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Abstract: The central problem of this study is to represent any holomorphic and square integrable
function on the Kepler manifold in the series form based on Fourier analysis. Because these function
spaces are reproducing kernel Hilbert spaces (RKHS), three different domains on the Kepler manifold
are considered and the weak pre-orthogonal adaptive Fourier decomposition (POAFD) is proposed
on the domains. First, the weak maximal selection principle is shown to select the coefficient of the
series. Furthermore, we prove the convergence theorem to show the accuracy of our method. This
study is the extension of work by Wu et al. on POAFD in Bergman space.
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1. Introduction

Algebraic varieties which describe solutions of a system of polynomial equations are
extremely important because they are the fundamental objectives in the field of algebraic
geometry [1]. For example, the Jacobian variety [2] and moduli varieties [3] are two classical
cases of algebraic varieties. In addition, the term “algebraic manifold” defines special kinds
of algebraic varieties which are smooth manifolds of dimension n themselves except for
some singular points. The Kepler manifold arises from the Jordan–Kepler variety, which
is a class of algebraic variety on the framework of Jordan theoretic terms. In addition,
the classical Kepler manifold is a submanifold of Cn+1 and is a peculiar example of the
Jordan–Kepler variety. In general, there are many measures one must be equipped with to
understand the Kepler manifold.

To determine the measure associated with a manifold is of great importance. Meanwhile,
there are also many measures to be selected according to different problems in the field of
mathematics, physics, and engineering. There is the Riemann measure and other measures
relative to Kähler potentials focused on the Kepler manifold in the previous research [4] which
are K-invariant and have nice polar decompositions. In addition, under these measures, one
can focus on the function space consisting of holomorphic (analytic) and square integrable
functions i.e., the weighted Bergman space on the given manifold. It is well-known that, if
a Hilbert space has a reproducing kernel, the function space will be an RKHS. Furthermore,
if one decides a set of n reproducing kernels associated with n distinct points on the given
Kepler manifold, the set is dense in the weighted Bergman space, and every holomorphic
function on the Kepler manifold can be represented in the form of combinations of kernels
in this set. A new decomposition of holomorphic and square integrable functions have been
developed on the Kepler manifold replacing Hua–Schmid–Kostant decomposition [5] and
Peter–Weyl expansion [6] previously studied.
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The main problem is to explore a novel decomposition of any function, which is on
the Kepler manifold and is square integrable i.e., f ∈ H2. The motivation of this study is to
extend the POAFD and weak pre-orthogonal adaptive Fourier decomposition (WPOAFD)
proposed by Qian [7] initially in Hardy space on the unit disc, which is applicable in signal
processing. For Bergman space, Qu et al. [8] studied functions on the unit disc and unit ball;
Wu et al. [9] generalized it to the symmetry bounded domain with the kernel proposed
by Hua [10]. In numerical analysis, Song has proposed the WPOAFD method for the
Helmholtz equation [11]. The RKHS method is applied to fractional partial differential
equations [12] and shows the potential to perform well compared with the finite difference
method, the finite element method, and the finite volume method. There is some other
work, please see [13–15] for details.

In this study, we generalize the WPOAFD method to the weighted Bergman space on
the Kepler manifold associated with the smooth measure, measures with Kähler potentials,
and the rotation measure. In addition, for the Kepler ball, the POAFD is also studied. In
addition, the convergence of this method is shown. The decomposition allows an infinite
series sequentially determined by the orthonormal sequence by the so-called weak maximal
selection principle.

The organization of this paper is as follows: in the first section, we sketch the procedure
of this study and show the main results. After that, some preliminaries are reviewed
including basic definitions, K-invariant measures and the corresponding reproducing
kernels. The weak maximal selection principle is proved in Section 4 and the convergence
is shown in Section 5. In addition, applications are given in Section 6, and conclusions are
drawn in Section 7.

2. Brief Procedure of This Study

In this section, a brief motivation and procedure of our main results is introduced, and
rigorous proof will be given in the subsequent section.

Before the presentation of the procedure, it is necessary to define

H2(Z̊r, dρ) =

{
f is holomorphic on Z̊r

∣∣∣∣ ∫Z̊
f 2(z)dρ < ∞

}
,

where
Z̊r := {z ∈ Z|R(z) = r}.

(Further definitions in Equations (6)–(9) will be reviewed in Section 3.2.)
Engliš et al. [4] constructed the reproducing kernel kw(z) = K(z, w) for H2(Z̊r, dρ) for

z, w ∈ Z̊r

K(z, w) = ∑
m∈Zr

+

Hm(z, w)∫
Ω Nmdρ̃

. (1)

where Nm (|m| := m1 + · · ·+ mr) is the highest weight polynomial

Nm = Nm1−m2
1 Nm2−m3

2 · · ·Nmr
r ;

Hm(z, w) = (
d
r
)mEm(z, w).

Em(z, w) is the Fischer–Fock reproducing kernel for the Peter–Weyl space; (·)m is the
generalized Pochhammer symbol (please see [4] (Section 4)).

The reproducing property f (w) = 〈 f , K(·, w)〉 for any f ∈ H2(Z̊r, dρ) is satisfied.
Therefore, one can say the Hilbert space H2(Z̊r, dρ) is an RKHS with reproducing kernel
kw(z) in Equation (1).

It is worth mentioning that {kai}ai∈Z̊r will span a dense space of H2(Z̊r, dρ). It

means any function in H2(Z̊r, dρ) will be represented by the linear combination of kai

with ai ∈ H2(Z̊r, dρ).



Mathematics 2022, 10, 2729 3 of 15

In this paper, we consider a rational approximation of function f ∈ H2(Z̊r, dρ) based
on WPOAFD proposed by Qian [7,16], which decomposes a function (or signal) in an RKHS
into infinite terms associated with orthonormal reproducing kernels. WPOAFD is a highly
efficient method to give the approximation of any function on RKHS in the domain without
a boundary vanishing property. In addition, it is a method not related to the form of an
inner product of a Hilbert space.

In general, one common inner product of Bergman space is

〈 f , g〉 =
∫

Ω
f gdρ (2)

with respect to measure ρ, and we use inner product Equation (2) without loss of generality.
To be specific, for any distinct points a1, a2, . . . , an in Z̊r, the set {ka1 · · · kan} is linear

independent in H2(Z̊r, dρ); then, one can apply the Gram–Schmidt orthonormalization
method to obtain a set of orthonormal sequences {B1,B2, . . . ,Bn} of H2(Z̊r) such that

B1 =
ka1
||ka1 ||

and Bm =
kam−∑m−1

i=1 (kam ,Bi)Bi

||kam−∑m−1
i=1 〈kam ,Bi〉Bi ||

, for m = 2, 3, . . . , n.

Then, one can consider f ∈ H2(Z̊r, dρ). Let hn be the image of the orthonormal
projection of f onto the span{B1, . . . ,Bn} = span{kai |i = 1, . . . , n}; then, it follows:

gn =
n

∑
i=1
〈 f ,Bi〉Bi, (3)

and

||gn||2 =
n

∑
i=1
|〈 f ,Bi〉|2.

Furthermore, there is still one problem that remains, which is how to select an optimal
sequence {a1, . . . , an} of the points in Z̊r such that |〈 f ,Bi〉| is as large as possible (like
greedy algorithms).

To answer this problem, we study the following result Equation (4) called weak
maximal selection principle on the domain B and Z̊r, respectively. In addition, the case of B
is a special case of the case of Z̊r. The difference is the reproducing kernel and the sequence
{a1, . . . , am−1}. In addition, an obvious fact is that the Kepler ball is a bounded domain but
not necessarily symmetrical:

|〈 f ,Bm〉| ≥ ρm sup
{
|〈 f ,Bb

m〉|
∣∣∣ b ∈ Z̊r \ {a1, . . . , am−1}

}
, (4)

where Bm =
kam−∑m−1

i=1 〈kam ,Bi〉Bi

||kam−∑m−1
i=1 〈kam ,Bi〉Bi ||

and Bb
m =

kb−∑m−1
i=1 (kb ,Bi)Bi

||kb−∑m−1
i=1 〈kb ,Bi〉Bi ||

.

By the above-mentioned weak maximal selection principle, we have the convergence
both in B and H2(Z̊r, dρ) as follows:

f = ∑
i≥1
〈 f ,Bi〉Bi. (5)

Equations (4) and (5) are the main results of this study, and the strict expression can be
seen in Theorem 1 and Theorem 2.

3. Preliminaries
3.1. RKHS

In this part, the definition of RKHS is reviewed according to [17].

Definition 1 (RKHS). Let H be a Hilbert space of complex-valued functions defined on a non-empty
set X with an inner product 〈·, ·〉. H is called a reproducing kernel Hilbert space on X, if, for any
point x ∈ X, the evaluation functional Lx : H → C defined by Lx( f ) = f (x) is continuous on H.
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Definition 2 (Reproducing kernel). Let H be a RKHS on X and x, y ∈ X. The function
K : X× X → C satisfying

〈 f , K(·, x)〉 = f (x)

is called the reproducing kernel for H.

Remark 1. The reproducing kernel of X in Definition 2 is also defined by

K(x, y) = 〈K(·, y), K(·, x)〉 = ky(x)

for x, y ∈ X.

Remark 2. There is an example that all the weighted Bergman spaces corresponding to H2
β, β < 0

are reproducing kernel Hilbert space [8].

Remark 3. A Hilbert space is a reproducing kernel Hilbert space if and only if the point-evaluating
linear functional is a bounded functional.

3.2. Research Objective

Let Z̊ be the open dense subset of all elements of maximal rank r. It is mentioned that,
under the condition, Z is of tube type with Jordan determinant N. Then, it follows:

Z̊ = {z ∈ Z|N(z) 6= 0}. (6)

The rank of supporting tripotent of z ∈ Z, 1 ≤ l ≤ r is denoted by R(z). In addition,
we define Z̊l as follows:

Z̊l = {z ∈ Z|R(z) = l}. (7)

Actually, Z̊l is a complex manifold called the Kepler manifold [4] with respect to Z in
Equation (6).

We consider the Hilbert space H2(Z̊, dρ) equipped with inner product 〈·, ·〉 in Equation (2)
as follows:

H2(Z̊r, dρ) =

{
f is holomorphic on Z̊r

∣∣∣∣ ∫Z̊
f 2(z)dρ < ∞

}
(8)

with respect to a K-invariant measure ρ defined as∫
Z̊r

f (z)dρ(z) =
∫

Ω
dρ̃(t)

∫
K

f (k
√

t)dk, (9)

where dρ̃(t) is called the radial part, which is a smooth measure on invariant domain Ω
under the group action L = Aut(X) of the Euclidean Jordan algebra X.

3.3. Kepler Manifold and Kepler Ball

Traditionally, the Kepler manifold is defined as follows, serving as a symplectic
manifold associated with the cotangent bundle of unit sphere.

Definition 3 (Classical Kepler manifold). Denoting z · w = ∑j zjwj, the Kepler manifold is

H =

{
z ∈ Cn+1

∣∣∣∣z · z = 0, z 6= 0
}

.

Remark 4. H is a complex submanifold of Cn+1, and H ∪ {0} is the simplest case of Jordan–
Kepler varieties.

Now, the definition of Kepler ball is reviewed.
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Definition 4 (Kepler ball). The Kepler ball is the domain
{

z ∈ Z̊r

∣∣∣∣||z|| < 1
}

.

3.4. K-Invariant Measures on Z̊r

Equation (9) shows a polar decomposition of a K-invariant measure ρ on Z̊r. However,
there are several forms of K-invariant measures such as Riemann measure which have been
studied before.

In this section, we review a measure which comes from Kähler potential.
Consider the pluri-subharmonic function φ = 〈z, z〉 on Zl and associated Kähler form

ω = ∂∂φ. The measure is denoted by |ω
n |

n! exp−νφ with polar decomposition [18]

∫
Z̊r

|ωn|
n!

exp−νφ f (z)=
∫

Ω
Nc(t)b exp−ν〈t, c〉dt, (10)

where Nc(t) is the rank r Jordan determinant on Ω.

3.5. Rotation Measure

We present the definition of rotation measure.

Definition 5. A rotation measure d(ρ⊗ µ) on Z̊r is defined by∫
Z̊r

f d(ρ⊗ µ) =
∫ ∞

0

∫
∂B

f (tζ)dµ(ζ)dρ(t).

In addition, the corresponding weighted Bergman space is

H2(hB, d(ρ⊗ µ)) =

{
f is holomorphic on hB

∣∣∣∣ ∫Z̊
f 2(z)d(ρ⊗ µ) < ∞

}
, (11)

where h = sup
{
|z|
∣∣∣∣z ∈ suppρ⊗ µ

}
.

In the previous work [19], it is proved that H2(hB, d(ρ⊗ µ)) is an RKHS with repro-
ducing kernel

K(z, w) =
∞

∑
l=0

(2l + n− 1)(l + n− 2)!(z · w)l

l!(n− 1)!
∫ ∞

0 t2ldρ
. (12)

3.6. Function Space

First, we consider the holomorphic functions which are square integrable on Z̊r. The
function space H2(Z̊r) in Equation (8) is an RKHS with reproducing kernel in Equation (1)
like what we have mentioned before.

Then, if it comes to Kepler ball B, we consider the holomorphic functions which
are square integrable on B with |ω

n |
n! exp−νφ as its measure. Upmeier [20] has found the

reproducing kernel for this space

Kν(t, e) = Dr 2F1. (13)

where 2F1 is a Gauss hypergeometric function on Ω in Equation (10).
Thus, the function space H2(B, |ω

n |
n! exp−νφ) is an RKHS with reproducing kernel in

Equation (13).
Finally, we consider the function space in Equation (11) on hB, and it is an RKHS with

reproducing kernel in Equation (12).
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4. Weak Maximal Selection Principle

Before proving the weak maximal selection principle, we propose following lemmas.

Proposition 1. {kai}ai∈Z̊r
is a linearly independent set.

Proof. Considering
n

∑
i=1

cikai = 0, (14)

our aim is to prove ci = 0 for i = 1, 2, . . . , n.
Taking the inner product with f ∈ H2(Z̊r) on both sides in Equation (14), we have

〈 f ,
n

∑
i=1

cikai 〉 =
n

∑
i=1

ci〈 f , kai 〉 = 0. (15)

By reproducing the property in Definition 2, Equation (15) reduces to

〈 f ,
n

∑
i=1

cikai 〉 =
n

∑
i=1

ci f (ai) = 0. (16)

Letting f (z) = exp t〈ai, z〉, Equation (16) reduces to

n

∑
i=1

ci exp t〈ai, ai〉 =
n

∑
i=1

ci exp ||ai||2t = 0.

Due to the linear independence of exp t, we have ci = 0.
Thus, ci = 0. We complete the proof.

Due to Proposition 1, one can apply Gram–Schmidt orthonormalization method to

obtain {B1,B2, . . . ,Bn}, where Bm =
kam−∑m−1

i=1 〈kam ,Bi〉Bi

||kam−∑m−1
i=1 〈kam ,Bi〉Bi ||

.

Lemma 1. 〈Bn,Bi〉 = 〈Bb
n,Bi〉 = 0, where

Bn =
kan −∑n−1

i=1 〈kan ,Bi〉Bi

||kan −∑n−1
i=1 〈kan ,Bi〉Bi||

and

Bb
n =

kb −∑n−1
i=1 (kb,Bi)Bi

||kb −∑n−1
i=1 〈kb,Bi〉Bi||

.

Proof. Since

〈Bn,Bi〉 = 〈
kan −∑n−1

i=1 〈kan ,Bi〉Bi

||kan −∑n−1
i=1 〈kan ,Bi〉Bi||

,Bi〉

=
1

||kan −∑n−1
i=1 〈kan ,Bi〉Bi||

{〈kan ,Bi〉 − 〈kan ,Bi〉}

= 0

and
〈Bb

n,Bi〉 =
1

||kb −∑n−1
i=1 〈kb,Bi〉Bi||

{〈kb,Bi〉 − 〈kb,Bi〉} = 0,

we complete the proof.
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Lemma 2. Letting fn = fn−1 − 〈 fn−1,Bn−1〉Bn−1, f1 = f , it holds that:

〈 fn,Bn〉 = 〈 f1,Bn〉

and
〈 fn,Bb

n〉 = 〈 f1,Bb
n〉.

Proof. By the direct calculation and recurrence method, we have
〈 fn,Bn〉 = 〈 fn−1 − 〈 fn−1,Bn−1〉Bn−1,Bn〉 = 〈 fn−1,Bn〉 = · · · = 〈 f1,Bn〉;
〈 fn,Bb

n〉 = 〈 fn−1 − 〈 fn−1,Bn−1〉Bn−1,Bb
n〉 = 〈 fn−1,Bb

n〉 = · · · = 〈 f1,Bb
n〉.

Then, we define
gn(b) = |〈 fn,Bb

n〉| (17)

for b ∈ Z̊r \ {a1, . . . , ai−1}, which is similar to Equation (3) and a supremum

S = sup
{

gn(b) ∈ R
∣∣∣∣b ∈ Z̊r \ {a1, . . . , an−1}

}
. (18)

The following lemma and proposition show that S can be reached.

Lemma 3. Let gn(b) be defined in Equation (17), and gn(b) is continuous on Z̊r.

Proof. ∀ε > 0, ∃δ > 0, ∀a satisfying |b− a| < δ, we have

|gn(b)− gn(a)| = |〈 fn,Bb
n〉 − 〈 fn,Ba

n〉|
= |〈 fn,Bb

n −Ba
n〉|

≤ || fn||||Bb
n −Ba

n||. (19)

Since lim
b→a
Bb

n = Ba
n, then, when |b− a| < δ, we have ||Bb

n −Ba
n|| < ε

M . Because || f || is
bounded; i.e., || f || ≤ M, Equation (19) reduces to |gn(b)− gn(a)| < ε.

Therefore, we complete the proof.

Corollary 1. In the case n = 1, we have that f1 = f and Bb
1 = kb

||kb ||
. Under these conditions, we

have that g1(b) = |〈 f , kb
||kb ||
〉| is continuous.

Proposition 2. Let gn(b) and S be defined in Equations (17) and (18), respectively. There exists a
point c ∈ Z̊r \ {a1, . . . , ai−1}, such that gn(c) = S.

Proof. Due to Proposition A3 in Appendix B and the fact that fn ∈ H2(Z̊r, dρ), we have

gn(b) = |〈 fn,Bb
n〉| ≤ || fn||||Bb

n|| = || fn|| < ∞.

Thus,
{

gn(b) ∈ R|b ∈ Z̊r \ {a1, . . . , an−1}
}

is bounded.
By Theorem A1, we have that S exists.
By Lemma 3 and the extreme value theorem, we obtain that there exists a point c such

that
gn(c) = sup gn(b) = max gn(b).

Therefore, gn(c) = S.

Corollary 2. In the case n = 1, there exists a point a ∈ Z̊r, such that

g1(a) = S = sup
{

g1(b) ∈ R|b ∈ Z̊r
}

.

Next, we summarize the weak maximal selection principle from Section 2.
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Theorem 1 (Weak maximal selection principle). For any function f ∈ H2(Z̊r, dρ) and se-
quence {ρi}i≥0 with 0 < ρ0 ≤ ρi < 1 for i ≥ 1, there exists a sequence {ai}i≥1 of distinct points
in Z̊r such that

|〈 f ,Bm〉| ≥ ρm sup
{
|〈 f ,Bb

m〉|
∣∣∣∣b ∈ Z̊r \ {a1, . . . , am−1}

}
,

where m = 1, 2, . . . , n,Bm =
kam−∑m−1

i=1 〈kam ,Bi〉Bi

||kam−∑m−1
i=1 〈kam ,Bi〉Bi ||

and

Bb
m =

kb −∑m−1
i=1 (kb,Bi)Bi

||kb −∑m−1
i=1 〈kb,Bi〉Bi||

.

Proof of Theorem 1. Mathematical induction is used for this proof. Additionally, there are
two steps including the base case and induction step in the procedure of mathematical
induction.

Firstly, one can consider the m-th residual function fm(same as fn in Lemma 2) as
follows:

fm = fm−1 − 〈 fm−1,Bm−1〉Bm−1,

where m = 2, . . . , n and f1 = f .
Secondly, one can validate the base case m = 1.

In the case m = 1, by Corollaries 1 and 2, there exist a1 ∈ Z̊r and B1 =
ka1
||ka1 ||

such that

|〈 f ,B1〉| = |〈 f ,
ka1

||ka1 ||
〉| = sup

{
|〈 f ,

kb
||kb||

〉|
∣∣∣∣b ∈ Z̊r

}
.

Then, for 0 < ρ1 < 1, we have

|〈 f ,B1〉| ≥ ρ1 sup
{
|〈 f ,

kb
||kb||

〉|
∣∣∣∣b ∈ Z̊r

}
,

since |〈 f ,B1〉| is non-negative.

To be specific, if |〈 f ,B1〉| = 0, we have that sup
{
|〈 f , kb

||kb ||
〉|
∣∣∣∣b ∈ Z̊r

}
= 0. Then, for

b ∈ Z̊r \ {a1, . . . , am−1}, |〈 f ,Bb
m〉| = 0. It is obvious that Theorem 1 holds since |〈 f ,Bm〉| ≥ 0.

Thirdly, for other cases m 6= 1 and points {ai}i≥1, the induction step is implemented
as follows.

One can assume that Theorem 1 holds in the case m = n; then, there are n points
obtained satisfying

|〈 fm,Bm〉| ≥ ρm sup
{
|〈 fm,Bb

m〉|
∣∣∣∣b ∈ Z̊r \ {a1, . . . , am−1}

}
, (20)

where m = 1, 2, . . . , n.
Then, the aim is to show that Theorem 1 holds in the case m = n + 1 under the

previous assumption, i.e., Equation (20).
For the case m = n + 1, there are two possibilities:

• If there exists one fm = 0 for m = 1, 2, . . . , n, then Theorem 1 holds since |〈 fm,Bm〉| ≥ 0.
• Otherwise, for 0 < ρ0 < ρn+1 < 1, by Proposition 2, one can obtain that there exists a

point an+1 ∈ Z̊r such that

|〈 fn+1,Bb
n+1〉| ≥ ρn+1 sup

{
|〈 fn+1,Bb

n+1〉|
∣∣∣∣b ∈ Z̊r \ {a1, . . . , an}

}
, (21)
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where Bn+1 =
kan+1−∑n

j=1(kan+1 ,Bj)Bj

||kan+1−∑n
j=1(kan+1 ,Bj)Bj ||

and

Bb
n+1 =

kb −∑n
j=1(kb,Bj)Bj

||kb −∑n
j=1(kb,Bj)Bj||

.

By Lemmas 1 and 2, Equation (21) reduces to

|〈 f ,Bb
n+1〉| ≥ ρn+1 sup

{
|〈 f ,Bb

n+1〉|
∣∣∣∣b ∈ Z̊r \ {a1, . . . , an}

}
, (22)

where Bn+1 =
kan+1−∑n

j=1(kan+1 ,Bj)Bj

||kan+1−∑n
j=1(kan+1 ,Bj)Bj ||

and

Bb
n+1 =

kb −∑n
j=1(kb,Bj)Bj

||kb −∑n
j=1(kb,Bj)Bj||

.

One can set that the final point an+1 is the point b ∈ Z̊r \ {a1, . . . , an}; then, it follows

|〈 f ,Bb
n+1〉| = |〈 f ,Bn+1〉|. (23)

By Equation (23), Equation (22) reduces to

|〈 f ,Bn+1〉| ≥ ρn+1 sup
{
|〈 f ,Bb

n+1〉|
∣∣∣∣b ∈ Z̊r \ {a1, . . . , an}

}
.

Therefore, the case m = n + 1 is showed. By Proposition A1 in Appendix A.1, the
weak maximal selection principle is proved.

Remark 5. In this proof, we use the fact that, if |〈 f ,Bi〉| = 0, the decomposition will come to
the end.

Corollary 3 (Kepler ball case). For any function f ∈ H2(B, |ω
n |

n! exp−νφ) and sequence
{ρi}i≥0 with 0 < ρ0 ≤ ρi < 1 for i ≥ 1, there exists a sequence {ai}i≥1 of distinct points
in B such that

|〈 f ,Bm〉| ≥ ρm sup
{
|〈 f ,Bb

m〉|
∣∣∣∣b ∈ B \ {a1, . . . , am−1}

}
,

where Bm =
kam−∑m−1

i=1 〈kam ,Bi〉Bi

||kam−∑m−1
i=1 〈kam ,Bi〉Bi ||

and

Bb
m =

kb −∑m−1
i=1 (kb,Bi)Bi

||kb −∑m−1
i=1 〈kb,Bi〉Bi||

.

Proof. The proof is straightforward by Theorem 1 when we constrained functions on B
with a reproducing kernel in Equation (13).

Corollary 4 (Rotation measure case). For any function f ∈ H2(hB, d(ρ⊗ µ)) and sequence
{ρi}i≥0 with 0 < ρ0 ≤ ρi < 1 for i ≥ 1, there exists a sequence {ai}i≥1 of distinct points in Z̊r
such that

|〈 f ,Bm〉| ≥ ρm sup
{
|〈 f ,Bb

m〉||b ∈ hB \ {a1, . . . , am−1}
}

,

where Bm =
kam−∑m−1

i=1 〈kam ,Bi〉Bi

||kam−∑m−1
i=1 〈kam ,Bi〉Bi ||

and

Bb
m =

kb −∑m−1
i=1 (kb,Bi)Bi

||kb −∑m−1
i=1 〈kb,Bi〉Bi||

.
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Proof. The proof is straightforward by Theorem 1 when we constrained functions on
H2(hB, d(ρ⊗ µ)) with a reproducing kernel in Equation (12).

5. Convergence of WPOAFD

Theorem 2 (Covergence theorem). For any function f ∈ H2(Z̊r, dρ), f can be represented
as follows:

f = ∑
i≥1
〈 f ,Bi〉Bi,

where Bi =
kb−∑i−1

m=1〈kb ,Bm〉Bm

||kb−∑i−1
m=1〈kb ,Bm〉Bm ||

, and 〈 f ,Bi〉 can be obtained by Theorem 1.

Proof of Theorem 2. Proof by contradiction is used in this proof by assuming that

h = f −∑
i≥1
〈 f ,Bi〉Bi 6= 0.

Then, the sequence {ai} is not finite. Since h is non-zero, there exists an open ball B(ε)
with ε > 0, such that |h(z)| > 0 on the ball.

Due to ∑∞
i=1 |〈 f ,Bi〉|2 < ∞, then there exists N > 0 such that, for all n > N,

∞

∑
i=n
|〈 f ,Bi〉2| < (

ρ0C0

2
)2.

Then, it is obvious that |〈 fn,Bn〉| = |〈 f ,Bn〉| < ρ0C0
2 .

One can note that eb = kb
||kb ||

. According to Theorem 1,

|〈 fn,Bn〉| ≥ ρn sup
{
|〈 fn,Bz

n〉|
∣∣∣∣z ∈ Z̊r \ {a1, a2, . . . , aN−1}

}

|〈 fn, eb〉| = |〈 fn,
kb
||kb||

〉|

=
| fn, kb −∑n−1

i=1 〈kb,Bi〉Bi|
||kb||

≤
| fn, kb −∑n−1

i=1 〈kb,Bi〉Bi|
||kb −∑n−1

i=1 〈kb,Bi〉Bi||
= |〈 fn,Bb

n〉|

≤ 1
ρ0
|〈 fn,Bn〉|

<
C0

2
. (24)

Let fn = f −∑n−1
i=1 〈 f ,Bi〉Bi = ∑∞

i=n〈 f ,Bi〉Bi + h; then,
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|〈 fn, eb〉| = |〈h +
∞

∑
i=n
〈 f ,Bi〉Bi, eb〉|

≥ | h(b)
K(b, b)

| − |〈
∞

∑
i=n
〈 f ,Bi〉Bi, eb〉|

≥ C0 −
√

∞

∑
i=n
|〈 f ,Bi〉|2

>
C0

2
. (25)

It is obvious that there is a contradiction between Equations (24) and (25). By Proposi-
tion A2 in Appendix A.2, h = 0.

Therefore, the proof is complete.

Corollary 5 (Kepler ball case). For any function f ∈ H2(B, |ω
n |

n! exp−νφ), f can be represented
as follows:

f = ∑
i≥1
〈 f ,Bi〉Bi,

where Bi =
kb−∑i−1

m=1〈kb ,Bm〉Bm

||kb−∑i−1
m=1〈kb ,Bm〉Bm ||

, and 〈 f ,Bi〉 can be obtained by Corollary 3.

Proof. Same idea as Corollary 4.

Corollary 6 (Rotation measure case). For any function f ∈ H2(hB, d(ρ ⊗ µ)), f can be
represented as follows:

f = ∑
i≥1
〈 f ,Bi〉Bi,

where Bi =
kb−∑i−1

m=1〈kb ,Bm〉Bm

||kb−∑i−1
m=1〈kb ,Bm〉Bm ||

, and 〈 f ,Bi〉 can be obtained by Corollary 2.

Proof. Same idea as Corollary 2.

6. Application

When it comes to the application of the main results in this paper, one can consider

the closure of Kepler ball B = B ∪ ∂B [18], where ∂B =

{
z ∈ Z̊r

∣∣∣∣||z|| = 1
}

. It is an

important research objective associated with Kepler ball. From the view of this paper,
one can do WPOAFD directly. In [18], by the change of variables, f can be approximated
to L(1 + bL log L + aL + · · · ), b 6= 0. Thus, it is reasonable to use this expansion to do
WPOAFD as in Theorems 1 and 2.

The advantages of this form are as follows:

1. By the change of variables, the points in Kepler ball are transformed to an interval;
2. To implement the weak maximal principle is much easier because the computational

cost is lower.

Moreover, one is supposed to find that the boundary vanishing property (BVP) holds
on B. Thus, POAFD, which is a stronger version than WPOAFD, can be implemented. In
addition, maximal selection is proposed replacing the weak form.

BVP is presented as follows.

Lemma 4 (BVP). For any f ∈ H2(B), the function g(a) = 〈 f , ea〉 defined on B satisfies
lim

z→b0
g(z) = 0 for any b0 ∈ ∂B.
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Proof. Let f ∈ H2(B) because the span of {ka|a ∈ B} is dense, and there exists a polyno-
mial g such that ‖ f − g‖ < ε. By Proposition A3 in Appendix B, one can obtain

|〈 f , ez〉| = |〈 f − g + g, ez〉| ≤ |〈 f − g, ez〉|+ |〈g, ez〉| ≤ ε + |〈g, ez〉| = (1− |z|2)g(z) + ε.

Let z→ b0; |z|2 → 1, and one can obtain |〈 f , ez〉| → 0. This implies that lim
z→b0

g(z) = 0.

Therefore, we complete the proof.

By Lemma 4, the domain of the function g can be extended from B to B. Then, we
propose the maximal selection principle on B.

Theorem 3 (Maximum Selection Principle). For any f ∈ H2(B), there exists a ∈ B such that

|〈 f , ea〉| = sup
{
|〈 f , eb〉|

∣∣∣∣ b ∈ B
}

.

Proof. One can define the function g as in Lemma 4. Because K(z, a) = 1
1−az is a reproduc-

ing kernel for H2 [10], one can calculate that

〈kz, ka〉 = kz(a) =
1

1− za
;

‖ka‖2 = 〈ka, ka〉 = ka(a) =
1

1− |a|2 ;

‖ez − ea‖2 = ‖ez‖2 + ‖ea‖2 − 2Re〈ez, ea〉

= 1 + 1− 2Re
(
〈kz, ka〉
‖ka‖‖kz‖

)
= 2− 2Re

(√
1− |a|2

√
1− |z|2

1− za

)
;

lim
z→a
‖ez − ea‖2 = lim

z→a

(
2− 2Re

√
(1− |a|2)(1− |z|2)

1− za

)

= 2− 2Re

√
(1− |a|2)(1− |a|2)

1− aa
= 2− 2 = 0.

By Proposition A3, one can obtain that

g(z) = |〈 f , ez〉| = |〈 f , ez − ea〉+ 〈 f , ea〉|
≤ |〈 f , ez − ea〉|+ |〈 f , ea〉|
≤ ‖ f ‖ · ‖ez − ea‖+ g(a).

Because the status of a and z is equivalent, g(a) ≤ ‖ f ‖ · ‖ea − ez‖+ g(z) holds. Due to
|g(z)− g(a)| ≤ ‖ f ‖ · ‖ea − ez‖, one can know that g is continuous on B.

By Lemma 4, one is supposed to have that g is continuous on B. Thus, sup g ≥ 0 can be
reached on B. The equality holds when g ≡ 0 on B. Therefore, there exists a ∈ B such that

|〈 f , ea〉| = sup
{
|〈 f , eb〉|

∣∣∣∣ b ∈ B
}

.

Therefore, we complete the proof.

Then, one can use Theorem 3 to obtain the convergence theorem on B. In addition,
the proof is similar to Corollary 5. Although the convergence theorems of POAFD and
WPOAFD are quite similar, the selection principles are different. The maximum selection
principle is easier than the weak maximum selection principle due to the fact that the
supremum can be reached directly. POAFD can only be used to the case where BVP holds,
whereas WPOAFD can be applied to any case regardless of whether BVP holds or not.
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7. Conclusions

In this paper, we propose a procedure of WPOAFD in H2 on the Kepler manifold Z̊r
in great detail and prove the convergence of this approximation. Two corollaries are also
obtained. Without BVP, we still have the weak maximal selection principle, which plays
an important role in proving the convergence theorem. The connection between the main
results and Bergman space is that a procedure is proposed to present the general form of
any function in a weighted Bergman space on the Kepler manifold. Previous work covers
mainly other forms of the reproducing kernel and their Tian–Yau–Zelditch expansion (TYZ
expansion) [19,21]. The future work will be done in the following two parts:

1. Use other descriptions of reproducing kernel to establish the WPOAFD procedure,
and study its relation to the result of TYZ expansions;

2. Exploring n-best WPOAFD [22,23] in function spaces studied in this paper.
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Appendix A

Appendix A.1. Mathematical Induction

We review the basic conception of mathematical induction, which is used in the proof
of Theorem 1 in Appendix A.1.

Mathematical induction is a well-known method in mathematical proofs. The motiva-
tion is obvious in [24], like a list of natural numbers, if one starts at the beginning 1 and
continues to reach 2, 3, · · · one by one, any fixed number can be reached. Therefore, if one
can show the statement involving n holds when n = 1, and the truth of n implies the truth
of n + 1, then the statement is true for all n.

The strict expression of mathematical induction is presented as follows [25]:



Mathematics 2022, 10, 2729 14 of 15

Proposition A1. Letting P1, P2 · · ·Pn, · · · be statements depends on n, which are true or false,
and one can suppose that

1. P1 is true;
2. Pn ⇒ Pn+1.

Then, P1, P2 · · ·Pn, · · · are all true.

Therefore, to prove a statement Pn, one can validate P1 (the base case). Then, if one
can obtain Pn ⇒ Pn+1 (induction step), the statement holds for all n.

Appendix A.2. Proof by Contradiction

Proof by contradiction is a traditional mathematical method based on the assumption
that the statement is false. If one can show that, under such assumption, it will lead to a
contradiction, the statement is true. In addition, we use it in the proof of Theorem 2.

Proposition A2 ([26]). To prove P, assume ¬P and derive absurdity.

Thus, the mode of proving statement P using proof by contradiction is to assume ¬P
first and then obtain the contradiction.

Appendix B

In Appendix B, supremum and infimum principle and Cauchy–Schwarz inequality
used in this paper are reviewed.

Theorem A1 (Supremum and infimum principle). If a set S is bounded, its supremum or
infimum are supposed to exist. To be specific, if S has an upper bound, its supremum will exist; if S
has a lower bound, its infimum will exist.

Proposition A3 (Cauchy–Schwarz inequality). |〈a, b〉| ≤ ||a||||b||, where a, b are vectors in
Hilbert space and 〈·, ·〉 is an inner product in the Hilbert space.
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