ) by using the note-index
lookup dictionary.

Table 2. Note-index lookup dictionary for the note converter.

Note/Mask Index
Rest 0
C3 1
C3# 2
D3 3
D3# 4
E3 5
F3 6
F3# 7
G3 8
B5 36
Mask -1
)
38 2| Ds, G4, c4, c4, D4, D4, E4, E4, E4, c4,
8§ Z| D4, G4, c4, c4, D4, D4, E4, E4, E4, c4,
S op S
5252 D4, G4, c4, G4 - - . D D4, E4, E4, E4, 4,
w53
LE 2 o S5 ) ” , =y > o 5 Eery
SE Z| 63 G4 G4 c4 c4 E4 D4 D4 D4 Rest
Ky
(S
- ~ ) < ~ — ~ ™ < =
p 5 e P £ & & : % T
o Q Q Q . = = = = 3
= #* 3 3* 3*
e — 39y —
(v} 5+ (3] [+
=] el Q K]
3 2 £§7 8
S £l 15 20, 13, 13, 15, S 8£| 15 17, 17, 17, 13!
-] 20, 13, 13, 15, S&E g| 15 17, 17: 7. 13;
E55| 15, 20, 13, 13, |---| 15, 5 & 5| 15 17 17, 7 |
£°3 < ‘203
] sy o 9 ) 5 = = 2 504 o
S’é 8 20 20 13 13 EDE @ 17 15 15 15 0
¥ h;a — o o < o~ £ QV’ QV) —t [\ < =}
** I* * * = + + c_?_ -+ **
5 5 5 5 # S g X ol g
) Q Q Q 5 = = = = 2
3] 3t 3+ 3t 3t
= 5 5 5 z
Q Q ) =

Figure 5. Process of the index converter.

In the random masking processor, the masking strategy with n-gram is adopted on
target index sequence sP b
or mP

or sP'. Therefore, for masking strategy, the masked sequence m
" is obtained, as displayed in Figure 6. The n of n-gram represents the number of
masked bars. Masked bars in masked sequence mP or mP’, which are represented by gray

color, and the indices of masked bars are replaced by —1, where —1 represents the index of
the “Mask”.
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Figure 6. Masking strategy of the random masking processor.

3.3. Seq2Seq Model Trainer

Using the Seq2Seq model trainer, a Seq2Seq model is trained by optimizing itself
considering its model generalization as below. As displayed in Figure 7, the goal of Seq2Seq
model trainer is to train a Seq2Seq model. In the Seq25eq model trainer during the training

as the input and outputs the hidden
D

phase, the encoder receives the input index sequence st

feature h. Next, the output of encoder and masked sequence m
which then outputs estimated sequence e.

Figure 7. Seq2Seq model trainer for the training phase.

are passed to the decoder,

000
«+ 0

As displayed in Figure 8, the encoder of the Seq25eq model consists of the embedding
layer and encoder block. In the embedding layer, position sequence z or z” and input index
sequence st or sE' are embedded into the encoder block. In the encoder block, residual
connection is used for each multi-head attention layer and position-wise feedforward
layer and merged through normalization layer. Multi-head attention mechanism [37] is
an approach that uses multiple attention layers together, which calculates the attention
map based on query and key and outputs the combination of the value and attention map.
The position-wise feedforward layer is a linear layer to deal with the one-dimensional
vector. The normalization layer normalizes each feature of the activations to zero mean
and unit variance. Residual connection is a type of skip connection between layers instead
of throughout. Finally, the encoder blocks outputs the & or &/, which is the hidden feature

E E

extracted from input index sequence s” or s, respectively.
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Figure 8. Encoder of the Seq2Seq model.

As displayed in Figure 9, the decoder of the Seq2Seq model consists of embedding
layers and decoder blocks. In embedding layers, position sequence z or z’ and masked
sequence mP or mP" are embedded into decoder blocks. The decoder blocks exhibit
a structure similar with the encoder block. However, the difference is that two multi-
head attention layers are used to receive the embedded features and the output / or #/,
respectively. Similar to the encoder block, residual connections are also used in the decoder
block for each multi-head attention layer and position-wise feedforward layer and merged
through the normalization layer. Finally, the linear layer is connected to the decoder block
that outputs the result. During the execution phase, the estimated probability distribution
p is directly output through the linear layer with a SoftMax activation function. However,
in the training phase, estimated probability distribution p is also passed into the Argmax
function [38] to obtain the estimated sequence e, where Argmax function finds the index,
which is an indicator of a pitch, of the maximum value in probability distribution.

Decoder Block ||

Attention

m”(Seq2Seq Model Trainer) !
m®" (Seq2Seq Model Executer)é

i Embedding |

Multi-Head
Attention Layer

Normalization
Lay

Attention

Hidden Feature

h (Seq2Seq Model Tr
or

h' (Seq2Seq Model Executer)

Estimated

; Estimated

eq
Model
i Executer)

H - Sequence
i i Probability e

v H ! Distribution (Seq2Seq
} H ' n Madel

! ! ¢ (Seq2S. Trainer)

rainer)

| !Position-wise! ! i
Normalization; : Feedforward | :Normalization |

Multi-Head . Linear

Figure 9. Decoder of the Seq2Seq model.
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The encoder and decoder are optimized by the Equation (1):

—[glogp + (1 —¢g)log(1—p)] 1)

DOI‘

where L is cross-entropy loss. g is one-hot encoding vector of target index sequence s
sP', and p is estimated probability distribution output by the linear layer with SoftMax
activation function.

The proposed method can be easily transferred from small to large datasets while
training. Compared with other traditional evaluation approaches, it exhibits generalization
given that the proposed model does not need to be reconstructed and does not need to

reset general descriptive parameters while expanding datasets.

3.4. Seq2Seq Model Executer

As displayed in Figure 10, in the Seq2Seq model executer, the trained Seq2Seq model
is utilized to evaluate generated MIDI data. The encoder extracts hidden feature i’ from
the input index sequence s'E. The masked sequence mP " obtained from the preprocessor
and the hidden feature h” are passed into the decoder. Numerous differences exist between
the Seq2Seq model executer and Seq2Seq model trainer of the decoder. The decoder in
the Seq2Seq model executer just outputs the estimated probability distribution p by the
SoftMax function without the Argmax function. The estimated probability distribution p is
obtained by the decoder based on hidden feature " and the masked sequence mP". Finally,
the estimated probability distribution p and the target index sequence s'D are passed into
the score calculator described in Section 3.6.

O

O
mmnk g :
et A

Figure 10. Seq2Seq model executer for the execution phase.

..O

3.5. Indices Equalizer

The indices equalizer is used to calculate the accuracy a based on the estimated
sequence e and the target index sequence s as expressed in the following sequence:

L . (=1
0 M where f(T;,1;) is {;Efzizg = ETz #* Zz; ?

where L is the length of sequences. The indices equalizer counts the number of equal indices
within the index sequence s and estimated sequence e at the corresponding position, i € (1, L).
T (1, T,..., 71 € sP)and i (11, M2, ..., 1L € e) are one index that belong to the target
index sequence s” and the estimated sequence e. The accuracy 4 is calculated by using
the indices equalizer, which indicates the degree of correctness of the estimation of the
generated MIDI data.
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3.6. Score Calculator

The evaluation score @y, gram is calculated based on probability distribution by the
tanh function as follows:

2
AP (Pie,j - Pf,j)
N

®)

Dn—gram = 1 — tanh

where N is the number of masked notes, and U is the number of unique notes in the real
MIDI dataset. Each set of pitch differs from that of others. Here, P} ;s the probability

distribution of the ith masked note estimation, and Pit j is the target one-hot vector of the
note, which is in same position with ith masked note.

4. Experiments

The section describes the results of the experiment conducted on the proposed ob-
jective MIDI data evaluation method. First, the Seq2Seq model is trained based on a real
MIDI dataset. Next, the trained Seq2Seq model is used to evaluate the generated MIDI
data. Simultaneously, real MIDI data and random MIDI data are evaluated for comparing
with the proposed method. BLEU [26] is widely used for objective evaluation of music.
Therefore, in this study, BLEU was used as a baseline approach for the comparison.

4.1. Experimental Environment

MIDI is a communication standard format for storing musical information. The
experiments of the proposed method were conducted on OpenEWLD, which is a subset
of the Wikifonia Leadsheet Dataset (EWLD) [39] reduced to only copyright-free songs.
OpenEWLD is an extraction of 502 songs in MusicXML format from EWLD. Converting
between MusicXML format and MIDI format is highly convenient.

In the training phase, for verifying the performance of the Seq25eq model, accuracy and
loss values were obtained to determine whether the Seq2Seq model performed satisfactorily.

Table 3 details the hyper parameters used during the training phase. The input
dimension and output dimension are 38, representing the number of unique pitches. In
the MIDI format, 128 unique pitches exist, but only 38 unique notes appeared in the real
MIDI dataset. The embedding dimension was set to 256. The encoder block number and
decoder block number were set to 3. The encoder head and decoder head were set to 8,
which indicate that each multi-head attention layer had eight heads in the encoder and
decoder. The encoder position-wise feedforward dimension and decoder position-wise
feedforward dimension were set to 512, indicating the dimension of the encoder position-
wise feedforward layer and decoder position-wise feedforward layer. To prevent overfitting,
encoder dropout and decoder dropout were set to 0.1 in the encoder and decoder. The
learning rate was set to a small value of 0.0005, and the epoch was set as 200.

The experiments were performed using Windows 10, i5-10400, NVIDIA GeForce GTX
3080 10 GB, and DDR4 32 GB. The model of the proposed method was developed with
Python. The enhanced evaluation method for the generated MIDI data was implemented
with PyTorch.
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Table 3. Hyper parameters during the training phase.

Hyper Parameter Value
Input dimension 38
Output dimension 38
Embedding dimension 256
Encoder block number 3
Decoder block number 3
Encoder head 8
Decoder head 8
Encoder position-wise feedforward dimension 512
Decoder position-wise feedforward dimension 512
Encoder dropout 0.1
Decoder dropout 0.1
Epoch 200
Learning rate 0.0005

4.2. Experimental Results

As displayed in Figure 11, the change of n in n-gram was controlled by evaluating
accuracy. The proposed method set the threshold as 90% for accuracy during the training
phase. Whenever the accuracy breached the 90% threshold, n was increased by 1. Initially,
the accuracy increased until it reached 88% at the 28th epoch. The accuracy first reached
90% in the 29th epoch, and the n increased by 1. At the 30th epoch, the accuracy reached
90% again, and the n increased to 2. Finally, the n remained at 6, and the accuracy could
not reach 90% again. Therefore, when 7 is 5, the estimation is accurate, and this value is

used in the evaluation score.

1.0
—— n—gram
0.9
—— accuracy
0.8 S Enim :
0.7 4 7
0.6 1 -6
>
8]
€ 0.5 3
3
!
< 0.4 1 4
0.3 1 -3
0.2 2
0.1 F1
0.0 4 Ry

T T T

o

Epoch

25 50 75 100 125

150

175 200

Figure 11. Change in the n-gram and accuracy during the training phase.

n—gram

Figure 12 displays the loss of the Seq2Seq model during the training phase. The
loss decreased as the accuracy increased (Figure 10). Similar to accuracy, the increase or
decrease of loss is closely related to the change of # in n-gram. When the n increased, the
loss increased significantly. After the 75th epoch, n reached 6, and the loss finally converged

to approximately 0.55.
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Figure 12. Loss of the Seq2Seq model during the training phase.

Figure 13 displays evaluation scores of the proposed method using real MIDI data,
generated MIDI data, and random MIDI data. The proposed method and BLEU were
used to evaluate 80 samples in each MIDI data from the test set. For random samples, the
evaluation average score by the proposed method was 0.057. The results revealed that the
proposed method achieved average evaluation scores of 0.59 for real samples and 0.18 for
generated samples, in which evaluation scores of real MIDI data were always higher than
generated MIDI data.

1.0 A generated MIDI data 3 3 3
—»— real MIDI data f m v F
—-e=- random MIDI data
0.8 - |
o
§ 0.6 W ) J
(=
i)
| |
S 0.4 1 U #
e
L
0.2 1 i i J U
IR
3
R gn > Sl
’M&’ (] L“IJ\J‘ AR AL/' v --..-"*'-v”--..a-.L

0.0 -

T T T T T

0 10 20 30 40 50 60 70 80
Index of sample

Figure 13. Evaluation scores of the proposed method by using real MIDI data, generated MIDI data,
and random MIDI data.

As displayed in Figure 14, for random samples, the average evaluation score by BLEU
was 0.024. The average evaluation score of the BLEU for real samples was 0.48, and that
of generated samples was 0.38. For BLEU, in majority of the cases, evaluation scores of
generated samples were higher than that of real samples because BLEU was evaluated
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based on local fragments. Notably, the proposed method based on global consideration
is reasonable. By calculating the gap between the real sample average evaluation scores
and the generated average sample evaluation score, the proposed method was 0.41, and
that by BLEU was 0.10. The ratios of the generated MIDI data average evaluation score to
the real MIDI data average evaluation score were 31% and 79% for the proposed method
and BLEU, respectively. The smaller the ratio, the more dissimilar the generated MIDI data
were to the real MIDI data. Notably, the proposed method magnified the gap between real
and generated samples, which can clearly identify two MIDI data types accurately.

1.0 generated MIDI data
—*— real MIDI data
—e<- random MIDI data
0.8
L
$0.6 1 &
w
l-
0
g
< 0.4 -
>
[WH]
0.2 1 t
A
I 1
ll l’l
1
q
0.0 \4"...1'{-—1""\\..' " h..‘\n"»"’“&‘/

0 10 20 30 40 50 60 70 80
Index of sample

Figure 14. Evaluation scores of BLEU using real MIDI data, generated MIDI data, and random
MIDI data.

5. Conclusions

In this study, an enhanced evaluation method for MIDI data based on random masking
and Seq2Seq model was proposed. This method is intended to evaluate neither the creativity
of musical works nor the aesthetics of the MIDI data composed by Al models. The model
is used to analyze the features of MIDI data to evaluate their quality. Specifically, in the
proposed method, the random mask processor should be used to mask MIDI data and train
a Seq2Seq model to analyze the knowledge of basic MIDI data theory and analyze MIDI
data features to evaluate the generated MIDI data quality automatically without general
descriptive parameters. The proposed method could be used to overcome the limitations
of subjective evaluation MIDI data. The BLEU was used as a comparative experiment to
prove the feasibility of the proposed method. For real MIDI data and generated MIDI data,
the average evaluation scores of the proposed method were 0.59 and 0.18, respectively;
evaluation scores of real MIDI data were always higher than generated MIDI data. In
BLEU, the average evaluation scores were 0.48 and 0.38, respectively. However, most of the
time, evaluation scores of generated MIDI data of BLEU were higher than real MIDI data.
The gap between real MIDI data average evaluation score and random MIDI data average
evaluation score in the proposed method was 0.41, which implies that the ratio was 31%.
However, BLEU was 0.10, and the ratio was 79%. The proposed method magnified the gap
between real MIDI data and generated MIDI data and is able to distinguish the two types
of MIDI data accurately.
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