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Abstract: In the supervised classification area, the algorithm selection problem (ASP) refers to deter-
mining the a priori performance of a given classifier in some specific problem, as well as the finding
of which is the most suitable classifier for some tasks. Recently, this topic has attracted the attention of
international research groups because a very promising vein of research has emerged: the application
of some measures of data complexity in the pattern classification algorithms. This paper aims to
analyze the response of the Customized Naïve Associative Classifier (CNAC) in data taken from the
business area when some measures of data complexity are introduced. To perform this analysis, we
used classification datasets from real-world related to business, 22 in total; then, we computed the
value of nine measures of data complexity to compare the performance of the CNAC against other
algorithms of the state of the art. A very important aspect of performing this task is the creation of
an artificial dataset for meta-learning purposes, in which we considered the performance of CNAC,
and then we trained a decision tree as meta learner. As shown, the CNAC classifier obtained the best
results for 10 out of 22 datasets of the experimental study.

Keywords: business; classification; meta-learning

MSC: 68T05

1. Introduction

Supervised classification is widely used in almost every area nowadays. Its application
in medicine [1–3], agriculture [4–6], education [7–10], sports [11–13], and social behavior in
business [14–16], among other areas [17–19], is indisputable. However, it is well known
that there is no classifier having an overall superior performance to the remaining ones for
all problems. This fact was demonstrated by the No Free Lunch theorem [20].

Due to such conditions, the research devoted to determining the a priori performance
of a given classifier in some specific problem, as well as the adequate classifiers for some
tasks (the algorithm selection problem, ASP), have gained attention in the scientific com-
munity, since 70’s [21]. Several investigations have been carried out to address such issues,
and in this context, the meta-learning task arose [22].

Meta-learning is devoted to a priori determining the expected performance of a
learning algorithm under some specific problem [23]; that is, meta-learning strategies learn
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about the learners’ performances. Such approach has been used for optimization [24,25],
clustering [26,27], regression [28], and supervised classification [29,30].

Recently, the application of some measures of data complexity in the pattern classi-
fication algorithms has emerged as a very promising vein of research [31]. Many studies
have applied data complexity metrics to implement this concept [32–36]. However, there
is no such research for associative classifiers; in addition, no research considers simul-
taneously the presence of multiclass, mixed (numerical and categorical), and missing
(incomplete) data.

The detection of the type of problems for which a classifier is suitable is related to a
concept coined in the specialized scientific literature: competence domains [37]. Certain
authors use data complexity measures to define the domains of competence of pattern clas-
sifiers [32–34,37]. A collateral consequence of the use of complexity measures is that it has
implications for algorithm performance in difficult regions of the problem representation
space [35].

We selected the recently proposed Customized Naïve Associative Classifier (CNAC) [38]
for this research because it showed satisfactory behavior for business-related problems, in
particular, to determine the satisfaction of clients in the touristic sector. This paper aims to
analyze the response of the CNAC to data from the business area when some measures of
data complexity are introduced. The main purpose of the research is to establish a meta
learner able to determine the a priori performance of the CNAC over business-related data.

We used classification datasets related to business (22 in total). Then, we computed the
value of nine measures of data complexity. We analyzed the performance of CNAC, as well
as other well-known supervised classifiers (C4.5 [39], Nearest Neighbor [40], RIPPER [41],
Multilayer Perceptron with Backpropagation [42], and Support Vector Machines [43]).
Then, we created an artificial dataset for meta-learning purposes, in which we considered
the performance of CNAC, and then we trained a decision tree as meta learner.

As a relevant result of the previous process, the meta learner allows defining the
competence domain of the CNAC. This has the consequence that it is possible to know
the degree to which the classes are separable and the operating ranges where the CNAC
exhibits good (or bad) results. It is pertinent to emphasize the scientific novelty of the
paper, which consists of the characterization of the competence domain of the CNAC.
This characterization of the domain of competence of the CNAC is carried out by generating
a meta-learner in the form of a tree, which is based on measures of data complexity.

The remaining of the paper is as follows: Section 2 offers some previous works for
determining the domains of competence of classifiers within the meta-learning approach.
Section 3 details the classifiers as well as the business datasets used, while Section 4 explains
the experimental protocol used in the research. Sections 5 and 6 present and discusses the
results obtained. The results include the complexity measures applied to the datasets, the
comparison of CNAC concerning state-of-the-art classifiers, the statistical analysis, and the
meta-learning procedure for the a priori determining the performance of CNAC. The paper
ends with the conclusions and some directions for future works.

2. Previous Works

In this section, we briefly review some of the existing works on Algorithm Selection
Problems (Section 2.1) and some of the most widely used supervised classifiers (Section 2.2).

2.1. Algorithm Selection Problem

Determining which classification algorithm will be appropriate for a certain dataset
is an open problem within the international scientific community. Experts sometimes
use their knowledge of the inner workings of classification algorithms to answer this
question. Algorithm selection problems (ASP) were first analyzed by Rice [21] back in
1976, who presented the first model for this purpose. For ASP, it is generally suggested to
carry out a mapping of measurable characteristics (meta-characteristics) over the problems
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(datasets) and then contrast them with the performance of classification algorithms to build
an algorithm recommendation system [44].

Several surveys have addressed the meta-learning problem [22,23,25]. In addition,
researchers have studied the ability to predict classifiers’ performance by employing data
complexity measures. Sanchez et al. [36] contrasted the performance of the k Nearest
Neighbor classifier with respect to data complexity measures. In addition, for microarray
data, Morán-Fernández et al. [45] established relations among data complexity measures
and the accuracy of four classifiers (C4.5, Naïve Bayes, Nearest Neighbor, and Support
Vector Machines). However, none of the mentioned papers provide any meta-learner able
to determine the expected performance of the analyzed classifiers.

Bernadó-Mansilla and Ho [32] introduced the first approach to the concept of domains
of competence for the XCS classifier. To do so, they computed data complexity measures
and determined the lower and upper limits under which the XCS classifier will perform
well. They used binary (two classes) datasets with no missing values in their experiments.
With their approach, a meta-learner in the form of decision rules was obtained.

Luengo and Herrera also were pioneers in finding the domain of competence of su-
pervised classifiers. They provide a set of rules for the a priori determination of the fuzzy
hybrid genetic-based machine learning (FH-GBML) classifier [34]. They also analyzed
the behavior of three Artificial Neural Networks [37], and then in 2015 [35], they gave a
step forward and provided automatic rules of good and bad behavior for three classifiers
(C4.5, Nearest Neighbor, and Support Vector Machines) by considering 12 data com-
plexity measures. Unfortunately, these research studies were carried out by using only
binary datasets.

Following a similar perspective, Flores et al. [33] proposed a mechanism to select the
most promising semi-naïve Bayesian network classifiers for a particular dataset based on
the values of some complexity measures. They use a multi-label approach to obtain a
meta learner by using problem transformation strategies. They did not provide rules for
behavior due to the nature of the Naïve Bayes base classifier used in the meta-learning.

Having a meta learner allows the users to a priori knowledge if a particular supervised
classifier will perform good or bad. It is possible to use the existing results in the literature
for classifiers such as C4.5, Naïve Bayes, Nearest Neighbor, and Support Vector Machines.
However, to the best of our knowledge, no research has been conducted to determine the
domain of competence of an associative classifier. We aim to address this issue for the
recently introduced CNAC classifier [38]. We also want to provide a meta-learner able to
be explainable in the form of a set of rules or a decision tree.

2.2. State-of-the-Art Classifiers

There are several algorithms for supervised classification. Among them, we selected
and applied five state-of-the-art classifiers (C4.5 [39], Nearest Neighbor (NN) [40], Repeated
Incremental Pruning with Error Reduction (RIPPER) [41], Multilayer Perceptron with Back-
propagation (MLP) [42], and Support Vector Machines (SVM) [43]) to use in comparisons.
In the following, we explain the function of the aforementioned classifiers.

The C4.5 is a decision tree proposed by Quinlan. C4.5 is a deterministic classifier that
uses Information Theory to determine the best splits over the tree. For numerical attributes,
C4.5 finds the best value to split into two branches, and for categorical values, it expands
one branch for each categorical value in the corresponding data. Missing numerical values
are not considered in the induction of the tree, and missed categorical values are usually
treated as another feature value [39].

The Nearest Neighbor classifier was introduced in the early 1960s [40], and it has
remained one of the most used, well-performed supervised classifiers. It stores the training
data and uses the notion of distance to classify instances. It is founded on the idea that
similar instances will have the same class. For dealing with mixed and missing data, several
dissimilarity functions have been proposed [46].
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Repeated Incremental Pruning with Error Reduction (RIPPER) [41] is a rule-based
classifier able to deal with mixed and incomplete data. During rule induction, RIPPER
undergoes a process of obtaining the rules and pruning them. At the end of the training, a
final set of rules is obtained. To classify a new instance, the first rule that is fulfilled will
return the class label.

Multilayer Perceptron (MLP) is a Neural Network classifier consisting of several
Perceptron-like units arranged in several layers [42]. The training of MLP is usually
performed by the Backpropagation algorithm, which updates the weights of the connection
between the neurons until some stop criterion is met. Once the MLP is trained, the instance
to classify is presented to the input layer, and then it travels through the network to the
output layer, in which the class label is returned.

Support Vector Machines (SVM) are based on the idea of obtaining a new represen-
tation space for the data, in which classes can be separated correctly [43]. The obtention
of such space is computed using a mathematical function named kernel, responsible for
data transformation and augmentation. To adjust the separation of the classes in the
new space, some optimization procedures are used, typically the Sequential Minimal
Optimization (SMO) algorithm. Once the SVM is trained to classify the new instance, it
transforms it into the new representation space, and then the corresponding class label
is obtained.

3. Materials, Methods, and Experimental Setup

We focused our research on the CNAC, which was introduced to deal with people’s
attitudes related to business classification problems. Section 3.1 explains the CNAC classi-
fier and details its functioning. The datasets used in the experiments are summarized in
Section 3.2, and the experimental setup is explained in Section 3.3.

3.1. The Customized Naïve Associative Classifier

The Customized Naïve Associative Classifier (CNAC) is based on the NAC clas-
sifier [38]. The main modification is to substitute the MIDSO operator of NAC with a
customized similarity operator. By that, it preserved the nature of NAC, and it is making it
more flexible and useful for specific problems.

Let x and y be two instances, described by a set of features A = {A1, · · · , Am}.
The set of attributes A may have an associated set of attribute weights W = {w1, · · · , wm}.
We define a similarity function between two instances sim(x, y, W) as a function that
receives two instances and an optional set of feature weights and returns a real number in a
way such that more akin instances have high similarity values, and very different instances
have small similarity values.

Several dissimilarities have been proposed to handle hybrid and incomplete data.
Usually, a dissimilarity diss is converted into a similarity function sim as sim = 1/diss.
By using sim(x, y, W) instead of MIDSO as an algorithm parameter, we can customize the
classifier by maintaining the NAC advantages.

The CNAC maintains the advantages of the NAC classifier: it is able to deal with
hybrid, incomplete and multiclass data; it has tractable computational complexity (O(1) for
training and O(n×m) for classification), where n is the number of instances in the dataset,
and it is an explainable classifier. In addition, it solves the main disadvantage of NAC,
which is the use of a predefined similarity function.

The pseudocode of the CNAC is shown in Figure 1.
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3.2. Datasets Used

We selected 22 datasets of such problems, including the clients’ responses to company
offers, the employees’ probabilities of succeeding at work, and the people’s preferences
towards clothes, among others. In the following, we briefly describe the selected datasets,
which came from the Machine Learning Repository of the University of California at
Irvine [47], and from the Kaggle site [48].

Table 1 present a summary of the description of the 22 used datasets, detailing the
number of instances, numerical and categorical attributes, the presence of missing values
(marked with an *), the number of classes, the imbalance ratio (IR) between the classes, and
the size (in MB) of the corresponding dataset.

Regarding the size of the datasets, most of them are small (less than 2 MB), and the
remaining are considered medium-sized (less than 5 MB). Of the selected datasets, 17 are
imbalanced, with IR ranging from 1.80 to 10.74. The remaining five datasets are considered
balanced, with IR from 1.11 to 1.38. As shown in Table 1, five of the compared datasets are
multiclass, having three to six classes.

In the following, we describe the classification tasks related to the datasets.
Success of Bank Telemarketing Data (alpha_bank). A bank company wants to know

the potential success of telemarketing campaigns (whether or not the client will subscribe
to a long-term deposit). To select profitable potential subscribers, the bank considers the
age, job, marital status, education, credit, as well as home and personal loans, among
others [49].
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Table 1. Description of the used datasets.

Dataset Instances
Attributes

Classes Imbalance Ratio Size (MB)
Numeric Categorical

alpha_bank 30,477 1 6 2 6.90 1.55

attribute_dataset 500 * 1 11 2 1.38 0.04

aug 19,158 * 2 10 2 3.01 1.71

bank_campaign 41,188 * 10 10 2 7.88 4.61

churn_modelling 10,000 6 4 2 3.91 0.45

behavior 400 2 1 2 1.80 0.01

segmentation 8068 * 3 6 4 1.22 0.33

targeting 6620 66 4 3 1.85 2.57

deposit2020 40,000 5 8 2 12.81 2.63

df_clean 358 3 16 2 9.23 0.04

employee_promo 54,808 * 5 7 2 10.74 3.09

employee_satisf 500 2 9 2 1.11 0.02

in-vehicle-coupon 12,684 * 1 24 2 1.32 2.07

marketing_camp 2240 * 14 13 2 5.71 0.21

marketing_series 6499 * 3 16 2 2.79 0.76

non-verbal-tourist 73 * 4 18 6 9.00 0.01

online_shoppers 12,330 10 7 2 5.46 1.10

promoted 24,016 * 4 2 5 5.44 0.50

telecom_churn 3333 10 0 2 5.90 0.13

telecom_churnV2 3333 15 4 2 5.90 0.27

telecust 1000 4 7 4 1.29 0.03

term_deposit 31,647 7 9 2 7.52 2.47

* Datasets having missing values.

Dress attributes (attribute_dataset). A shop needs to recommend dresses according
to their characteristics, including style, price, rating, size, season, neckline, sleeve length,
waistline, material, fabric type, decoration, and patterns, among others [50].

HR Analytics: Job Change of Data Scientists (aug). A company that is active in Big
Data and Data Science wants to hire data scientists among people who successfully passed
some courses that were conducted by the company [51].

Bank Marketing Campaign Subscriptions (bank_campaing). The dataset contains
information about marketing campaigns that were conducted via phone calls from a
Portuguese banking institution to their clients. The purpose of these campaigns is to
prompt their clients to subscribe to a specific financial product of the bank (term deposit).
After each call was conducted, the client had to inform the institution about their intention
of either subscribing to the product (indicating a successful campaign) or not (unsuccessful
campaign) [52].

Marketing Series: Customer Churn (churn_modelling). The dataset contains the
details of the customers in a company. The columns are about its estimated salary, age,
sex, etc., aiming to provide all details about a client. This dataset contains details of a
bank’s customers, and the target variable is a binary variable reflecting the fact whether the
customer left the bank (closed his account) or he/she continues to be a customer [53].

Predicting Profitable Customer Segments (targeting). Marketing is a key component
of every modern business. Companies continuously re-invest large cuts of their profits for
marketing purposes, trying to target groups of customers who have the potential to bring
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back the highest Return on Investment (ROI) for the company. The cost of marketing can
be very high though, meaning that the decision about which customer group to target is of
great financial importance. This dataset was made available by an online retail company
that has collected historical data about such groups of customers, tracked the profitability of
each group after the respective marketing campaign, and retrospectively assessed whether
investing in marketing spending for that group was a good choice [54].

Customer Behavior (behavior). The data represent details about 400 clients of a
company, including the unique ID, the gender, the age of the customer, and the salary.
Besides this, it has information regarding the buying decision—whether the customer
decided to buy specific products or not [55].

Customer Segmentation (segmentation). An automobile company has plans to enter
new markets with their existing products (P1, P2, P3, P4, and P5). After intensive mar-
ket research, they have deduced that the behavior of the new market is similar to their
existing market. In their existing market, the sales team has classified all customers into
four segments (A, B, C, and D). Then, they performed segmented outreach and communi-
cation for different segments of customers. This strategy has worked exceptionally well for
them. They plan to use the same strategy in new markets and have identified 2627 new
potential customers [56].

Deposit Subscription—What Makes Consumers Buy? (deposit2020). This dataset
corresponds to customers who will (and will not) subscribe to long-term deposits in 2020.
The objective is to predict the decision of the targeted audience and to focus the campaigns
on the clients who will probably subscribe to the company [57].

Warranty Claims (df_clean). This dataset [58] corresponds to clients who filled war-
ranty claims, and the objective is to determine if such claims are fraudulent or not. This is
cleaned data from the previous (Warranty Claims Data set), available at [59].

HR Analysis Case Study (employee_promo). Every year, around 5% of the employees
have been promoted in certain companies. This dataset includes the information to predict
if an employee will be promoted or not [60].

Employee Satisfaction Index Dataset (employee_satisf). This is a fictional dataset
created to help the data analysts play around with the trends and insights on the employee
job satisfaction index [61].

In-vehicle coupon recommendation Data Set (in-vehicle-coupon). These data [62] were
collected via a survey on Amazon Mechanical Turk. The survey describes different driving
scenarios, including the destination, current time, weather, passenger, etc., and then asks
the person whether he will accept the coupon if he is the driver. For more information
about the dataset, please refer to [63].

Marketing Campaign (marketing_camp). The purpose of this dataset is to provide
a significant boost to the efficiency of a marketing campaign by increasing responses or
reducing expenses. The objective is to predict who will respond to an offer for a product or
service [64].

Marketing Series: Customer Churn (marketing_series). This dataset contains data from
a telecom company. The objective is to predict which customers will stop being customers
(churn) and those that will remain customers and then take action accordingly [65].

Non-Verbal tourist (non-verbal-tourist). This dataset represents the non-verbal prefer-
ences of hotel guests in Jardines del Rey, Cuba. The objective is to predict the preferences
of new guests and to classify them into one of the six groups of clients [38].

Purchasing intentions (online_shoppers). The dataset [66] consists of features belong-
ing to 12,330 sessions. The dataset was formed so that each session would belong to a
different user in one year to avoid any tendency to a specific campaign, special day, user
profile, or period. The objective is to predict if the users will buy or not the products [67].

Promotion response and target datasets (promoted). The context of this business
problem is a new product introduction. The organization is interested in building a model
to select the best customers for contacting from the pool of customers not contacted.
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The promoted dataset provides response information along with profiles of customers who
are contacted [68].

Customer Churn (telecom_churn). With the rapid development of the telecommu-
nication industry, the service providers are inclined more towards the expansion of the
subscriber base. To meet the need of surviving in the competitive environment, the re-
tention of existing customers has become a huge challenge. It is stated that the cost of
acquiring a new customer is far more than that of retaining the existing one. Therefore, the
telecom industries must use advanced analytics to understand consumer behavior and,
in turn, predict the association of the customers as to whether or not they will leave the
company. This dataset contains customer-level information for a telecom company. Various
attributes related to the services used are recorded for each customer [69].

Client churn rate in Telecom sector (telecom_churnV2). Orange Telecom’s Churn
Dataset, which consists of cleaned customer activity data (features), along with a churn
label specifying whether a customer canceled the subscription, will be used to develop
predictive models [70].

Customer Classification (telecust). The dataset contains various information about
their customers such as age and region, among others. It contains the information taken by
a Telecommunication company. The objective is to predict the correct segment (type) of a
customer [71].

Term Deposit Prediction Data Set (term_deposit). Term deposits are a major source
of income for a bank. A term deposit is a cash investment held at a financial institution.
The money is invested for an agreed rate of interest over a fixed amount of time or term.
The bank has various outreach plans to sell term deposits to their customers, such as email
marketing, advertisements, telephonic marketing, and digital marketing. Telephonic mar-
keting campaigns remain one of the most effective ways to reach out to people. However,
banks require huge investments, as large call centers are hired to execute these campaigns.
Hence, it is crucial to identify the customers most likely to convert beforehand so that they
can be specifically targeted via call [72].

3.3. Experimental Setup

First, we want to explore the influence of data complexity on the performance of the
CNAC classifier. In particular, we aim to detect the conditions that made this classifier
perform adequately and, therefore, establish rules to a priori known if it is convenient or not
to apply this classifier to a certain problem. Figure 2 shows the diagram of the experiments
for this aim.
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Our experimental configuration started with the division of the datasets into training
and testing by means of a five-fold cross-validation procedure. After that, we computed
data complexity measures over the training sets. In addition, we trained and tested the
supervised classifiers and computed their performance. After that, we carried out a
statistical analysis of the results, considering the performance of CNAC and the remaining
supervised classifiers.

To obtain a meta-learner, we constructed a meta-dataset using as meta-features the
values of the data complexity measures and, as class labels, the qualitative performance
obtained by CNAC. We trained a C4.5 classifier over the meta dataset, and we obtained a
set of rules defining the a priori expected performance of CNAC.

We divided the datasets using five-fold cross-validation due to the imbalanced nature
of the data and averaged the results. Then, we applied five state-of-the-art classifiers
(C4.5 [39], Nearest Neighbor (NN) [40], Repeated Incremental Pruning with Error Reduction
(RIPPER) [41], Multilayer Perceptron with Backpropagation (MLP) [42], and Support
Vector Machines (SVM) [43]). Both the data partitioning and the classifier execution were
made with the KEEL software [73], except for the NN classifier, in which we used the
EPIC software to be able to use the same dissimilarity function as CNAC. KEEL software
automatically inputs missing data if needed by the classification algorithm, and its internal
codification converts categorical data to numerical. With such procedures, algorithms such
as SVM and MLP can be executed.

In addition, we applied the CNAC classifier, but with no feature weighting, to obtain
a baseline performance. This was made by using the EPIC software [74,75], in which the
CNAC classifier is available. EPIC software does not make any data preprocessing by
defaults, and due to CNAC can handle missing and incomplete data, it was executed
without any data preprocessing.

In the execution of the algorithms, we used the default parameter values provided by
KEEL and EPIC, except for NN and CNAC in the non-verbal-tourist data, where we used
the dissimilarity function suggested by the authors of the dataset [38]. In addition, we set
the dissimilarity for NN as the same as CNAC by using the EPIC software. Table 2 shows
the parameters of the classifiers

Table 2. Parameter of the compared classifiers.

Classifier Parameters

C4.5 Pruned: true; Confidence: 0.25; Instances per leaf: 2

NN K: 1; Dissimilarity: HEOM [46], except for the non-verbal-tourist data, in
which we used the function suggested in [38]

RIPPER K: 2; Grow pct: 0.66

MLP
Hidden layers: 2; Hidden nodes: 15; Transfer: hyperbolic tangent; Eta: 0.15;

Alpha: 0.10; Lambda: 0.0; Test data: true; Validation data: false; Cross
validation: false; Cycles: 10,000; Improve: 0.01; Typify inputs: true

SVM Kernel: Radial Basis Function (RBF); C: 100; Eps: 0.001; Degree: 1;
Gamma: 0.01; Coef0: 0.0; Nu: 0.1; p: 1.0; Shrinking: 1

CNAC Dissimilarity: HEOM [46], except for the non-verbal-tourist data, in which
we used the function suggested in [38]; Attribute weighting: None

As a performance measure, we used the Non-Error Rate (NER), also known as aver-
aged sensitivity [76]. Given a confusion matrix of G classes (Figure 3), the NER measure is
computed as:

NER =
∑G

g=1 Sng

G
(1)

where
Sng =

cgg

ng
(2)
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NER is suitable for multiclass data, and it is robust for imbalanced data. We computed
the NER values for the state-of-the-art classifiers by using the result files (real and assigned
labels) provided by KEEL; for CNAC and NN, we just used the NER values provided by
the EPIC software. Section 4.1 discusses the obtained results.

Then, we conducted the corresponding statistical analysis of performance (Section 4.2),
comparing the CNAC with respect to the state-of-the-art classifiers by using the Fried-
man [77] and Holm [78] tests. According to the results obtained, we established the CNAC
performance as Good, Regular, or Bad for each of the compared datasets.

In parallel, we evaluated nine complexity measures, the F1, F2, F3, N1, N2, N3, N4,
T1, and T2 measures [31], which were computed using the KEEL software [73]. We did
not include the measures L1, L2, and L3 because we have five multiclass datasets, and
the KEEL implementation does not allow multiclass data for such measures. Section 4.3
discusses the results concerning data complexity.

Later, we created a new dataset for meta-learning purposes, having as condition
attributes the complexity measures and as decision attribute the CNAC performance (Good,
Regular, or Bad) for each of the compared datasets. Then, we trained a C4.5 decision tree
to obtain the rules to a priori determine if the CNAC classifier is suitable for a certain
classification problem. The corresponding results are in Section 4.4.

4. Results
4.1. Performance of the Classifiers

We executed the C4.5, NN, RIPPER, MLP, SVM, and CNAC classifies over the
selected datasets, using the five-fold cross-validation procedure. We averaged the
performance results obtained for each fold using the result files (real and assigned labels)
provided by KEEL; for NN and CNAC, we just used the averaged NER values provided
by the summary file returned by the EPIC software. In Table 3, we report the NER values
of the classifiers.

As shown in Table 3, the classifier with the best performance was CNAC. It obtained
the best results in 10 datasets. RIPPER and C4.5 classifiers also obtained good performances,
with seven and six wins, respectively. It is important to mention that several of the selected
datasets are very complex, such as attribute_dataset, segmentation, targeting, df_clean,
and telecust. In such datasets, the performances of the best classifiers were particularly
low, at 0.51 (two classes), 0.50 (four classes), 0.48 (three classes), 0.59 (two classes), and 0.36
(four classes), respectively.
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Table 3. Performance of the compared classifiers according to averaged NER. The best results are
highlighted in bold.

Dataset C4.5 SVM NN MLP RIPPER CNAC

alpha_bank 0.50 0.51 0.52 0.53 0.56 0.84

attribute_dataset 0.51 0.46 0.51 0.50 0.49 0.48

aug 0.66 0.61 0.63 0.53 0.67 0.66

bank_campaign 0.75 0.67 0.72 0.61 0.70 0.87

churn_modelling 0.71 0.50 0.65 0.57 0.70 0.56

behavior 0.90 0.70 0.87 0.81 0.89 0.72

segmentation 0.50 0.50 0.42 0.35 0.48 0.42

targeting 0.45 0.38 0.41 0.38 0.48 0.45

deposit2020 0.70 0.51 0.62 0.53 0.63 0.85

df_clean 0.50 0.50 0.56 0.59 0.52 0.55

employee_promo 0.67 0.66 0.57 0.58 0.56 0.68

employee_satisf 0.47 0.50 0.52 0.50 0.47 0.53

in-vehicle-coupon 0.71 0.68 0.66 0.51 0.72 0.54

marketing_camp 0.61 0.54 0.61 0.50 0.71 0.66

marketing_series 0.68 0.65 0.42 0.69 0.71 0.72

non-verbal-tourist 0.47 0.33 0.61 0.25 0.54 0.73

online_shoppers 0.78 0.52 0.60 0.51 0.80 0.64

promoted 1.00 0.70 0.99 0.37 0.79 1.00

telecom_churn 0.81 0.55 0.73 0.57 0.83 0.65

telecom_churnV2 0.81 0.50 0.59 0.55 0.85 0.67

telecust 0.32 0.29 0.28 0.28 0.35 0.36

term_deposit 0.72 0.50 0.64 0.66 0.59 0.76

Times Best 5 0 1 1 7 10

4.2. Statistical Analysis

For the statistical analysis, we used non-parametric tests. We set as null hypothesis H0
that there are no differences in the performance of the compared classifiers with respect
to the Non-Error Rate (NER), and as alternative hypothesis H1 that there are differences
in the performance of the compared classifiers with respect to the Non-Error Rate (NER).
We set a significance value α = 0.05, for 95% of confidence.

We applied the Friedman test [77] and the Holm post hoc test [78], both suggested
in [79], to determine if the differences found are significant or not. The Friedman test
obtained a p-value of 0.0 (due to rounding), and therefore, we reject the null hypothesis.
Table 4 shows the ranking of the compared classifiers, according to the Friedman test.

As expected, the CNAC classifier is the first in the ranking, followed closely by RIPPER
and C4.5. Table 5 shows the results of Holm’s test.

Holm’s test rejects the null hypothesis for MLP and SVM classifiers with a 95% of
confidence. That is, the test found significant differences between CNAC and both MLP and
SVM, according to Non-Error Rate. The null hypothesis was not rejected for the RIPPER
and C4.5 classifiers (both with high p-value). For the NN classifier, the p-value obtained
was extremely low (0.076260), but not low enough to reject the null hypothesis. Therefore,
further experiments are needed to establish the existence or not of significant differences in
Non-Error Rate while comparing CNAC and NN over business datasets.
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Table 4. Ranking obtained by Friedman’s test.

Classifier Ranking

CNAC 2.5227

RIPPER 2.6591

C4.5 2.6818

NN 3.5227

MLP 4.6818

SVM 4.9318

Table 5. Results of Holm’s test.

i Algorithm z p-Value Holm (α/i)

5 SVM 4.270862 0.000019 0.010000

4 MLP 3.827659 0.000129 0.012500

3 NN 1.772811 0.076260 0.016667

2 C4.5 0.282038 0.777914 0.025000

1 RIPPER 0.241747 0.808976 0.050000

4.3. Complexity Measures for Meta-Learning

After obtaining the performance of the CNAC, we want to determine under what
conditions it achieves good results. To do so, we compute data complexity measures.
We summarize the description and reference of each complexity measure in Table 6, as well
as its value related to data complexity. We consider a direct proportion if higher values of
the measure lead to higher data complexity and an inverse proportion otherwise. We also
include if the measures support multiclass data.

Table 6. Description of the data complexity measures.

Measure Name Based on Proportion Multiclass

F1 Maximum Fisher’s discriminant ratio Features Inverse Yes

F2 The volume of the overlapping region Features Direct Yes

F3 Maximum individual feature efficiency Features Inverse Yes

L1 Sum of the Error Distance by Linear Programming Linearity Direct No

L2 Error Rate of Linear Classifier Linearity Direct No

L3 Non-Linearity of a Linear Classifier Linearity Direct No

N1 Fraction of Borderline Points Neighborhood Direct Yes

N2 The ratio of Intra/Extra Class Nearest Neighbor Distance Neighborhood Direct Yes

N3 Error Rate of the Nearest Neighbor Neighborhood Direct Yes

N4 Non-Linearity of the Nearest Neighbor Classifier Neighborhood Direct Yes

T1 Fraction of Hyperspheres Covering Data Topology Direct Yes

T2 Average Number of Features Per Dimension Dimensionality Direct Yes

We evaluated nine complexity measures, the F1, F2, F3, N1, N2, N3, N4, T1, and T2
measures [31], which were computed using the KEEL software [73]. We did not include the
measures L1, L2, and L3 (also included in KEEL) because we have five multiclass datasets,
and such measures do not support multiclass data.

In Table 7, we present the results of the measures for the datasets. The results corre-
spond to three feature-based measures (F1, F2, and F3), four neighborhood-based measures
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(N1, N2, N3, and N4), one network-based measure (T1), and one dimensionality-based
measure (T2). We highlight the most complex problem for each measure in bold.

Table 7. Values of the complexity measures in the datasets. The datasets with most complex values
are in bold.

Dataset F1 F2 F3 N1 N2 N3 N4 T1 T2

alpha_bank 0.01 −∞ 0.00 0.21 0.36 0.16 0.48 1.00 3483.09

attribute_dataset 0.02 0.22 0.01 0.69 1.01 0.51 0.35 1.00 33.33

aug 0.30 0.99 0.00 0.46 0.83 0.31 0.45 1.00 1277.20

bank_campaign 0.55 0.14 0.06 0.18 0.51 0.12 0.31 1.00 1647.52

churn_modelling 0.28 0.45 0.01 0.38 0.73 0.26 0.41 1.00 800.00

behavior 0.16 0.00 0.01 0.71 1.03 0.56 0.58 1.00 75.66

segmentation 1.34 0.64 0.20 0.32 0.24 0.21 0.24 0.80 106.67

targeting 0.26 1.00 0.00 0.72 1.00 0.57 0.60 0.99 717.16

deposit2020 0.93 0.16 0.00 0.14 0.35 0.10 0.36 0.99 2461.54

df_clean 0.38 0.41 0.11 0.24 0.35 0.18 0.45 1.00 15.07

employee_promo 0.34 0.46 0.00 0.17 0.65 0.11 0.44 1.00 3653.87

employee_satisf 0.02 1.00 0.00 0.71 1.03 0.54 0.45 1.00 36.36

in-vehicle-coupon 0.04 1.00 0.00 0.58 0.88 0.38 0.41 1.00 405.89

marketing_camp 0.24 0.00 0.03 0.30 0.53 0.20 0.44 1.00 66.37

marketing_series 0.62 0.48 0.00 0.39 0.75 0.27 0.32 0.99 273.64

non-verbal-tourist ∞ ∞ 0.84 0.67 1.14 0.47 0.40 0.99 2.65

online_shoppers 0.48 0.05 0.00 0.34 0.75 0.23 0.44 1.00 580.24

promoted 65.12 −0.47 1.00 0.14 0.32 0.07 0.06 0.97 3202.13

telecom_churn 0.18 0.35 0.01 0.34 0.66 0.23 0.46 1.00 266.64

telecom_churnV2 0.18 0.07 0.01 0.35 0.79 0.24 0.45 1.00 140.34

telecust 0.40 0.21 0.05 0.87 1.31 0.70 0.64 1.00 72.73

term_deposit 0.50 0.08 0.01 0.22 0.49 0.15 0.37 0.99 1582.35

According to F1, which ranges from zero to infinity and has inverse proportion (higher
values indicate simpler problems), the majority of the datasets have high complexity, with
values lower than 1.50. Only the datasets non-verbal-tourist (∞) and promoted (65.12) are
considered simple. The F2 measure does not provide much information due to it ranges
from −∞ to ∞. Regarding F3 (also having inverse proportion and ranging from zero to
one), the simplest problems are again non-verbal-tourist and promoted, and all remaining
problems are considered complex, with values lower than 0.20.

For the neighborhood-based measures (N1, N2, N3, and N4), the hardest problem
is telecust, and the simplest is promoted. All other datasets have variable complexity.
The network-based measure T1 considers all datasets as complex, and therefore it does not
allow us to differentiate among them. Last but not least, the dimensionality measure (T2)
considers employee_promo as the hardest dataset. This is due to the number of attributes
(12) and instances (54,808).

4.4. Meta-Learning

Having the data complexity measures, as well as the results of the performance of
the CNAC, we constructed a dataset for meta-learning. Following the suggestions of [23],
we used as condition attributes the nine complexity measures computed, and as decision
attribute, the performance of the CNAC.
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We divide the performance of CNAC into three groups: Good, Regular, and Bad. This
measured the relative performance of CNAC as compared to other algorithms. The assignment
of these three labels is necessarily empirical; the essence of this problem is similar to the
essence of the kind of problems that led Zadeh to create fuzzy sets. For example, if we
consider that an individual is “tall” when he measures 1.80 m and then we consider
individuals with less height: 1.79 m, 1.78 m, 1.70 m, 1.69 m, and so on. At what point will
we say that an individual was no longer labeled “high”? How tall does a human have to
be to be “short”? Something similar happens with adjectives such as “big”, “medium”,
and “small”. For example, be the question, is the Sun big? to which an astronomer would
answer with another question: compared to what?

In the case at hand, there are clear cases that are easy to solve. For example, regardless
of the dataset, if a classifier returns a balanced accuracy value of less than 0.5, that classifier
is undoubtedly bad; on the other hand, if when testing a classifier on 10 datasets and it
always returns 1 balanced accuracy, it would be absurd to say that this classifier is bad; on
the contrary, we would say that it is good. The problem arises in the intermediate values
between 0.5 and 1: what are the limits of values of the performance measures that lead us
to decide if a classifier is Good, Regular, and Bad? The answer lies in common sense and in
the comparison of the values that some of the known state-of-the-art classifiers throw on
the same datasets. That is, in this research work, the labels Good, Regular, and Bad have
been assigned, in a responsible manner, as a measure of the relative performance of CNAC
as compared to other algorithms.

Considering the analysis, we selected as Regular the performances for three datasets
(attribute_dataset, targeting, and df_clean); as Bad the performances for eight datasets
(churn_modelling, behavior, segmentation, in-vehicle-coupon, marketing_camp,
online_shoppers, telecom_churn, and telecom_churnV2); and as Good the performances
for the remaining eleven datasets.

Then, we trained a C4.5 classifier and obtained the meta-learner classifier. Figure 4
shows the decision tree obtained. As shown, it only considers three attributes: the measures
N1, N2, and T2, resulting in a pretty small tree (five leaves and size = 9).

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 19 
 

 

We divide the performance of CNAC into three groups: Good, Regular, and Bad. This 

measured the relative performance of CNAC as compared to other algorithms. The as-

signment of these three labels is necessarily empirical; the essence of this problem is sim-

ilar to the essence of the kind of problems that led Zadeh to create fuzzy sets. For example, 

if we consider that an individual is “tall” when he measures 1.80 m and then we consider 

individuals with less height: 1.79 m, 1.78 m, 1.70 m, 1.69 m, and so on. At what point will 

we say that an individual was no longer labeled “high”? How tall does a human have to 

be to be “short”? Something similar happens with adjectives such as “big”, “medium”, 

and “small”. For example, be the question, is the Sun big? to which an astronomer would 

answer with another question: compared to what? 

In the case at hand, there are clear cases that are easy to solve. For example, regardless 

of the dataset, if a classifier returns a balanced accuracy value of less than 0.5, that classifier 

is undoubtedly bad; on the other hand, if when testing a classifier on 10 datasets and it 

always returns 1 balanced accuracy, it would be absurd to say that this classifier is bad; 

on the contrary, we would say that it is good. The problem arises in the intermediate val-

ues between 0.5 and 1: what are the limits of values of the performance measures that lead 

us to decide if a classifier is Good, Regular, and Bad? The answer lies in common sense 

and in the comparison of the values that some of the known state-of-the-art classifiers 

throw on the same datasets. That is, in this research work, the labels Good, Regular, and 

Bad have been assigned, in a responsible manner, as a measure of the relative performance 

of CNAC as compared to other algorithms. 

Considering the analysis, we selected as Regular the performances for three datasets 

(attribute_dataset, targeting, and df_clean); as Bad the performances for eight datasets 

(churn_modelling, behavior, segmentation, in-vehicle-coupon, marketing_camp, 

online_shoppers, telecom_churn, and telecom_churnV2); and as Good the performances 

for the remaining eleven datasets. 

Then, we trained a C4.5 classifier and obtained the meta-learner classifier. Figure 4 

shows the decision tree obtained. As shown, it only considers three attributes: the 

measures N1, N2, and T2, resulting in a pretty small tree (five leaves and size = 9). 

 

Figure 4. Decision tree for meta-learning. 

The meta-learner obtained suggests that having a high number of instances and at-

tributes is beneficial to the CNAC due to it tends to perform well in datasets with high T2. 

On the other hand, for smaller datasets, the neighborhood-based complexity measures 

intervene. The confusion matrix for the obtained meta learner is offered in Figure 5, and 

the detailed performance measures [76] for all classes are given in Table 8. 

Figure 4. Decision tree for meta-learning.

The meta-learner obtained suggests that having a high number of instances and
attributes is beneficial to the CNAC due to it tends to perform well in datasets with high
T2. On the other hand, for smaller datasets, the neighborhood-based complexity measures
intervene. The confusion matrix for the obtained meta learner is offered in Figure 5, and
the detailed performance measures [76] for all classes are given in Table 8.
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Table 8. Detailed performance measure by class for the meta learner decision tree.

Measure Good Regular Bad Average

Sensitivity 0.909 0.667 1.000 0.859

Specificity 0.909 1.000 0.929 0.946

Precision 0.909 1.000 1.000 0.970

F1 score 0.909 0.800 1.000 0.903

Geometric Mean 0.909 0.816 0.964 0.896

Gini Index 0.818 0.667 0.929 0.804

Cosine 0.909 0.816 1.000 0.909

The results show that the class “Regular” is the one with less sensitivity and Gini
Index, and therefore, further experiments are needed to correctly estimate the average
performance of the CNAC.

5. Discussion

In this section, the results obtained in the previous section are discussed, and important
aspects that emphasize the contribution of this paper to the state of the art are mentioned.
First of all, it is pertinent to note that in Table 4, the CNAC classifier obtained the best results
for ten datasets, while RIPER and C4.5 classifiers obtained the best results in six datasets.
However, these data are not enough because it is required to determine if the differences in
performance of the compared classifiers are significant or not; to elucidate it, we applied
statistical tests.

Statistical tests yield remarkable results. For example, in Table 6, it is observed that the
Holm test rejected the hypothesis having a p-value lower or equal to 0.016667 for a 95% of
confidence. As shown, the Holm test did reject the hypothesis of the existence of significant
differences in the performance of the CNAC with respect to the C4.5 and RIPPER classifiers
and found CNAC to perform significantly better than MLP and SVM. For the NN classifier,
the unadjusted p-value is 0.076260, which is close to the significance value α; however, due
to the adjustment made by the post hoc test, this result is not sufficient to reject the null
hypothesis with a 95% of confidence.

Regarding the complexity measures for meta-learning, Table 8 shows the values of the
complexity measures in the datasets. The complexity measures having direct proportions
are interpreted by considering higher values lead to more complex problems. Inversely, the
measures with inverse proportion (such as F3) are interpreted by considering that bigger
values lead to less complex problems.

For dataset alpha-bank, the F2 measure obtained a minus infinity value; in addition,
for the non-verbal tourist dataset, both F1 and F2 measures obtained infinity as a value.
All remaining measures obtained adequate values for all datasets.

The inclusion of meta-learning processes means the culminating part of this research
proposal. The results issued here are the most solid part of the most relevant scientific
contributions. In this regard, it is pertinent to note that from the results of Table 8 we can
conclude that CNAC is suitable for business datasets having T2 measure with values greater
than 800, for datasets with T2 ≤ 36.36 and N2 > 1, or for datasets having T2 > 36.36 and
N2 > 0.72. For datasets with T2 > 36.36 and N1 ≤ 1, we do not recommend using CNAC.
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Our experiments show that in the datasets in which CNAC had bad performance
(churn_modelling, behavior, segmentation, in-vehicle-coupon, marketing_camp,
online_shoppers, telecom_churn, and telecom_churnV2), the RIPPER and C4.5 classifiers
tend to obtain good results. Therefore, although further research is needed to draw some
conclusions, we can recommend using RIPPER or C4.5 classifiers in the scenarios in which
CNAC is predicted to have poor behavior.

6. Conclusions and Future Works

In this article, we obtained as the main result a meta learner able to determine the a
priori performance of the CNAC over business-related data. To achieve this purpose, we
calculated nine measures of data complexity to the data of 22 datasets related to business,
and we compared the performance of our proposal with some of the most important
state-of-the-art classifiers. The first relevant conclusion is that, as illustrated in Table 4,
the CNAC classifier obtained the best results for 10 datasets; in contrast, RIPER and C4.5
classifiers obtained the best results in six datasets.

The experimental design played a very important role in the success of our initial pur-
pose. The experiments begin with the division of the datasets into training and testing by
means of a five-fold cross-validation procedure. After that, the aforementioned calculation
of the data complexity measures over the training sets was performed. After calculating the
performance of our proposal and the state-of-the-art classifiers, we carried out a statistical
analysis. The Friedman test and the Holm post hoc test allow us to establish that, indeed,
there are significant differences between the performance of our proposal and the perfor-
mance of the classifiers with which it is compared. The values obtained by Friedman’s test
allow us to reject the null hypothesis, being the CNAC classifier the first in the ranking,
followed closely by RIPPER and C4.5.

Additionally, it is necessary to emphasize that a very important aspect of performing
this task is the creation of an artificial dataset for meta-learning purposes, in which we
considered the performance of CNAC, and then we trained a decision tree as a meta-learner.

For future works, we want to corroborate the results of the meta-learner decision
tree in other business-related datasets. In addition, we want to explore the influence of
the similarity function in CNAC, as well as to investigate the possible inverse relation in
performance between RIPPER, C4.5, and CNAC. We also want to explore the use of feature
weighting in the performance of the CNAC.
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