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Abstract: This paper studies the stability of linear switched systems with time-varying delays and all
unstable subsystems. According to the largest region function strategy, the state-dependent switching
rule is designed. By bringing in integral inequality and multiple Lyapunov-Krasovskii functionals,
the stability results of delayed switched systems with or without sliding motions under the designed
state-dependent switching rule are derived for different assumptions on time delay. Several numerical
examples are employed to show the effectiveness and superiority of the proposed results.
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1. Introduction

The dynamics of switched systems are affected by both subsystems and switching
rules. For example, Decarlo R A has indicated that some appropriate switching rules
can make switched systems unstable (or asymptotically stable) even if all subsystems are
asymptotically stable (or unstable) [1]. Therefore, we must concentrate on both subsystems
and switching rules to derive the stability results. In recent years, the stability issue of
switched systems with unstable subsystems has been extensively investigated. For instance,
in [2–7] the researchers have derived some stability results for switched systems with both
stable and unstable subsystems. The main strategy of some literature is to ensure that the
dwell time of stable subsystems is sufficiently large to compensate for the state divergence
caused by unstable subsystems and switching behaviors. Obviously, if there is no stable
subsystem to absorb the state divergence, these results proposed in [2–7] are disabled.

Because of the absence of stable subsystems, the stability analysis of switched systems
with all unstable subsystems is more complicated. How to design appropriate switching
rules to stabilize switched systems with all unstable subsystems has become an interesting
and challenging problem. Ordinarily, switching rules can be designed by two strategies:
time-dependent switching and state-dependent switching. The main idea of the first one
is to use the stabilization of switching behaviors to stabilize switched systems and the
designed switching rules usually have both upper and lower bounds. In [8–12], the time-
dependent switching rules are designed to stabilize switched systems with or without time
delay by using discretized Lyapunov function approach or bound maximum average dwell
time. The time-dependent switching strategy requires that switching behaviors have a
good characteristic of stabilization. Therefore, when all switching behaviors do not contain
stabilization characteristics, the time-dependent switching strategy is invalid.

In many instances, time-dependent switching rules that can stabilize switched sys-
tems are hard to design or even non-existent, which signifies that the state-dependent
switching strategy becomes the unique way to stabilize switched systems. Up to now,
the state-dependent switching rules can be designed by two methods. The first one is
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based on the regional partition of state space. Its basic idea can be summarized as follows:
(a) divide the state space into different switching regions; (b) determine the index of acti-
vated subsystems for each switching region; (c) derive the stability conditions for switched
systems under the designed switching rule. Under the assumption that there exists a
Hurwitz convex combination of system matrices, the state-dependent switching rules have
been designed via the regional partition of state space and some significant stability results
have been deduced by common Lyapunov function (functional) in [13–19]. Remarkably,
this assumption is a severe prerequisite. In order to relax this assumption, by employing
some free matrices, a more flexible Hurwitz convex combination is presented in [20]. In [21]
the regional partition of state space is implemented directly by the negative definite of
the time-derivative of common Lyapunov functional. To ensure the strict completeness
of regional partition, one additional condition is introduced. Based on newly introduced
symmetric matrices, Pettersson S has defined switching rules via the largest region function
strategy and established the stability results by multiple Lyapunov functionals [22,23].
Some restrictions are also employed to guarantee the decrease of Lyapunov functional
when switching events occur. However, the largest region function strategy has not been
generalized to switched systems with time delay. The second one is that the switching rules
are defined in terms of the set-valued function. One typical state-dependent switching rule
is given by σ(t) = arg min{xT(t)P1x(t), · · · , xT(t)Pmx(t)}, where Pi is a symmetric posi-
tive determined matrix, m is number of subsystems. In [24–27], the authors have designed
the switching rules by the set-valued function and given the stability conditions with the
Lyapunov-Metzler inequalities. Although there are numerous results for state-dependent
switching, it is noteworthy that this issue still needs to be further studied. Designing new
state-dependent switching rules and getting lower conservative stability results is still our
research motivation.

Up to now, the literatures on the stability of delayed switched systems with state-
dependent switching rules include [15–21,27]. However, the assumption that there exists a
Hurwitz convex combination of system matrices is serious, which affects the effectiveness
of stability results presented in [15–20]. The additional condition on strict completeness of
regional partition makes it difficult to get appropriate switching regions [21]. Additionally,
the results presented in [27] are only available for switched systems with constant delay.
Therefore, the stability of switched systems with time-varying delays under state-dependent
switching rules still deserves further attention. The main objective of this paper is to derive
some new stability results for this problem. Based on the largest region function strategy,
we design a state-dependent switching rule. By using integral inequality and the Leibniz-
Newton formula, novel asymptotic stability results under different assumptions on time
delay are presented in the form of bilinear matrix inequalities (BMIs). The effectiveness of
the proposed results is shown via several numerical examples.

Notations: matrix A > 0(<0) yields that A is symmetric positive(negative) matrix, Rn

denotes the n−dimension Euclidean space, arg max S is defined as the index of maximum
element of order set S.

2. Preliminaries

This paper considers the following switched systems with time-varying delay{
ẋ(t) = Aσ(x(t))x(t) + Bσ(x(t))x(t− d(t)), t > 0,
x(s) = φ(s), s ∈ [−d, 0],

(1)

where x(t) ∈ Rn is the state vector, σ(x(t)) ∈ M = {1, 2, · · · , m} is the switching rule,
Ap, Bp ∈ Rn×n, p ∈ M, are known matrices, d(t) is the time-varying delay, φ(s) is a piece-
wise continuous function. If σ(t) = p, we say that the p-th subsystem
ẋ(t) = Apx(t) + Bpx(t− d(t)) is activated.

Remark 1. σ(x(t)) is a state-dependent switching rule which is generated by switching device [13].
Similar to [13–23], in this paper we also assume that there is no delay produced in switching device.



Mathematics 2022, 10, 2722 3 of 13

That is to say, the switching rule σ(x(t)) is one dependent on the current state but irrelevant to the
delayed state.

We would like to design a state-dependent switching rule σ(t) such that switched
system (1) is globally asymptotically stable. We employ the state-dependent switching
strategy introduced in [22,23], which is based on the appropriate choice of symmetric
matrices Qp, p ∈ M. Define the following regions

Ωp =
{

x ∈ Rn|xTQpx ≥ 0
}

, p ∈ M,

Ωpq =
{

x ∈ Rn|xTQqx = xTQpx ≥ 0
}

, p, q ∈ M, p 6= q.

We hope that the p-th subsystem is activated if x(t) ∈ Ωp and switching events occur
at the region Ωpq. The following properties should be satisfied to ensure that the switched
system (1) is well-defined [22],

(a) Covering property:
⋃

p∈M Ωp = Rn,
(b) Switching property: Ωpq ⊆ Ωp

⋂
Ωq.

The covering property points out that there is at least one activated subsystem on an
arbitrary region of the state space. The switching property implies that the switch from
subsystem p to q occurs only if regions Ωp and Ωq are adjacent. According to [22,23], the
covering property is satisfied, if there exists θp > 0, p ∈ M, such that for any x ∈ Rn,

∑
p∈M

θpxTQpx ≥ 0. (2)

The switching rule can be defined as the following largest region function strategy [22,23]

σ(x(t)) = arg max
{

xT(t)Q1x(t), · · · , xT(t)Qmx(t)
}

. (3)

As can be seen from [22] we know that if (2) is true and the switching rule (3) is used,
the switching property is also satisfied.

The main purpose of this work is to get the stability results under one of the following
assumptions.

Assumption 1. The time delay and its time-derivative are bounded. Namely, there exist nonnega-
tive constants d, d̄ and constant d̃ such that

0 ≤ d(t) ≤ d, d̃ ≤ ḋ(t) ≤ d̄. (4)

Assumption 2. The time delay is bounded. Namely, there exists a nonnegative constant d
such that

0 ≤ d(t) ≤ d. (5)

The following lemma is the core of this research.

Lemma 1 ([28]). If matrix M > 0 and function x : [a, b]→ Rn is differentiable, then the following
inequality is satisfied

(b− a)
∫ b

a
ẋT(s)Mẋ(s)ds ≥ βTdiag(M, 3M, 5M)β,

where β =
(

βT
1 , βT

2 , βT
3
)T , β1 = x(b) − x(a), β2 = x(b) + x(a) − 2

b− a
∫ b

a x(s)ds,

β3 = x(b)− x(a) +
6

b− a
∫ b

a x(s)ds− 12
(b− a)2

∫ b
a

∫ b
θ x(s)dsdθ.
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3. Main Results

This section presents the stability criteria for the switched system (1) under the
state-dependent switching rule (3). Owing to the Leibniz-Newton formula, we have
the following equation

x(t)− x(t− d(t)) =
∫ t

t−d(t)
ẋ(s)ds. (6)

Some notations are given as follows

υ1 =
2

d− d(t)

∫ t

t−d(t)
x(s)ds, υ2 =

12

(d− d(t))2

∫ t

t−d(t)

∫ t

θ
x(s)dsdθ,

η(t) =
(

xT(t), xT(t− d(t)), xT(t− d), ẋT(t −d(t)), ẋT(t− d), υT
1 , υT

2

)T
.

Theorem 1. Under Assumption 1, assume that for any p ∈ M, there exist n× n matrices Pp > 0,
Ri > 0, Si > 0, U > 0, (i = 1, 2), Qp = QT

p , positive constants µp, θp, constants ηp,q, q ∈ M,
q 6= p, such that (

Λp
l + µpeT

1 Qpe1
√

deT
1 PpBp√

dBT
p Ppe1 −U

)
< 0, l = 1, 2, (7)

Pp = Pq + ηp,q
(
Qq −Qp

)
, q ∈ M, q 6= p, (8)

∑
j∈M

θjQj ≥ 0, (9)

where

Λp
1 =Φp

1 + Φ2 + Φp
3 + Φp

4 +
(
1− d̄

)
(Ψ2 +Ψ3)−

1
d

Ξ4, Λp
2 = Φp

1 + Φ2 + Φp
3 + Φp

4+(
1− d̃

)
(Ψ2 +Ψ3)−

1
d

Ξ4, Φp
1 = eT

1

((
Ap + Bp

)T Pp + Pp
(

Ap + Bp
))

e1,

Φ2 =eT
1 R1e1 − eT

3 R2e3, Φp
3 =

(
Ape1 + Bpe2

)TS1
(

Ape1 + Bpe2
)
− eT

5 S2e5,

Φp
4 =d

(
Ape1 + Bpe2

)TU
(

Ape1 + Bpe2
)
, Ψ2 = eT

2 (R2 − R1)e2, Ψ3 = eT
4 (S2 − S1)e4,

Ξ4 =(e2 − e3)
TU(e2 − e3) + 3(e2 + e3 −e6)

TU(e2 + e3 − e6) + 5(e2 − e3 +3e6 − e7)
TU×

(e2 − e3 + 3e6 − e7), ei =
(

0n×(i−1)n, I, 0n×(7−i)n

)
, i = 1, 2, · · · , 7.

Then, the switched system (1) is globally asymptotically stable under the state-dependent
switching rule (3), if there is no sliding motion or there exist sliding motions on the switching
surface Ωpq with ηp,q > 0.

Proof. Condition (9) implies that (2) is true, which indicates that the covering property
holds. Therefore, under the switching rule (3), the switched system (1) is well-defined.

Now we prove that the switched system (1) is globally asymptotically stable. Similar
to [29,30], for each subsystem p, we choose the Lyapunov-Krasovskii functional as follows

Vp(t) = Vp1(t) +
4

∑
i=2

Vi(t), (10)

where

Vp1(t) = xT(t)Ppx(t), V2(t) =
∫ t

t−d(t)
xT(s)R1x(s)ds +

∫ t−d(t)

t−d
xT(s)R2x(s)ds,
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V3(t) =
∫ t

t−d(t)
ẋ(s)S1 ẋ(s)ds +

∫ t−d(t)

t−d
ẋT(s)S2 ẋ(s)ds, V4(t) =

∫ 0

−d

∫ t

t+θ
ẋ(s)Uẋ(s)dsdθ.

In each region Ωp, the time derivate of Vp1(t), Vi(t), i = 2, 3, 4, along the trajectory of
the subsystem p are given as follows

V̇p1(t)

=xT(t)
((

Ap + Bp
)T Pp + Pp

(
Ap + Bp

))
x(t)−

∫ t

t−d(t)

(
ẋT(s)BT

p Ppx(t) + xT(t)PpBp ẋ(s)
)

ds

≤xT(t)
((

Ap + Bp
)T Pp + Pp

(
Ap + Bp

)
+d(t)PpBpU−1BT

p Pp

)
x(t) +

∫ t

t−d(t)
ẋT(s)Uẋ(s)ds (11)

=ηT(t)
(

Φp
1 + d(t)Θp

1

)
ηT(t) +

∫ t

t−d(t)
ẋT(s)Uẋ(s)ds.

V̇2(t) =xT(t)R1x(t) +
(
1− ḋ(t)

)
xT(t− d(t))(R2 − R1)x(t− d(t))− xT(t− d)R2x(t− d)

=ηT(t)
(
Φ2 +

(
1− ḋ(t)

)
Ψ2
)
η(t). (12)

V̇3(t)

=ẋT(t)S1 ẋ(t)− ẋT(t− d)S2 ẋ(t− d) +
(
1− ḋ(t)

)
ẋT(t− d(t))(S2 − S1)ẋ(t− d(t))

=
(

Apx(t) + Bpx(t− d(t))
)TS1

(
Apx(t) +Bpx(t− d(t))

)
− ẋT(t− d)S2 ẋ(t− d) (13)

+
(
1− ḋ(t)

)
ẋT(t− d(t))(S2 − S1)ẋ(t− d(t))

=ηT(t)
(

Φp
3 +

(
1− ḋ(t)

)
Ψ3

)
η(t).

V̇4(t)

=dẋTUẋ(t)−
∫ t

t−d(t)
ẋT(s)Uẋ(s)ds−

∫ t−d(t)

t−d
ẋT(s)Uẋ(s)ds

=d
(

Apx(t) + Bpx(t− d(t))
)TU

(
Apx(t) +Bpx(t− d(t))

)
−
∫ t

t−d(t)
ẋT(s)Uẋ(s)ds (14)

−
∫ t−d(t)

t−d
ẋT(s)Uẋ(s)ds.

where Θp
1 = eT

1 PpBpU−1BT
p Ppe1. Under Lemma 1, one can obtain

(d− d(t))
∫ t−d(t)

t−d
ẋT(s)Uẋ(s)ds ≥ ξT

1 Uξ1 + 3ξT
2 Uξ2 + 5ξT

3 Uξ3= ηT(t)Ξ4η(t),

where ξ1 = x(t − d(t)) − x(t − d), ξ2 = x(t − d(t)) + x(t − d) − υ1, ξ3 = x(t − d(t)) −
x(t− d) + 3υ1 − υ2. Above inequality implies that (14) can be continued as

V̇4(t) ≤ηT(t)
(

Φσ
4 −

1
d− d(t)

Ξ4

)
η(t)−

∫ t−d(t)

t−d
ẋT(s)Uẋ(s)ds (15)

Then, it follows from (10)–(13), (15) that

V̇p(t)

≤ηT(t)
(

φ
p
1 + φ2 + φ

p
3 + φ

p
4 + d(t)Θp

1 +
(
1− ḋ(t)

)
(Ψ2 + Ψ3)−

1
d− d(t)

Ξ4

)
η(t) (16)

=
1

d− d(t)
ηT(t)

(
(d− d(t))

(
φ

p
1 + φ2 + φ

p
3 + φ

p
4 + d(t)Θp

1 +
(
1− ḋ(t)

)
(Ψ2 + Ψ3)

)
− Ξ4

)
.
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Due to Schur complements [31], Condition (7) indicates that

Λp
l + dΘp

1 + µpeT
1 Qpe1 < 0, l = 1, 2. (17)

Namely,
φ

p
1 + φ2 + φ

p
3 + φ

p
4 +

(
1− d̄

)
(Ψ2 + Ψ3) + dΘp

1 + µpeT
1 Qpe1 −

1
d

Ξ4 < 0,

φ
p
1 + φ2 + φ

p
3 + φ

p
4 +

(
1− d̃

)
(Ψ2 + Ψ3) + dΘp

1 + µpeT
1 Qpe1 −

1
d

Ξ4 < 0.
(18)

The above inequalities declare that

φ
p
1 + φ2 + φ

p
3 + φ

p
4 +

(
1− ḋ(t)

)
(Ψ2 + Ψ3) + dΘp

1 + µpeT
1 Qpe1 −

1
d

Ξ4 < 0. (19)

Due to 0 ≤ d(t) ≤ d and Θp
1 > 0, it is clear from (19) that

d
(

φ
p
1 + φ2 + φ

p
3 + φ

p
4 +

(
1− ḋ(t)

)
(Ψ2 + Ψ3) + d(t)Θp

1 + µpeT
1 Qpe1

)
− Ξ4 < 0. (20)

Noting that 0 ≤ d− d(t) ≤ d and Ξ > 0, (20) shows that

(d− d(t))
(

φ
p
1 + φ2 + φ

p
3 + φ

p
4 +

(
1− ḋ(t)

)
(Ψ2 + Ψ3) + d(t)Θp

1 + µpeT
1 Qpe1

)
− Ξ4 < 0. (21)

Based on (16) and (21), one can derive that

V̇p(t) < −µpηT(t)Qpη(t) ≤ 0, (22)

where the fact xT(t)Qσx(t) ≥ 0 is used.
Note that for arbitrary x ∈ Ωpq, xTQpx = xTQqx. Then, due to Condition (8) we

can derive that Vp(t) = Vq(t) if x(t) ∈ Ωpq. Therefore, when the trajectory x(t) traverses
from Ωp to Ωq, the Lyapunov functional Vσ(t) is not increasing. In particular, if the sliding
motion does not occur, the Lyapunov functional Vσ(t) will be approximate to zero and
shows that the switched system (1) is globally asymptotically stable.

Now we consider the case of sliding motions. Assume that the sliding motions occur
along the switching surface Ωpq at the boundary of regions Ωp and Ωq. According to
Filippov’s definition [32], we get

ẋ(t) =α
(

Apx(t) + Bpx(t− d(t))
)
+ α̃
(

Aqx(t) +Bqx(t− d(t)
)

=α

((
Ap + Bp

)
x(t)− Bp

∫ t

t−d(t)
ẋ(s)ds

)
+ α̃

((
Aq + Bq

)
x(t)− Bq

∫ t

t−d(t)
ẋ(s)ds

)
, (23)

where α ∈ (0, 1),α̃ = 1− α. Under the analysis of sliding motions [33], the sliding motions
on the surface Ωpq state that

xT
((

Ap + Bp
)TQpq + Qpq

(
Ap + Bp

))
x(t)− xT(t)QpqBp

∫ t

t−d(t)
ẋ(s)ds

−
∫ t

t−d(t)
ẋT(s)dsBT

p Qpqx(t) < 0, (24)

and
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xT
((

Aq + Bq
)TQpq + Qpq

(
Aq + Bq

))
x(t)− xT(t)QpqBq

∫ t

t−d(t)
ẋ(s)ds

−
∫ t

t−d(t)
ẋT(s)dsBT

q Qpqx(t) > 0 (25)

hold, where Qpq = Qp − Qq. Let Pqp = Pq − Pp. Owing to Condition (8) and ηp,q > 0,
we obtain

xT
((

Ap + Bp
)T Pqp +

(
Pq − Pp

)(
Ap + Bp

))
x(t)− xT(t)PqpBp

∫ t

t−d(t)
ẋ(s)ds

−
∫ t

t−d(t)
ẋT(s)dsBT

p Pqpx(t) < 0, (26)

xT
((

Aq + Bq
)T Pqp +

(
Pq − Pp

)(
Aq + Bq

))
x(t)− xT(t)PqpBq

∫ t

t−d(t)
ẋ(s)ds

−
∫ t

t−d(t)
ẋT(s)dsBT

q Pqpx(t) > 0, (27)

which are equivalent to

xT(t)
((

Ap + Bp
)T Pq + Pq

(
Ap + Bp

))
x(t)− xT(t)PqBp

∫ t

t−d(t)
ẋ(s)ds

−
∫ t

t−d(t)
ẋT(s)dsBT

p Pqx(t)

<xT(t)
((

Ap + Bp
)T Pp + Pp

(
Ap + Bp

))
x(t)− xT(t)PpBp

∫ t

t−d(t)
ẋ(s)ds (28)

−
∫ t

t−d(t)
ẋT(s)dsBT

p Ppx(t),

xT(t)
((

Aq + Bq
)T Pp + Pp

(
Aq + Bq

))
x(t)− xT(t)PpBq

∫ t

t−d(t)
ẋ(s)ds

−
∫ t

t−d(t)
ẋT(s)dsBT

q Ppx(t)

<xT(t)
((

Aq + Bq
)T Pq + Pq

(
Aq + Bq

))
x(t)− xT(t)PqBq

∫ t

t−d(t)
ẋ(s)ds (29)

−
∫ t

t−d(t)
ẋT(s)dsBT

q Pqx(t).

Note that the switching signal is not unique on sliding surface Ωpq. If σ(t) = p, one
can derive

V̇p1(t)

=αxT(t)
((

Ap + Bp
)T Pp + Pp

(
Ap + Bp

))
x(t)− αxT(t)PpBp

∫ t

t−d(t)
ẋ(s)ds

− α
∫ t

t−d(t)
ẋT(s)dsBT

p Ppx(t) + α̃xT(t)
((

Aq + Bq
)T Pp + Pp

(
Aq + Bq

))
x(t)

− α̃

(
xT(t)PpBq

∫ t

t−d(t)
ẋ(s)ds +

∫ t

t−d(t)
ẋT(s)dsBT

q Ppx(t)
)

≤αxT(t)
((

Ap + Bp
)T Pp + Pp

(
Ap + Bp

))
x(t)− αxT(t)PpBp

∫ t

t−d(t)
ẋ(s)ds (30)
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− α
∫ t

t−d(t)
ẋT(s)dsBT

p Ppx(t)

+ α̃xT(t)
((

Aq + Bq
)T Pq +Pq

(
Aq + Bq

))
x(t)− α̃

(
xT(t)PqBq

∫ t

t−d(t)
ẋ(s)ds

+
∫ t

t−d(t)
ẋT(s)dsBT

q Pqx(t)
)

≤αηT(t)eT
1

(
Φp

1 + d(t)Θp
1

)
e1η(t) + α̃ηT(t)eT

1

(
Φq

1 + d(t)Θq
1

)
e1η(t) +

∫ t

t−d(t)
ẋT(s)Uẋ(s)ds.

Under (7), (10)–(13), (21) and (30), it is easy to deduce that

V̇p(t) <− ηT(t)
(

αeT
1 Qpe1 + α̃eT

1 Qqe1

)
η(t) ≤ 0.

Similarly, when σ(t) = q, we can also obtain

V̇q1(t) ≤αηT(t)eT
1

(
Φp

1 + d(t)Θp
1

)
e1η(t) + α̃ηT(t)eT

1

(
Φq

1 + d(t)Θq
1

)
e1η(t)

+
∫ t

t−d(t)
ẋT(s)Uẋ(s)ds,

which further yields V̇q(t) < 0. Therefore, the Lyapunov-Krasovskii functional Vσ(t) is
decreasing when the sliding motions occur on switching surface Ωpq. According to (22)
one can deduce that the switched system (1) under the switching rule (3) is also glob-
ally asymptotically stable if the sliding motions occur on switching surfaces Ωpq with
ηp,q > 0.

Remark 2. According to the Proof of Theorem 1, one can see that the chosen Lyapunov functional
is function of x(t) and ẋ(t). Similar Lyapunov functionals have been employed to establish the
stability results for delayed systems [29,30]. This is because such Lyapunov functionals can fully
utilize the features of systems. Most noteworthy, the proposed Lyapunov functional can be viewed
as a special case of that presented in [29,30].

Remark 3. Condition (7) ensures that the time derivate of Lyapunov functional along the trajectory
of switched systems is less than zero for each region Ωp. Condition (8) guarantees that the Lyapunov
functional is not increasing when the switching event occurs in the absence of sliding motion.
When sliding motions occur, Conditions (7) and (8) can warrant that the time derivate of Lyapunov
functional along the trajectory is less than zero when the trajectory slides on the surfaces Ωpq.
Condition (9) ensures that the switched system is well-defined.

Remark 4. In [15–19], the researchers have also studied the stability of delayed switched systems
under state-dependent switchings. However, these results assume that there exists a Hurwitz linear
convex combination of Ap + Bp(or Ap). Generally speaking, this assumption is rigorous and may
not be satisfied in some cases. Obviously, in Theorem 1 we have removed this restriction, which yields
that our results are more flexible. Moreover, in the proof of Theorem 1 new inequality (Lemma 1) is
employed, which states that Theorem 1 is less conservative.

Remark 5. When there exist infinite switching events in an arbitrary time interval, we call it
Zeno-behaviors. The switching rule (3) cannot avoid Zeno-behaviors. However, Theorem 1 can
also ensure stability when Zeno-behaviors occur. The reasons can be listed as follows: (a) If the
switching event does not occur, it is obvious that the time derivate of Lyapunov functional along
the trajectory is less than zero. (b) If the switching event occurs, there are two cases. The first one
is that the sliding motion does not occur. Obviously, for this case, the Lyapunov functional is not
increasing. The second one is that the sliding motions occur. For this case, we have that the time
derivate of Lyapunov functional along the trajectory is still less than zero. Although Zeno-behaviors
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may lead to the accumulation of switches in finite time, the Lyapunov functional along the trajectory
is always gradually decreasing.

By restricting R1 = R2 = R and S1 = S2 = S, one can obtain the stability results under
Assumption 2.

Theorem 2. Under Assumption 2, assume that for any p ∈ M, there exist n× n matrices Pp > 0,
R > 0, S > 0, U > 0, Qp = QT

p , positive constants µp, θp, constants ηp,q, q ∈ M, q 6= p, such
that Conditions (8) and (9) and(

Λp + µpeT
1 Qpe1

√
deT

1 PpBp√
dBT

p Ppe1 −U

)
< 0, (31)

where Λp = Λp
1 with R1 = R2 = R and S1 = S2 = S. Then, the switched system (1) is globally

asymptotically stable under the state-dependent switching rule (3), if there is no sliding motion or
there exist sliding motions on the switching surface Ωpq with ηp,q > 0.

Due to the existence of the product of unknown scalars and matrices, the conditions
in Theorems 1 and 2 are BMIs. Therefore, the standard semi-positive definite programming
methods cannot work. One can adopt two strategies to get a feasible solution. The first one
is to utilize directly BMI solvers (such as PENBMI) to obtain these undetermined scalars
and matrices. The second one, which is similar to [22], is to grid up the unknown scalars
µp, θp and ηp,q. While these parameters are fixed, the BMIs in Theorems 1 and 2 degenerate
into ordinary linear matrix inequalities, which can be solved by standard solvers such as
lmilab and mosek.

When the switched system (1) is composed of two subsystems, one can set
Q1 = −Q2 = Q = QT , η1,2 = η2,1 = η, P2 = P, P1 = P− 2ηQ, constants θ1 = θ2 = 1. Then,
Conditions (8) and (9) are always satisfied. The following corollaries can be derived readily
from Theorems 1 and 2.

Corollary 1. When M = {1, 2}, under Assumption 1, assume that there exist n× n matrices
P > 0, Ri > 0, Si > 0, U > 0, (i = 1, 2), Q = QT , positive constants µ1, µ2, constant η,
such that (

Λ1∗
l + µ1eT

1 Qe1
√

deT
1 (P− 2ηQ)B1√

dBT
1 (P− 2ηQ)e1 −U

)
< 0, (32)

(
Λ2∗

l − µ2eT
1 Qe1

√
deT

1 PB2√
dBT

2 Pe1 −U

)
< 0, l = 1, 2, (33)

where

Λ1∗
1 =Φ1∗

1 + Φ2 + Φ1
3 + Φ1

4 +
(
1− d̄

)
(Ψ2 +Ψ3)−

1
d

Ξ4,

Λ2∗
1 =Φ2∗

1 + Φ2 + Φ2
3 + Φ2

4 +
(
1− d̄

)
(Ψ2 +Ψ3)−

1
d

Ξ4,

Λ1∗
2 =Φ1∗

1 + Φ2 + Φ1
3 + Φ1

4 +
(
1− d̃

)
(Ψ2 +Ψ3)−

1
d

Ξ4,

Λ2∗
2 =Φ2∗

1 + Φ2 + Φ2
3 + Φ2

4 +
(
1− d̃

)
(Ψ2 +Ψ3)−

1
d

Ξ4,

Φ1∗
1 =eT

1

(
(A1 + B1)

T(P− 2ηQ) + (P− 2ηQ) (A1 + B1))e1,

Φ2∗
1 =eT

1

(
(A2 + B2)

T P + P(A2 + B2)
)

e1,



Mathematics 2022, 10, 2722 10 of 13

and the other notations are in agreement with the ones presented in Theorem 1. Then, the switched
system (1) is globally asymptotically stable under the state-dependent switching rule (3) if there is
no sliding motion or there exist sliding motions on switching surfaces with η > 0.

Corollary 2. When M = {1, 2}, under Assumption 2, assume that there exist n× n matrices
P > 0, R > 0, S > 0, U > 0, Q = QT , positive constants µ1, µ2, constant η, such that(

Λ̄1∗ + µ1eT
1 Qe1

√
deT

1 (P− 2ηQ)B1√
dBT

1 (P− 2ηQ)e1 −U

)
< 0, (34)

(
Λ̄2∗ − µ2eT

1 Qe1
√

deT
1 PB2√

dBT
2 Pe1 −U

)
< 0, (35)

where Λ̄1∗ = Λ1∗
1 , Λ̄2∗ = Λ2∗

1 with R1 = R2 = R and S1 = S2 = S. Then, the switched
system (1) is globally asymptotically stable under the state-dependent switching rule (3), if there is
no sliding motion or there exist sliding motions on switching surfaces with η > 0.

4. Numerical Simulations

In this section, several numerical examples are employed to illustrate the validity of
the proposed results.

Example 1. Consider the switched system (1) with M = {1, 2} and

A1 =

(
0.8 −4
0 0.8

)
, B1 =

(
0.2 −1
0 0.2

)
, A2 =

(
0.8 0
4 0.9

)
, B2 =

(
0.2 0
1 0.1

)
.

By choosing µ1 = µ2 = 1, η = −0.7 and letting d̄ = −d̃ = δ, according to Corollaries 1
and 2, we can obtain the upper bound d for different δ, which is given in Table 1 (in order to avoid
zero solution, the matrix inequalities P, Ri, Si, U > aI with a = 10−7 are employed to replace
P, Ri, Si, U > 0, i = 1, 2). For numerical simulation, we choose d(t) = 0.1 + 0.1 sin(10t), which
shows d = 0.2 and d̄ = −d̃ = 1. By solving the matrix inequalities in Corollary 1, we get

Q1 =−Q2 = Q =

(
−0.2567 0.1996
0.1996 0.2565

)
, P1 = P− 2ηQ =

(
0.0935 0.1402
0.1402 4516

)
,

P2 = P =

(
0.4528 −0.1393
−0.1393 0.0925

)
.

The stable dynamics and convergent time response curves with φ(s) = (−1, 2)T ,
s = [−0.2, 0], are plotted in Figure 1. The corresponding switching rule (3) is also shown in
the sub-figure of Figure 1. Numerical simulations indicate that there is no sliding motion.

Now we give some comparisons with the existing results for this example to validate the
superiority of our results.

(a) Note that for any α ∈ [0, 1], the eigenvalues of α(A1 + B1) + (1 − α)(A2 + B2) are
1 ± 5i

√
α(1− α), which yields that there is no Hurwitz linear convex combination of

A1 + B1 and A2 + B2. Therefore, the stability results proposed in [15–17,19] are not available
for this example. Additionally, the eigenvalues of αA1 + (1 − α)A2 are 0.85 + 0.05α ±
0.5
√

64.01α2 − 63.98α− 0.01, α ∈ [0, 1], which indicates that there is no Hurwitz linear
convex combination of matrices A1 and A2. This shows that the stability results in [18] are
also invalid for this example.

(b) The results derived in [20,21] are also applicable for the switched system (1). For compar-
ison, by restricting d = 0.01 we solve the stability conditions in ([20] Corollary 2) and
([21] Theorem 3.1) for d̄ = 0, 0.1, 0.2, 0.5, 0.8 and 1, respectively. Unfortunately, there
is no feasible solution, which demonstrates that the results in [20,21] are not flexible for
this example.
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(c) For the case of constant time delay, by solving the matrix inequalities in ([27] Theorem 5),
one can get the upper bound d = 0.2455, which is also less than d = 0.2489. Therefore, the
restriction on the time delay of our results is weaker than that proposed in ([27] Theorem 5).

Table 1. The upper bound d of time delay for different d̄ = −d̃ = δ.

0 0.1 0.2 0.5 0.8 1 δ is Unknown

0.2489 0.2445 0.2417 0.2411 0.2411 0.2411 0.2411
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Figure 1. The stable dynamics (Left) and convergent response curves (Right) of the system in
Example 1 with d(t) = 0.1 + 0.1 sin(10t).

Example 2. Consider the switched system (1) wiht M = {1, 2}, d(t) = 0.01+ 0.01 sin(50t), and

A1 =

(
0 1
2 −8

)
, B1 =

(
0 0
0 −1

)
, A2 =

(
0 0.5
−2 1

)
, B2 =

(
0 0.5
0 1

)
.

It is easy to derive that d = 0.02, d̄ = −d̃ = 0.5. By choosing η = 0.01, µ1 = µ2 = 1,
according to Corollary 1, we get the following feasible solution

Q1 =−Q2 = Q =

(
−0.02252 0.0251

0.0251 0.0287

)
, P1 = P− 2ηQ =

(
0.0202 0.1940
0.0055 0.0028

)
,

P2 =P =

(
0.0198 0.0060
0.0060 0.0034

)
.

The sliding dynamics and stable response curves are shown in Figure 2. Numerical simulations
indicate that there are sliding motions, which can make the trajectory approach the origin along the
switching surfaces.

If we choose η = −1, µ1 = µ2 = 1, by solving the matrix inequalities in Corollary 1,
we obtain

Q1 =−Q2 = Q =

(
0.0127 −0.0964
−0.0964 0.4049

)
, P1 = P− 2ηQ =

(
0.0397 −0.1802
−0.1802 0.8545

)
,

P2 = P =

(
0.0143 0.0125
0.0125 0.0446

)
.

Numerical simulations show that there are unstable sliding motions for this case (see Figure 3),
which is due to η1,2 = η2,1 = η < 0. This demonstrates that ηp,q > 0 is essential for the stability of
the switched system (1) when sliding motions occur.
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Figure 2. The stable dynamics (Left) and convergent response curves (Right) of the system in
Example 2.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x
2

0 10 20 30 40 50 60 70 80
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

t

x
(t

)

 

 

x
1

x
2

Figure 3. The unstable dynamics (Left) and unstable response curves (Right) of the system in
Example 2.

5. Conclusions

This paper has investigated the stability of delayed switched systems with all unstable
subsystems. Under the designed state-dependent switching rule, some stability results
for different assumptions on time delay are derived via integral inequality and multiple
Lyapunov-Krasovskii functionals. Numerical simulations demonstrate that the proposed
results are more effective and less conservative than that presented in [15–21,27].

The main deficiency of this paper is that the condition that determines whether sliding
motions occur is not employed. As a matter of fact, similar to [21,22], we have derived some
conditions to verify the existence or non-existence of sliding motions. Unfortunately, if we
introduce these conditions to the stability results, it is difficult to get a feasible solution. In
desperation, we adopt the way which is used in [34,35]. Namely, the condition to determine
whether sliding motions occur is not given and the existence or non-existence of sliding
motions is revealed via numerical simulation. We hope some more feasible conditions on
sliding motions can be deduced in the future.
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