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Abstract: The study of the oscillatory behavior of solutions to second order nonlinear differential
equations is motivated by their numerous applications in the natural sciences and engineering. In
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1. Introduction

In this paper, we consider a damped second order neutral functional differential
equation with the noncanonical operators(

r(t)
∣∣z′(t)∣∣α−1z′(t)

)′
+ p(t)

∣∣z′(t)∣∣α−1z′(t) + q(t)|x(σ(t))|β−1x(σ(t)) = 0, (1)

where z(t) = x(t) + c(t)x(τ(t)), t ≥ t0, α > 0, and β > 0. Here, we use the following
assumptions:

(C1) r ∈ C1([t0, ∞), (0, ∞)), r′(t) ≥ 0, c(t) ∈ C([t0, ∞),R), 0 ≤ c(t) < 1;

(C2) p, q ∈ C([t0, ∞), (0, ∞)), q(t) is not eventually zero on [t∗, ∞) for t∗ ≥ t0;

(C3) τ ∈ C([t0, ∞),R), σ ∈ C1([t0, ∞),R), τ(t) ≤ t, σ(t) ≤ t, σ′(t) > 0, and lim
t→∞

τ(t) =

lim
t→∞

σ(t) = ∞.

Let Tx = min{τ(t), σ(t)}, t ≥ t0. A function x(t) ∈ C1([Tx, ∞),R), Tx ≥ t0 is called a
solution of Equation (1) if it has the property r(t)|z′|α−1z′(t) ∈ C1([Tx, ∞),R) and satisfies
Equation (1) on [Tx, ∞). We only consider the nontrivial solutions of Equation (1), which
ensure sup {|x(t)| : t ≥ T} > 0 for all T ≥ Tx. A solution of (1) is said to be oscillatory
if it has an arbitrarily large zero point on [Tx, ∞); otherwise, it is called non-oscillatory.
Equation (1) is said to be oscillatory if all its solutions are oscillatory.

Recently, the study of the oscillation criteria for neutral and damped second order
differential equations has been motivated by their applications in the natural sciences and
engineering; for example, see [1–28]. However, most of them are aimed at their spacial
cases. For Equation (1), one important spacial case is (when α = β, p(t) = 0)

Mathematics 2022, 10, 2739. https://doi.org/10.3390/math10152739 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10152739
https://doi.org/10.3390/math10152739
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10152739
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10152739?type=check_update&version=2


Mathematics 2022, 10, 2739 2 of 12

(
r(t)

∣∣z′(t)∣∣α−1z′(t)
)′

+ q(t)|x(σ(t))|α−1x(σ(t)) = 0. (2)

This equation is called the half-linear neutral differential equation, and it has attracted
many studies since the 1970s (see [4]).

Another important spacial case of Equation (1) is (when α = 1, p(t) = 0)(
r(t)(x(t) + c(t)x(τ(t)))′

)′
+ q(t)|x(σ(t))|β−1x(σ(t)) = 0, (3)

which is called the Emden–Fowler neutral differential equation, and it has been widely
applied in mathematics and theoretical physics (see [1,25–27]).

Equation (2) can be understood as the half-linear differential equation(
r(t)

(
y′(t)

)α
)′

+ q(t)yα(t) = 0, (4)

where α is the ratio of odd positive integers. Assume that

π(t) =
∫ ∞

t
r−

1
α (s)ds < ∞.

Then, from [6], we have the following Kneser-type oscillation theorem for Equation (4).

Theorem 1. Assume that

lim
t→∞

r
1
α (t)πα+1(t)q(t) > (

α

α + 1
)α+1.

Then, Equation (4) is oscillatory.

In 2020, Jadlovská [6] studied a general case of (4), such that(
r(t)

(
y′(t)

)α
)′

+ q(t)yα(σ(t)) = 0, (5)

where σ(t) ≥ t, and obtained the corresponding oscillation criteria.
Note that the half-linear neutral differential Equation (2) and the Emden–Fowler neu-

tral Equation (3) are not mutually inclusive of each other. However, Equations (2) and (3)
are included in Equation (1). Therefore, it will be of great interest to find some oscillation
criteria for the neutral differential Equation (1). Our aim in this paper is to use the Riccati
transformation technique (rather than comparison principles; e.g., see [26,28] for more
details) to establish some new sufficient conditions for the oscillation criteria of (1). To the
best of our knowledge, very little is known regarding the oscillation of (1). The relevance of
our theorems becomes clear in the carefully selected examples.

The rest of paper is organized as follows. In Section 2, we establish several new
oscillation criteria for Equation (1). In Section 3, we present six examples to illustrate
our results.

2. Main Results

The following inequalities contain the variable t, in which we assume that the inequal-
ities hold for a sufficiently large t if there is no special note. Without loss of generality, we
only deal with the positive solution for Equation (1) in the proofs of our results.

In this paper, we study the noncanonical case of Equation (1). Let R(t) = E(t)r(t),
where

E(t) = exp
(∫ t

t0

p(s)
r(s)

ds
)

.
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We define the functions

φ(t) :=
∫ ∞

t
R−

1
α (s)ds, t ≥ t0, (6)

Q(t) := E(t)q(t)
(

1− c(σ(t))
φ(τ(σ(t)))

φ(σ(t))

)β

, (7)

and

Q1 := E(t)q(t)(1− c(σ(t)))β. (8)

Then, we have the following lemma.

Lemma 1. Let x(t) be an eventually positive solution of Equation (1). Assume that φ(t) < ∞ and
z′(t) < 0. Then, (

R(t)
(
−z′(t)

)α
)′
−Q(t)zβ(t) ≥ 0, t ≥ t1. (9)

Proof. Let x(t) be an eventually positive solution of Equation (1), then there exists a t1 ≥
t0, such that x(τ(t)) > 0 and x(σ(t)) > 0 for t ≥ t1. Multiplying both sides of (1) by E(t),
we have the following equation without a damped term:(

R(t)
∣∣z′(t)∣∣α−1z′(t)

)′
+ E(t)q(t)xβ(σ(t)) = 0, t ≥ t0. (10)

Since z′(t) < 0, from (10) we get(
R(t)

(
−z′(t)

)α
)′

= E(t)q(t)xβ(σ(t)) ≥ 0. (11)

It follows that

z′(s) ≤
(

R(t)
R(s)

) 1
α

z′(t), s ≥ t ≥ t1.

Integrating the above inequality from t to l, we obtain

z(l)− z(t) ≤ R
1
α (t)z′(t)

∫ l

t
R−

1
α (s)ds,

which implies that

z(t) ≥ R
1
α (t)(−z′(t))φ(t), t ≥ t1. (12)

Hence, (
z(t)
φ(s)

)′
≥ 0.

In view of the definition of z(t), we obtain the following for t ≥ t1 :

x(t) = z(t)− c(t)x(τ(t)) ≥ z(t)− c(t)z(τ(t)) ≥ z(t)
(

1− c(t)
φ(τ(t))

φ(t)

)
. (13)

By combining (11) and (13), with z′(t) < 0, we thus deduce that (9) holds. The proof is
complete.
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Define a function v(t) by

v(t) :=
R(t)(−z′(t))α

zβ(t)
, t ≥ t1. (14)

We then have the following lemma.

Lemma 2. Let x(t) be an eventually positive solution of Equation (1). Assume that φ(t) < ∞ and
z′(t) < 0. Then,
(i) v(t)φµ(t) is bounded;

(ii) v′(t) ≥ Q(t) + mβR−
1
α (t)v

µ+1
µ (t), t > T1,

where m is a positive constant and µ = max{α, β}.

Proof. (i). By Lemma 1, we have (R(t)(−z′(t))α)′ ≥ 0, which implies that R(t)(−z′(t))α is
non-decreasing. From (12), we get

zα(t) ≥ R(t)(−z′(t))αφα(t) = zβ(t)v(t)φα(t).

It follows that

zα−β(t) ≥ v(t)φα(t), t ≥ t1. (15)

If α > β, using z′(t) < 0 in (15), we then find that the positive function v(t)φα(t) is
bounded.
Now, if β ≥ α, and once again using (12), we obtain

zβ(t) ≥ [R
1
α (t)(−z′(t))]β−α+αφβ(t), (16)

which implies that
[R

1
α (t)(−z′(t))]α−β ≥ v(t)φβ(t).

Since [R
1
α (t)(−z′(t))]α−β is decreasing, then v(t)φβ(t) is bounded. Therefore, the function

v(t)φµ(t) is bounded, where µ = max{α, β}.
(ii). In view of the definitions of v(t) and (9), we have

v′(t) =
(R(t)(−z′(t))α)′

zβ(t)
+

βR(t)(−z′(t))α+1

zβ+1(t)
≥ Q(t) +

β

R
1
α (t)

z
β−α

α (t)v
α+1

α (t).

If α > β, and taking into account that z′(t) < 0 for t ≥ T, then z
β−α

α (t) is increasing. By

letting m1 = z
β−α

α (t) (if β = α, then m1 = 1), the above inequality becomes

v′(t) ≥ Q(t) + βm1R−
1
α (t)v

α+1
α (t), t ≥ T. (17)

Now, if β ≥ α, we have

v′(t) ≥ Q(t) + βR−
1
β (t)

(
−z′(t))

) β−α
β v

β+1
β (t). (18)

Since (R−
1
α (t)(−z′(t)))

β−α
β is an increasing function, then from (18) we obtain

v′(t) ≥ Q(t) + βR−
1
α (t)

(
R

1
α (t)(−z′(t))

) β−α
β v

β+1
β (t)

≥ Q(t) + βm2R−
1
α (t)v

β+1
β (t), t ≥ T1 ≥ T, (19)

where m2 =
(

R
1
α (T1)(−z′(T1))

) β−α
β (if α = β, then m2 = 1).
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Combining (17) and (19) yields

v′(t) ≥ Q(t) +
βm

R
1
α (t)

v
µ+1

µ (t), t ≥ T1, (20)

where µ = max{α, β}, and m =

{
1, α = β,
const > 0, α 6= β.

The proof is complete.

Theorem 2. Assume that (C1) − (C3) hold, φ(t) < ∞ and c(t) < φ(t)
φ(τ(t)) . If there exists a

positive non-decreasing function ρ ∈ C1([t0, ∞), (0, ∞)), such that

lim sup
t→∞

∫ t

T

[
ρ(s)Q1(s)−

R(θ(s))(ρ′(s))ν+1

(ν + 1)ν+1(Kρ(s)σ′(s))ν

]
ds = ∞ (21)

and

lim sup
t→∞

∫ t

T

[
φµ(s)Q(s)− L

φ(s)R
1
α (s)

]
ds = ∞ (22)

hold for all sufficiently large T ≥ t0, where K > 0, µ = max{α, β}, ν = min{α, β}, and

θ(t) =

{
t, α > β,
σ(t), α ≤ β,

L =

{
( µ

µ+1 )
µ+1( µ

βm )µ, α 6= β,

( α
α+1 )

α+1, α = β,
m =

{
1, α = β,
const > 0, α 6= β,

then Equation (1) is oscillatory.

Proof. Suppose the contrary where Equation (1) has an eventually positive solution x(t),
i.e., there exists a t1 ≥ t0, such that x(τ(t)) > 0 and x(σ(t)) > 0 for all t ≥ t1. Considering
the fact that z(t) ≥ x(t) > 0 for t ≥ t1 and (10), we have(

R(t)
∣∣z′(t)∣∣α−1z′(t)

)′
= −E(t)q(t)xβ(σ(t)) ≤ 0,

which implies that R(t)|z′(t)|α−1z′(t) is non-increasing. Therefore, there exists a t2 ≥ t1,
such that either z′(t) < 0 or z′(t) > 0 for all t ≥ t2.

Case I. z′(t) < 0 for t > t1. By Lemma 1, we obtain(
R(t)

(
−z′(t)

)α
)′
−Q(t)zβ(t) ≥ 0, t ≥ t1.

Let v(t) be defined by (14) for t ≥ t2 ≥ t1. It then follows that v(t) > 0 for all t ≥ t2.
From Lemma 2, we get

v′(t) ≥ Q(t) + mβR−
1
α (t)v

µ+1
µ (t), t ≥ t2. (23)

Multiplying (23) by φµ(t) and integrating the resulting inequality from T ≥ t2 to t, we have∫ t

T
φµ(s)Q(s)ds

≤
∫ t

T
φµ−1(s)R−

1
α (s)

[
µv(s)− βmφ(s)v

µ+1
µ (s)

]
ds + φµ(t)v(t). (24)
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Using the following inequality ([2], Lemma 2.1) in (24),

−Cv
α+1

α + Dv ≤ αα

(α + 1)α+1
Dα+1

Cα
, C > 0, (25)

we get ∫ t

T

[
φµ(s)Q(s)ds− L

φ(s)R
1
α (s)

]
ds ≤ φµ(t)v(t),

where L =

{
( µ

µ+1 )
µ+1( µ

βm )µ, α 6= β,

( α
α+1 )

α+1, α = β.
From Lemma 2 we see that φµ(t)v(t) is bounded. Letting t → ∞ in the above inequality,
we obtain a contradiction with (22).

Case II. z′(t) > 0 for t ≥ t1. Recall that x(t) = z(t) − c(t)x(τ(t)). Hence, x(t) ≥
(1− c(t))z(t). It then follows from (10) that

(R(t)(z′(t))α)′ ≤ −Q1(t)zβ(σ(t)), (26)

where Q1(t) is defined by (8).
Define a function w(t) by

w(t) := ρ(t)
R(t)(z′(t))α

zβ(σ(t))
, t ≥ t1. (27)

Then, w(t) > 0 and

w′(t) ≤ −ρ(t)Q1(t) +
ρ′(t)
ρ(t)

w(t)− βσ′(t)ρ(t)R(t)(z′(t))αz′(σ(t))
zβ+1(σ(t))

. (28)

For this inequality, we first treat the case α < β. Note that R(t)(z′(t))α is a positive non-
increasing function, then

R
1
α (t)z′(t) ≤ R

1
α (σ(t))z′(σ(t)).

In view of (28), we get

w′(t) ≤ −ρ(t)Q1(t) +
ρ′(t)
ρ(t)

w(t)− βσ′(t)[z(σ(t))]
β−α

α

(ρ(t)R(σ(t)))
1
α

w
α+1

α (t).

Since z(σ(t)) is an increasing function, thus there exist the constants K1 > 0 and t2 ≥ t1,
such that

[z(σ(t))]
β−α

α ≥ K1, t ≥ t2. (29)

Hence, we obtain

w′(t) ≤ −ρ(t)Q1(t) +
ρ′(t)
ρ(t)

w(t)− αK1σ′(t)

(ρ(t)R(σ(t)))
1
α

w
α+1

α (t). (30)

Note that if α = β, then K1 = 1; thus, (30) still holds.
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Now, if α > β, and because r′(t) ≥ 0, we have R′(t) ≥ 0. Recall that
(

R(t)(z′(t))α)′ ≤
0, hence z′′(t) ≤ 0, which implies that [z′(t)]

β−α
β is non-decreasing. Therefore, there exist

constants K2 > 0, t3 ≥ t2, such that

[
z′(t)

] β−α
β ≥ K2, t ≥ t3. (31)

By combining (28) and (31), we then have

w′(t) ≤ −ρ(t)Q1(t) +
ρ′(t)
ρ(t)

w(t)− βσ′(t)[z′(t)]
β−α

β

(ρ(t)R(t))
1
β

w
β+1

β (t)

≤ −ρ(t)Q1(t) +
ρ′(t)
ρ(t)

w(t)− βK2σ′(t)

(ρ(t)R(t))
1
β

w
β+1

β (t),

which, together with (30), implies that

w′(t) ≤ −ρ(t)Q1(t) +
ρ′(t)
ρ(t)

w(t)− νKσ′(t)

(ρ(t)R(θ(t)))
1
ν

w
ν+1

ν (t), t ≥ t3, (32)

where ν = min{α, β}, K = min{K1, K2}, and

θ(t) =

{
t, α > β,
σ(t), α ≤ β.

Using (25) in (32), we find that

w′(t) ≤ −ρ(t)Q1(t) +
(ρ′(t))ν+1R(θ(t))

(ν + 1)ν+1(Kρ(t)σ′(t))ν
, t ≥ t3. (33)

Integrating this inequality from T ≥ t3 to t, we obtain

w(t) ≤ w(T)−
∫ t

T

[
ρ(s)Q1(s)−

(ρ′(s))ν+1R(θ(s))
(ν + 1)ν+1(Kρ(s)σ′(s))ν

]
ds. (34)

Letting t → ∞ in the above inequality, we then get a contradiction with (21). The proof
is complete.

Remark 1. Theorem 2 improves Theorem 2.2 of [2], Theorem 2.2 of [8], Theorem 2.1 of [9],
Theorem 2.1 of [10], Theorem 2.5 of [11], Theorem 2.1 of [12], and Theorem 2.2 of [13]. Those
articles only considered the special cases of Equation (1) for α = β, p(t) = 0, or α = 1, p(t) = 0.

The following theorem is the Kneser-type oscillation theorem for Equation (1).

Theorem 3. Theorem 2 still holds if conditions (21) and (22) are replaced by

lim sup
t→∞

∫ t

T
Q1(s)ds = ∞ (35)

and

lim inf
t→∞

φµ+1(t)R
1
α (t)Q(t) > L, (36)

respectively.
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Proof. Condition (35) follows by substituting ρ(t) = 1 into (21). Now, suppose that (36)
holds, then for any ε > 0, there exists a sufficiently large T ≥ t0, such that

φµ(t)Q(t) >
L− ε

φ(t)R
1
α (t)

, t ≥ T.

Integrating this inequality from T to t, we then obtain

∫ t

T

[
φµ(s)Q(s)− L

φ(s)R
1
α (s)

]
ds

> −
∫ t

T

ε

φ(s)R
1
α (s)

ds = −ε
∫ t

T

dφ(s)
φ(s)

= ε

(
ln

1
φ(t)

− ln
1

φ(T)

)
.

Letting t→ ∞ in the above inequality, we find that (22) holds. The proof is complete.

Remark 2. If p(t) = 0 and c(t) = 0, then Equation (1) degenerates to Equation (4). If we set
E(t) = 1, R(t) = r(t), φ(t) = π(t), Q1(t) = Q(t) = q(t), µ = α = β, and L = ( α

α+1 )
α+1,

then Theorem 3 simply becomes Theorem 1.

The following two corollaries are for the half-linear neutral differential Equation (2)
and the Emden–Fowler neutral Equation (3), respectively.

Corollary 1. Assume that α = β and p(t) = 0. Then, Theorem 3 remains true if condition (36) is
replaced by

lim inf
t→∞

πα+1(t)r
1
α (t)q(t)

(
1− c(σ(t))

π(τ(σ(t)))
π(σ(t))

)α

>

(
α

α + 1

)α+1
. (37)

Corollary 2. Suppose that α = 1 and p(t) = 0. Then, Theorem 3 still holds if (36) is replaced by
any one of the following conditions:

(i) β > 1, lim inft→∞ πβ+1(t)r(t)q(t)
(

1− c(σ(t))π(τ(σ(t)))
π(σ(t))

)β
>
(

β
β+1

)β+1( β
M

)β
,

(ii) β < 1, lim inft→∞ π2(t)r(t)q(t)
(

1− c(σ(t))π(τ(σ(t)))
π(σ(t))

)β
> 1

4M ,

(iii) β = 1, lim inft→∞ π2(t)r(t)q(t)
(

1− c(σ(t))π(τ(σ(t)))
π(σ(t))

)
> 1

4 ,
where M is a positive constant.

3. Examples

In this section, we present some examples to illustrate the main results.

Example 1 ([7], Example 4.2). Consider the second order Emden–Flower equation(
t

3
2 y′(t)

)′
+ yβ(t) = 0, t ≥ 1, (38)

where β is a positive constant.

We shall use Corollary 2 to show that Equation (38) is oscillatory. In fact, Equation (38)
is a special case of (3), with c(t) = 0. Note that r(t) = t

3
2 , q(t) = 1, then (35) holds and

π(t) =
∫ ∞

t

1

r
1
α (s)

ds =
∫ ∞

t
s−

3
2 ds = 2t−

1
2 , t ≥ 1.
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By Corollary 2, we can deduce that Equation (38) is oscillatory for 0 < β < 2. However,
Ref. [7] Theorem 3.1 shows that the solution y(t) of Equation (38) is oscillatory or satisfies
limt→∞ y(t) = 0 only if β = 1. Consequently, Corollary 2 improves [7], Theorem 3.1.

The following example illustrates Corollary 1.

Example 2 ([5], Example 1). Consider the noncanonical Euler differential equation(
tα+1(y′(t))α

)′
+ q0yα(λt) = 0, t ≥ 1, (39)

where α > 0, q0 > 0, λ ∈ (0, 1].

Equation (39) is a special case of (2), with c(t) = 0, q(t) = q0. Observing that r(t) =
tα+1, thus π(t) = α

t
1
α

. It follows that condition (35) holds and

lim inf
t→∞

πα+1(t)r
1
α (t)q(t)

(
1− c(σ(t))

π(τ(σ(t)))
π(σ(t))

)α

= αα+1q0 >

(
α

α + 1

)α+1
.

Then, by Corollary 1, we can conclude that Equation (39) is oscillatory if q0 >
(

1
α+1

)α+1
.

However, due to [5], Theorem 3, one can conclude that Equation (39) is oscillatory if q0 > 1.

Example 3 ([3], Example 2.11). Consider the half-linear neutral differential equation(
tα+1

[(
x(t) + p0x(

t
2
)

)′]α)′
+ q0xα(λt) = 0, t ≥ 1, (40)

where α > 0 is a ratio of an odd positive integer, q0 ∈ (0, ∞), p0 ∈ [0, α

√
1
2 ), λ ∈ (0, 1].

We see that Equation (40) is a special case of (2), with c(t) = p0, q(t) = q0. In this
example, r(t) = tα+1; hence, π(t) = α

t
1
α

, π(τ(σ(t)))
π(σ(t)) = α

√
2 and

lim inf
t→∞

πα+1(t)r
1
α (t)q(t)

(
1− c(σ(t))

π(τ(σ(t)))
π(σ(t))

)α

= lim inf
t→∞

(
α

t1/α
)α+1t

α+1
α q0

(
1− α
√

2p0

)α
>

(
α

α + 1

)α+1
,

which shows that (37) holds. By Corollary 1, we conclude that Equation (40) is oscillatory if

q0

(
1− α
√

2p0

)α
>

(
1

α + 1

)α+1
. (41)

However, by [3], Theorem 2.2, Equation (40) is oscillatory if

ααq0

(
1− α
√

2p0

)
> 1. (42)

This restriction is contained in (41).
In [2], the authors considered a special case of Equation (40), with α = 1, i.e.,(

t2
(

x(t) + p0x
( t

2
))′)′

+ q0x(λt) = 0. (43)
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By [2], Example 3.1, Equation (43) is oscillatory if

q0(1− 2p0) >
1
4

, (44)

which is just a special case of (41) when α = 1.

Example 4 ([8], Example 3.2). Consider the Emden–Fowler neutral differential equation(
et
(

x(t) +
1
2

(
t− π

4

))′)′
+ λe(β+1)txβ

(
t− π

2

)
= 0, (45)

where β is a ratio of an odd positive integer and λ > 0.

In this example, r(t) = et, c(t) = 1
2 , q(t) = λe(β+1)t, τ(t) = t− π

4 , σ(t) = t− π
2 . It is

easy to see that π(t) = e−t, π(τ(σ(t)))
π(σ(t)) = e

π
4 , and conditions (i), (ii), and (iii) of Corollary 2

are satisfied. Thus, Equation (45) is oscillatory if β > 0. However, by [8] Theorem 2.2, one
can deduce that Equation (45) is oscillatory if β > 1.

Example 5 ([10], Example 2.3). Consider the Emden–Fowler neutral equation(
t2
(

x(t) +
1
2

x(t− 1)
)′)′

+ t4xβ(
t
2
) = 0, t ≥ 1, (46)

where β is a ratio of an odd positive integer.

Taking into account that r(t) = t2, c(t) = 1
2 , q(t) = t4, τ(t) = t− 1, σ(t) = t

2 , then

π(t) =
1
t

, π(σ(t)) =
2
t

, π(τ(σ(t))) =
2

t− 2
.

If 0 < β ≤ 1, then we have

lim inf
t→∞

π2(t)r(t)q(t)
(

1− c(σ(t))
π(τ(σ(t)))

π(σ(t))

)β

= lim inf
t→∞

(
1
t

)2
t2t4
(

1− 1
2

t
t− 2

)β

= ∞.

This shows that Corollary 2-(ii), (iii) are satisfied.
Now, for β > 1, by Corollary 2-(i), we can check that Equation (46) is oscillatory if

1 < β < 5. Therefore, Equation (46) is oscillatory if 0 < β < 5. However, by [10] Theorem
2.2, Equation (46) is oscillatory only if 0 < β ≤ 1.

Example 6. Consider the following damped nonlinear differential equation of a neutral type(∣∣z′(t)∣∣α−1z′(t)
)′

+
2α

t
∣∣z′(t)∣∣α−1z′(t) + tβ−α−1|x(t− 2)|β−1x(t− 2) = 0, (47)

where z(t) = x(t) + 1
2 x(t− 1).

We claim that this equation satisfies the conditions of Theorem 3. In this equation,
r(t) = 1, c(t) = 1

2 , q(t) = tβ−α−1, τ(t) = t− 1, σ(t) = t− 2. Let t0 = 1, then we have

E(t) = t2α, R(t) = E(t)r(t) = t2α, φ(t) =
∫ ∞

t R−
1
α (s)ds = 1

t , and

Q1(t) = E(t)q(t)(1− c(σ(t)))β =

(
1
2

)β

tα+β−1,
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which implies that (35) holds. Note that

Q(t) = E(t)q(t)
(

1− c(σ(t))
φ(τ(σ(t)))

φ(σ(t))

)β

= tα+β−1
(

1− t− 2
2(t− 3)

)β

.

We obtain

lim inf
t→∞

φµ+1(t)R
1
α (t)Q(t)

= lim inf
t→∞

t−µ−1t2tβ+α−1
(

1− t− 2
2(t− 3)

)β

= lim inf
t→∞

tβ+α−µ

(
1
2

)β

= lim inf
t→∞

tν

(
1
2

)β

= ∞,

where µ = max{α, β}, ν = min{α, β}. Hence, (36) is satisfied. Therefore, by Theorem 3,
Equation (47) is oscillatory.

4. Conclusions

Theorem 2 (or Theorem 3) gives a new oscillation criterion for Equation (1) and
improves those oscillation criteria reported in the literature. It can be applied to deal with
the half-linear neutral equations, the noncanonical Euler equations, the damped nonlinear
neutral equations, and the Emden–Fowler neutral equations. Moreover, the conditions
of the oscillation criteria given by Corollarys 1 and 2 are simpler and only require the
identification of limits instead of integrals.
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