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Abstract: In this paper, we study the existence and asymptotic behaviors of ground state solutions to
a fourth-order nonlinear Schrödinger equation with mass-critical exponent, where the fourth-order
term appears as a perturbation with ε > 0. By considering a constrained variational problem, we
first establish the existence of ground state solutions. Then, we prove the asymptotic behaviors of the
solutions as ε→ 0+. The main ingredients of the proofs are some energy estimate arguments. Our
results improve somewhat the ones in the existing reference.

Keywords: fourth-order equation; ground states; asymptotic behaviors; energy estimates

MSC: 35J20; 35J35; 35J60

1. Introduction

We consider the following bi-harmonic nonlinear Schrödinger equation

iΨt = ε∆2Ψ− ∆Ψ + V(x)Ψ− b|Ψ|
4
N Ψ, (1)

where i =
√
−1 and ε > 0, b > 0. The unknown Ψ = Ψ(x, t) : RN ×R+ → C is a complex-

valued wave function, and V(x) : RN → R is a given potential satisfying some conditions
given below. ∆ = ∑N

j=1
∂2

∂x2
j

is the Laplacian operator in RN , and ∆2 is the bi-harmonic

operator, hence , Equation (1) is often referred to as the bi-harmonic nonlinear Schrödinger
equation (denoted by “BNLS” for short).

The BNLS type Equation (1) was first introduced by Karpman and Shagalov in [1,2],
where it took into account the role of a small fourth-order dispersion term in the propagation
of intense laser beams in a bulk medium with Kerr nonlinearity.

In this paper, we are concerned with standing waves solutions of (1), namely solutions
are of the form Ψ(x, t) := e−iλtu(x), where λ ∈ R denotes its frequency. Thus, the function
u(x) solves the following elliptic equation

ε∆2u− ∆u + V(x)u = λu + b|u|
4
N u, x ∈ RN . (2)

Recall that when ε = 0, V(x) = 0, and the exponent 4
N is replaced by p ∈ (0, 2∗ − 2),

then (1) becomes the classical nonlinear Schrödinger equation:

iΨt = −∆Ψ− b|Ψ|pΨ, (x, t) ∈ RN ×R+. (3)

It is well known (see [3]) that when 0 < p < 4
N , Equation (3) has orbitally stable standing

wave solutions, while when p ≥ 4
N , standing waves are unstable. Namely, the exponent

4
N appears as a mass-critical value. However, if the perturbation “ε∆2u” is involved, then
the new mass-critical value is doubled, becoming 8

N . Thus, the exponent 4
N in (1) becomes
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mass-subcritical, which leads to the existence of stable standing wave solutions, see e.g.,
[4–8]. Hence, it is an interesting issue to consider the behavior of standing waves solutions
as ε→ 0+. The aim of this paper is twofold: when V(x) 6= 0, on one hand, we establish the
existence of ground state solutions of (2), then we prove the asymptotic behaviors of the
solutions as ε→ 0+.

To find ground state solutions of (2), we consider the following minimization problem

eb(ε) := inf
u∈B1

Eε
b(u), (4)

where

Eε
b(u) =

ε

2

∫
RN
|∆u|2dx +

1
2

∫
RN

(
|∇u|2 + V(x)|u(x)|2

)
dx− bN

2N + 4

∫
RN
|u|2+

4
N dx, (5)

and

B1 =

{
u ∈ H :

∫
RN
|u|2dx = 1

}
.

The spaceH is defined by

H :=
{

u ∈ H2(RN) :
∫
RN

V(x)|u(x)|2dx < ∞
}

,

with the associated norm ‖u‖H =
( ∫

RN [|∆u|2 + (1 + V(x))|u|2]dx
) 1

2
.

By standard arguments (see e.g., [4,7,9–11]), one can prove that a minimizer of eb(ε)
is a ground state solution of (2), where, however, the frequency λ is not fixed anymore,
appearing as a Lagrange multiplier. Similar analysis approaches can be referred to in [12].

Before starting to state our result, let us recall some studies in the case where ε = 0,
and V(x) satisfies the following conditions:

V(x) ∈ C∞
loc(R

N), inf
x∈RN

V(x) = 0, and lim
|x|→∞

V(x) = ∞. (6)

Let Q(x) be the unique ground state solution of the Schrödinger Equation (14), whose

properties are given in Lemma 2 and Remark 4, and set b∗ = ‖Q‖
4
N
L2 . It has been proved

in [13] that

Lemma 1 ([13], Theorem 1.1). Assume that ε = 0 and V(x) satisfies (6), then

(1) if 0 < b < b∗, then there exists at least one non-negative minimizer of eb(0);
(2) if b ≥ b∗, then there is no minimizers of eb(0).

Moreover, eb(0) > 0 for all 0 < b < b∗, eb(0) = 0 for b = b∗, and eb(0) = −∞ for b > b∗.

Remark 1. In [13], the authors also give the asymptotic behaviors of minimizers of eb(0) as b↗ b∗,
precisely, if b ↗ b∗, then minimizers of eb(0) concentrate at the minimum point of V(x). We
remark that part of such important works also have been established by Bao and Cai [9], Maeda [14],
and Zhang [15].

Our first result concerned with the existence reads as the following.

Theorem 1 (Existence). Assume that ε > 0, and V(x) satisfies (6). Then, for all b > 0, eb(ε)
admits at least one non-negative minimizer.

Remark 2. Note that when ε > 0, V(x) ≡ 0, sharp conditions for the existence/non-existence of
minimizers for eb(ε) was established by [7,8].
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We observe that when b = b∗ and ε = 0, by Lemma 1 eb(0) has no minimizers, whereas
Theorem 1 shows us that, for all ε > 0, minimizers of eb(ε) do exist for b = b∗. Hence,
in our second theorem, we give the asymptotic behavior of minimizers as ε→ 0+.

Theorem 2. Assume that ε > 0, b = b∗, and V(x) satisfies (6). Let uε(x) be a non-negative
minimizer of eb(ε) and xε be a maximum point of uε. Then,

lim
ε→0+

xε = x0, with x0 ∈ RN satis f ying V(x0) = 0. (7)

Moreover, as ε→ 0+,

wε := t
N
2

ε uε(tεx + xε)→
Q(x)
‖Q‖L2

in H1(RN), (8)

where

tε :=
(

Nb∗

N + 2

∫
RN
|uε|2+

4
N dx

)− 1
2
, (9)

and
lim

ε→0+

∫
RN
|∇uε|2dx = +∞, lim

ε→0+

∫
RN
|uε|2+

4
N dx = +∞. (10)

Remark 3. Note that in [5] (Theorem 1.2), the authors also considered the behaviors of solutions
of (2) with V(x) ≡ 0 as ε → 0+, however, our theorem gives more precise asymptotic behaviors.
In addition, the blow up property (10) explains the reason for non-existence of solutions in the case
ε = 0 and b = b∗.

Finally, let us consider the special potential V(x) = |x|2, namely the so-called harmonic
potential, which has a wide usage on the model related to the Bose–Einstein condensates,
see, e.g., [9,13,15]. From the technical point of view, V(x) = |x|2 has a unique zero point
x0 = 0. In the following theorem, we give the precise energy estimate.

Theorem 3. Let V(x) := |x|2, x ∈ RN , and b = b∗, then as ε→ 0+,

tε = (1 + oε(1))
(8‖Q‖2

L2 εµ1

3µ2
2

) 1
8
, (11)

and

eb∗(ε) =
3(1 + oε(1))

2‖Q‖2
L2

(εµ1)
1
3 (

µ2

2
)

2
3 , (12)

where
µ1 :=

∫
RN
|∆Q|2dx, and µ2 :=

∫
RN
|x|2|Q(x)|2dx. (13)

The paper is organized as follows. In Section 2, we show the existence of non-negative
minimizers of eb(ε), proving Theorem 1. Section 3 is devoted to prove Theorem 2 on the
asymptotic behavior of minimizers for eb(ε) as ε → 0+. Section 4 is to give the proof of
Theorem 3 on the energy estimate. Finally, we give a general conclusion of this paper in
Section 5.

2. Existence of Minimizers

Lemma 2 ([16,17]). The following nonlinear scalar field equation

− ∆u +
2
N

u− |u|
4
N u = 0, u ∈ H1(RN), (14)
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has a unique positive, radially symmetric solution Q(x), which is a non-increasing function of |x|.
Moreover, the optimal Gagliardo–Nirenberg inequality holds:

∫
RN
|u|2+

4
N dx ≤ N + 2

N

(∫
RN
|Q|2dx

)− 2
N
(∫

RN
|∇u|2dx

)(∫
RN
|u|2dx

) 2
N

. (15)

Remark 4. By [17], the equality in (15) is achieved by u(x) = Q(x), namely,∫
RN
|Q|2+

4
N dx =

N + 2
N

∫
RN
|∇Q|2dx. (16)

In addition, recall from [18] (Proposition 4.1), we know that

Q(x), |∇Q(x)| = O(|x|−
1
2 e−|x|), as |x| → ∞. (17)

In particular, by the classical elliptic regularity theory, Q(x) ∈ H2(RN), see e.g., [19] (Theo-
rem 8.1.1).

To show the existence result, we need to use the following compactness of embedding.

Lemma 3. Let V(x) satisfy (6), then the embedding H ↪→ Lq+1(RN) is compact, for any 1 ≤
q < 2N

(N−4)+ − 1, where 2N
(N−4)+ = 2N

N−4 if N ≥ 5, and 2N
(N−4)+ = +∞ if 1 ≤ N ≤ 4.

Remark 5. The proof of Lemma 3 basically is the same as the one of [15] (Lemma 5.1) or [9] (Lemma
2.1). Here we omit the details.

The proof of Theorem 1. For any u ∈ B1, using the Gagliardo–Nirenberg inequality (15),
we have

Eε
b(u) =

ε

2

∫
RN
|∆u|2dx +

1
2

∫
RN

(
|∇u|2 + V(x)|u(x)|2

)
dx− bN

2N + 4

∫
RN
|u|2+

4
N dx

≥ ε

2

∫
RN
|∆u|2dx +

1
2

(
1− b

b∗

) ∫
RN
|∇u|2dx +

1
2

∫
RN

V(x)|u(x)|2dx. (18)

Observe that when 0 < b ≤ b∗, (18) shows that Eε
b(u) ≥ 0, ∀ u ∈ B1. When b > b∗, then by

the inequality ‖∇u‖2
L2 ≤ ‖∆u‖L2‖u‖L2 , we use (18) to derive that

Eε
b(u) ≥

ε

2

∫
RN
|∆u|2dx +

1
2

(
1− b

b∗

)( ∫
RN
|∆u|2dx

) 1
2 ≥ min

t>0
h(t), (19)

where h(t) := ε
2 t2 + 1

2

(
1− b

b∗

)
t. Hence, for all b > 0, Eε

b(u) is bounded from below on B1.
Thus eb(ε) > −∞, ∀ b > 0.

Now we show that eb(ε) is reached. Let {un}∞
n=1 be a minimizing sequence of eb(ε),

satisfying
‖un‖2

L2 = 1, and lim
n→∞

Eε
b(un) = eb(ε).

From (18) and (19), one may easily observe that {un}∞
n=1 is bounded inH. Thus by Lemma 3,

up to a subsequence, there exists u ∈ H, such that

un ⇀ u weakly inH, un → u strongly in Lq(RN), ∀q ∈ [2,
2N

(N − 4)+
).

Then, we deduce that ∫
RN
|∆u|2dx ≤ lim

n→∞

∫
RN
|∆un|2dx, (20)
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∫
RN
|∇u|2dx ≤ lim

n→∞

∫
RN
|∇un|2dx, (21)∫

RN
V(x)|u(x)|2dx ≤ lim

n→∞

∫
RN

V(x)|un(x)|2dx, (22)

∫
RN
|u|qdx = lim

n→∞

∫
RN
|un|qdx, q = 2, 2 +

4
N

. (23)

It follows from (20)–(23) that

eb(ε) ≤ Eε
b(u) ≤ lim

n→∞
Eε

b(un) = eb(ε),

thus we have
Eε

b(u) = eb(ε), u ∈ B1.

Namely, u is a minimizer of eb(ε). Moreover, using [20] (Theorem 6.17), we have,

|∇|u(x)|| ≤ |∇u(x)| and |∆|u(x)|| ≤ |∆u(x)| a.e. in RN .

Then,
eb(ε) ≤ Eε

b(|u|) ≤ Eε
b(u) = eb(ε), u ∈ B1.

Therefore, if u is a minimizer of eb(ε), then |u| also is a minimizer of eb(ε). This shows that
for all b > 0, eb(ε) admits at least one non-negative minimizer.

3. Asymptotic Behaviors of Minimizers

In this section, we investigate the asymptotic behaviors of minimizers as ε → 0+

and b = b∗. To begin with, we first estimate the energy of eb∗(ε) as ε → 0+ in the
following lemma, where we shall use some arguments from [21,22], whose basic ideas stem
from [13,23].

Lemma 4.
lim

ε→0+
eb∗(ε) = eb∗(0) = 0. (24)

Proof. First, by Lemma 1 we have,

lim
ε→0+

eb∗(ε) ≥ eb∗(0) = 0. (25)

On the other hand, choose a cut-off function ϕ ∈ C∞
0 (RN) such that

ϕ(x) ≡ 1 if|x| < 1, and ϕ(x) ≡ 0 if|x| > 2. (26)

Let x0 ∈ RN be such that V(x0) = 0. For τ > 0, R > 0, denote

uτ =
AR,τ

‖Q‖L2
τ

N
2 ϕ(

x− x0

R
)Q(τ|x− x0|), (27)

where AR,τ > 0 is chosen so that uτ ∈ B1. By scaling, AR,τ , depends only on the product
Rτ , and we have

1 ≤ A2
R,τ ≤ 1 + Ce−Rτ ,

and also we have that, as τ → +∞,∫
RN
|∆uτ |2dx =

τ4

‖Q‖2
L2

∫
RN
|∆Q(x)|2dx + O(e−Rτ), (28)

∫
RN
|∇uτ |2dx =

τ2

‖Q‖2
L2

∫
RN
|∇Q(x)|2dx + O(e−Rτ), (29)
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∫
RN

V(x)|uτ(x)|2dx =
A2

R,τ

‖Q‖2
L2

∫
RN

V(
x
τ
+ x0)ϕ(

x
τ
)|Q(x)|2dx → 0, (30)

∫
RN
|uτ |2+

4
N dx =

N + 2
N

τ2

‖Q‖2+ 4
N

L2

∫
RN
|∇Q|2dx + O(e−Rτ). (31)

It follows from (28)–(31) that

Eε
b∗(uτ) =

ετ4

2‖Q‖2
L2

∫
RN
|∆Q(x)|2dx + O(e−Rτ).

Setting τ = ε−
1
8 , we have

lim
ε→0+

eb∗(ε) ≤ lim
ε→0+

Eε
b∗(uτ) = 0.

This, together with (25), implies (24).

The Proof of Theorem 2. Let uε be a non-negative minimizer of eb∗(ε), then standardly,
there exists a Lagrange multiplier λε ∈ R, such that (uε, λε) solves weakly

ε∆2uε − ∆uε + V(x)uε = λεuε + b∗|uε|
4
N uε, x ∈ RN . (32)

Using (18) and Lemma 4, we have

0 ≤ E0
b∗(uε) ≤ Eε

b∗(uε) = eb∗(ε)→ eb∗(0) = 0, as ε→ 0+, (33)

and then, ∫
RN

V(x)|uε|2dx → 0, as ε→ 0+. (34)

Now, we claim that
lim

ε→0+

∫
RN
|∇uε|2dx = +∞. (35)

In fact, if we argue by contradiction to assume that {‖∇uε‖L2} is bounded, then applying
the compact embedding in [13] (Lemma 2.1) (similar to Lemma 3), up to a subsequence,
there exists u0 ∈ H such that

uε → u0 strongly in Lq(RN), ∀q ∈ [2,
2N

(N − 4)+
),

as ε→ 0+. Thus, u0 ∈ B1, and by (34),

0 ≤ E0
b∗(u0) ≤ E0

b∗(uε) ≤ Eε
b∗(uε)→ eb∗(0) = 0,

this implies that u0 is a minimizer of eb∗(0), which is contradicts Lemma 1 (2). Then (35)
follows.

Using (35) and Lemma 4, we conclude that

lim
ε→0+

∫
RN
|uε|2+

4
N dx = +∞. (36)

Set tε :=
(

2b∗
N+2

∫
RN |uε|2+

4
N dx

)− 1
2
, then lim

ε→0+
tε = 0. Moreover, multiplying (32) by uε and

integrating by part, we have

λε = ε
∫
RN
|∆uε|2dx +

∫
RN

(
|∇uε|2 + V(x)|uε(x)|2

)
dx− b∗

∫
RN
|uε|2+

4
N dx, (37)
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and then,

t2
ε λε = t2

ε

(
2eb∗(ε)−

2b∗

N + 2

∫
RN
|uε|2+

4
N dx

)
→ −1, as ε→ 0+.

Now, denote wε(x) := t
N
2

ε uε(tεx), or equivalently uε(x) = t−
N
2

ε wε(t−1
ε x), then wε ∈ B1, and

t2
ε Eε

b∗(uε) =
εt−2

ε

2

∫
RN
|∆wε|2dx +

1
2

∫
RN

(
|∇wε|2 + V(tεx)|wε|2

)
dx− b∗N

2N + 4

∫
RN
|wε|2+

4
N dx.

Note that t2
ε Eε

b∗(uε) = t2
ε eb∗(ε)→ 0, then by (34), we have

lim
ε→0+

(
1
2

∫
RN
|∇wε|2dx− b∗N

2N + 4

∫
RN
|wε|2+

4
N dx) = 0, (38)

lim
ε→0+

εt−2
ε

2

∫
RN
|∆wε|2dx = 0, (39)

and ∫
RN
|wε|2+

4
N dx =

N + 2
2b∗

, lim
ε→0+

∫
RN
|∇wε|2dx =

N
2

. (40)

Then using the same arguments as the proof of [22] (Lemma 2.5), which is basically the
concentration compactness argument, we deduce that there exists xε ∈ RN , such that

w̃ε(x) := wε(x + xε)→
Q(x)
‖Q‖2

L2

, in H1(RN), as ε→ 0+, (41)

where Q is introduced in Lemma 2. Furthermore, using (34), we have∫
RN

V(tεx + xε)|w̃ε|2dx → 0, as ε→ 0+.

Thus, up to a subsequence, there exists x0 ∈ RN , such that

V(x0) = 0, and lim
ε→0+

xε = x0. (42)

In addition, by (40) and the inequality ‖∇wε‖2
L2 ≤ ‖∆wε‖L2‖wε‖L2 , we know that ‖∆wε‖L2

9 0, which, together with (39), implies that

lim
ε→0+

εt−2
ε = 0. (43)

From (32), we can check that w̃ε satisfies

εt−2
ε ∆2w̃ε − ∆w̃ε + t2

ε V(tεx + xε)w̃ε = λεt2
ε w̃ε + b∗|w̃ε|

4
N w̃ε. (44)

Applying the exponential decay result due to [4] (Theorem 3.10 or Remark 3.11), we have

w̃ε ≤ Ce−β|x|, for some β > 0, as |x| > 0 large enough. (45)

Let xε be a global maximum point of uε(x), then clearly w̃ε attains its maximum at x = xε−xε
tε

.
Thanks to (45), we know that

lim
ε→0+

|xε − xε|
tε

< ∞.

Set

wε(x) := w̃ε(x +
xε − xε

tε
) = t

N
2

ε uε(tεx + xε),
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then wε(x) attains its maximum at x = 0. Therefore, from (41) we conclude that

lim
ε→0+

wε(x)→ Q(x)
‖Q‖L2

, in H1(RN).

Then the proof of Theorem 2 is completed.

4. Proof of Theorem 3

In this section, we particularly treat the special case V(x) = |x|2.

The Proof of Theorem 3. Note that when V(x) = |x|2, there exists a unique x0 = 0, such
that V(x0) = 0. To prove this theorem, we start with the upper bound estimate of the
energy eb∗(ε) as ε→ 0+. Let uτ be given by (27), then by (30),

∫
RN

V(x)|uτ(x)|2dx =
A2

R,τ

‖Q‖2
L2

∫
RN

V(
x
τ
)ϕ(

x
τ
)|Q(x)|2dx ≤ 1 + Ce−R,τ

τ2‖Q‖2
L2

∫
RN
|x|2|Q(x)|2dx.

Thus, using (28), (29), and (31), we obtain that as τ → +∞,

Eε
b∗(uτ) ≤

ετ4

2‖Q‖2
L2

∫
RN
|∆Q|2dx +

1 + Ce−R,τ

2τ2‖Q‖2
L2

∫
RN
|x|2|Q(x)|2dx + O(e−Rτ). (46)

Take τ =
(

µ2
2εµ1

) 1
6 in (46), then we have, as ε→ 0+,

eb∗(ε) ≤
3(1 + oε(1))

2‖Q‖2
L2

(εµ1)
1
3 (

µ2

2
)

2
3 . (47)

On the other hand, let uε be a non-negative minimizer of eb∗(ε) and wε(x) be given
by (8). Then from (8), we know that wε(x) → 1

‖Q‖L2
Q(x) a.e. in RN . Thus by the weak

semi-continuity, we have that

lim
ε→0+

t4
ε

∫
RN
|∆uε|2dx = lim

ε→0+

∫
RN
|∆wε|2dx ≥ 1

‖Q‖2
L2

∫
RN
|∆Q|2dx. (48)

Moreover, by direct calculation we have,

lim
ε→0+

1
t2
ε

∫
RN

V(x)|uε(x)|2dx = lim
ε→0+

1
t2
ε

∫
RN

V(tεx + xε)|wε(x)|2dx

= lim
ε→0+

∫
RN
|x +

xε

tε
|2|wε(x)|2dx. (49)

We claim that { xε

tε
} is bounded. Indeed, if not, then from (49) we obtain that, as any M > 0

large enough,

lim
ε→0+

1
t2
ε

∫
RN

V(x)|uε(x)|2dx ≥ M.

Thus, using (48) and the Young inequality, we derive that, as ε→ 0+,

eb∗(ε) ≥
εµ1

2t4
ε‖Q‖2

L2

+
t2
ε M
2
≥
( 27M2

32‖Q‖2
L2

) 1
3
(

εµ1

) 1
3
,
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which clearly contradicts (47), provided M > 0 large enough. Hence, up to a subsequence

if necessary, there exists y0 ∈ RN , such that, limε→0+
xε

tε
= y0. Therefore, by (8) and (49),

and the Fatou lemma,

lim
ε→0+

1
t2
ε

∫
RN

V(x)|uε(x)|2dx = lim
ε→0+

∫
RN
|x +

xε

tε
|2|wε(x)|2

≥ 1
‖Q‖2

L2

∫
RN
|x + y0|2|Q(x)|2dx

≥ 1
‖Q‖2

L2

∫
RN
|x|2|Q(x)|2dx. (50)

Thus, it follows from (48), (50) and the Young inequality that, as ε→ 0+,

eb∗(ε) ≥
(1 + oε(1))εµ1

2t4
ε‖Q‖2

L2

+
(1 + oε(1))µ2t2

ε

2‖Q‖2
L2

≥ 3(1 + oε(1))
2‖Q‖2

L2

(εµ1)
1
3 (

µ2

2
)

2
3 . (51)

Combining (47) and (51), then (12) follows. In addition, it is easy to verify that the equality
holds in the second inequality of (51) if and only if (11) holds. Thus we have finished the
proof.

5. Conclusions

In this paper, we consider a global minimization problem on an L2-norm constrained
manifold to obtain the existence of ground state solutions to the stationary equation, which
then gives to the existence of the standing wave solutions to the time-dependent equation.
Using some energy estimate arguments, we manage to establish the asymptotic behaviors
of the solutions we obtained as ε→ 0+. Precisely, when the perturbation is small enough,
solutions concentrate on a zero point of the potential V(x). In particular, we prove the
blow-up of the solutions as ε→ 0+. This information shows us the reason why solutions
do not exist when ε = 0 and b = b∗. We believe that similar analyses can also be carried
out on other equations.
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