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Abstract: In this work, we extend the topology-based framework and method for the quantification
and classification of general resilient asynchronous complexity. We present the arbitrary resilient
asynchronous complexity theorem, applied to decision tasks in an iterated delayed model which is
based on a series of communicating objects, each of which mainly consists of the delayed algorithm.
In order to do this, we first introduce two topological structures, delayed complex and reduced
delayed complex, and build the topological computability model, and then investigate some proper-
ties of those structures and the computing power of that model. Our theorem states that the time
complexity of any arbitrary resilient asynchronous algorithm is proportional to the level of a reduced
delayed complex necessary to allow a simplicial map from a task’s input complex to its output
complex. As an application, we use it to derive the bounds on time complexity to approximate
agreement with n + 1 processes.

Keywords: distributed computation; asynchronous computation; combinatorial topology; com-
putability; complexity; resilience; task-solvability

MSC: 68Q05; 68Q22; 68W15; 68M14

1. Introduction

Since the in-depth applications of computers to all aspects of modern life, comput-
ers are progressively and mainly being used as coordination devices in asynchronous
distributed systems. However, the proof of the FLP theorem [1], which says that the con-
sensus task cannot be solved in an asynchronous message passing system even though
only one process may fail by halting, implies that distributed computing is different from
the standard Turing computing.

A distributed computing system consists of finitely many sequential processes com-
municating via shared-memory, message-passing and other mechanisms [2]. The com-
municating mechanisms include communication channels, synchronizing primitives and
general services [3]. The processes are asynchronous, which may make the message and
communication delay leading to a great effect in Information Exchange, such as a hyper
hexa-cell interconnection network [4]. In addition, they may also fail by stopping, so it is
indistinguishable whether an irresponsive process has failed or is only running slowly in a
distributed system.

Fortunately, as a revolutionary development, a new framework of modeling and
analysis based on classical algebraic topology was introduced by Herlihy and Shavit [5] for
understanding and reasoning of computability problems in an asynchronous distributed

Mathematics 2022, 10, 2720. https://doi.org/10.3390/math10152720 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10152720
https://doi.org/10.3390/math10152720
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10152720
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10152720?type=check_update&version=2


Mathematics 2022, 10, 2720 2 of 20

system in 1993. In that work, they presented a topological characterization of the asyn-
chronous computability of general tasks with t ≥ 1 crash failures in a share-memory model
which is equivalent to a message-passing model showed by Attiya et al. [6]. Furthermore,
they then extended to a complete characterization of wait-free solvability of distributed
tasks in shared-memory systems, namely, a task is solvable if and only if its specification is
topologically compatible in some sense [7,8]. Later, that technique was further generalized
in three directions. The first direction is generalization to systems with arbitrary communi-
cation objects [9–13], to arbitrary resilience (rather than one or n failures) [9,14], to arbitrary
synchrony [9,15], or to Byzantine failures [16,17]. The second direction is to explore the
way for the classification of distributed tasks in asynchronous shared-memory systems:
two tasks are reducible to each other if and only if they are equivalent in a topological
manner [18–21]. The last is to explore of the complexity of decision tasks in some commu-
nicating model, that is to say, one can give the upper bounds and/or lower bounds [22–24],
or just give a theoretical estimation of the cost of time or space and so on [25–32]. We feel
the time is ripe to extend these techniques to arbitrary resilient asynchronous complexity.

This paper studies asynchronous shared memory solutions to the decision tasks in a
distributed asynchronous system with n + 1 processes. We focus on the iterated delayed
model which is based on a delayed snapshot algorithm introduced by Saraph et al. in [33].
The model can guarantee that the scan operations of each process return a view that contain
more than n− t elements of sets of the participating processes’ inputs, where t means the
number of crashing processes it tolerates by t (1 ≤ t ≤ n) or fewer for that system.

Our contribution lies in three aspects. Firstly, we introduce a topological structure,
N-fold delayed complex, which is a sub-complex of the 2N-fold standard chromatic subdi-
vision, where N is an arbitrary non-negative integer. Using it can give a precise description
of the protocol complex of full-information protocol leading to the acquisition of computing
power, which is a modification of the result showed by Saraph et al. [33]. Secondly, we
introduce a novel computational model, the iterated delayed model, which has a partic-
ularly nice geometric representation and hence easily lends itself to topological analysis.
Furthermore, by a new topological structure, the reduced complex is constructed from a
delayed complex, and we will give a theoretical measure of computational complexity of
an arbitrary resilient asynchronous model, which may lead some applications in practical
applications. That is, the time (or round) complexity in that model is equal to the level
of the chromatic subdivisions necessary to allow a simplicial map from a task’s input
simplex corresponding to the worst case to its output complex. As an application, we
derive the tight bound on the time to achieve an n + 1 process approximate agreement in
an iterated delayed model: blogm

max{input value}−min{input value}
ε c on any input n-simplex I,

where m = 9 if n = 1 and m = 4 if n ≥ 2.

2. Preliminaries

In this subsection, we give an overview of the basic definitions and concepts of
combinatorial topology that we will use to formulate our model. The complete definitions
on algebraic topology can be taken from the classical textbooks [34,35].

2.1. Basic Concepts of Combinatorial Topology

An (abstract) simplicial complex K, or complex for short, is a finite set V together with
a collection of subsets of V closed under containment, which means that, if α ∈ K, any
subset of α is also in K. An element v of V is called a vertex and an element α of K is called
a simplex, and β(∈ K) is called a face of α if β ⊆ α. Subset K of K is called a sub-complex
if itself is closed under containment. The dimension of simplex α is defined as ||α|| − 1
(here ||α|| means the number of the vertices of α), denoted dim(α), and the dimension of K
is defined as the highest dimension among its simplexes. Call simplex α ∈ K a facet of K
if dim(α) = dim(K). Usually, use n-simplex (complex) as shorthand for an n-dimensional
simplex (complex). By default, any complex in this paper is pure in the sense that any
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simplex is a face of a facet in that complex. In addition, call G (X) the complex generated
by X if it is a collection of X and all its faces, where X is a simplex in K.

To ease understanding, one can equivalently view simplicial complex K through a
geometric lens. Bijectively map the set V(α) = {vi}k

i=0 of vertices of a k-simplex α ofK to an
arbitrary set V′(α) = {v′i}k

i=0 of affinely independent points in a Euclidean space with an ap-
propriate dimension. Then, there is natural convex hull V̄′(α) = {x ∈ ∑k

i=0 λiv′i|∑
k
i=0 λi =

1, λi ≥ 0, λi ∈ R} spanned by V′(α). Call V̄′(α) a geometric simplex or the geometric
realization of α, and call α the vertex scheme of V̄′(α). Put all geometric simplexes together
such that the collection is closed under containment and every pair of distinct simplexes has
disjoint interiors if they have intersections, by which we can obtain a geometric simplicial
complex corresponding to K. For the details, one can follow Munkres [35]. Nevertheless,
hereunder we still adopt the abstract simplex complex definition.

𝑣"

𝑣#
𝑣$

𝑣%

Figure 1. The star of v0 in complex K.

Let α and β be two simplexes of complex K with no intersection; then, the join of them
is α ∗ β with the vertex scheme being α ∪ β. The star of α is the collection of simplexes
{β ∈ K|α ⊆ β} of K, denoted St(α,K). See Figure 1; consider a complex K consisting of all
vertices {vi}3

i=0, and all segments {vi, vj}0≤i 6=j≤3 and all triangles {vi, vj, vr}0≤i 6=j 6=r≤3; the
star of 0-simplex v0, St(v0,K) consists of all simplexes of K except the red dotted segments
and its faces.

Given two complexes K and L, a vertex map f : V(K) −→ V(L) is a simplicial
map if f carries each simplex of K to a simplex of L, and f is called non-collapsed if, for
every simplex α ∈ K, there is dim( f (α)) = dim(α), and f is called equivalent if there is a
simplicial map g : L −→ K such that g ◦ f : K −→ K and f ◦ g : L −→ L are all identity
maps. A map Φ : K −→ L is called a carrier map if Φ(α) ⊆ L and Φ(α∩ β) ⊆ Φ(α)∩Φ(β)
for any α, β ∈ K. In addition, f is said to be carried by Φ if f (α) ∈ Φ(α) for any α. K is said
to be a chromatic complex with colors C if there is a non-collapsed simplicial map χ from
K to C ; call χ the coloring of K. A map φ : K −→ L is said to be a color-preserving map if,
for each vertex v of K, there is χK(v) = χL(φ(v)), where χK and χL are the colorings of
complexes K and L. In addition, a map is called a color-preserving simplicial map if it is
both a color-preserving map and a simplicial map.

Suppose χ is a coloring of n-simplex X with colors C = {pi}n
i=0; call Ch(X) once

standard chromatic subdivision of simplex X if any m-simplex of Ch(X) (m ≤ n) can be
given by the form of {(pit , Srt)}m

t=0 satisfying the following conditions:

• there are 2n(n + 1) vertices in total in Ch(X);
• for all t, s ∈ [m], pit 6= pis if s 6= t, and either Srt ⊆ Srs or Srs ⊆ Srt ;
• for all t, s ∈ [m], if pit ∈ χ(Srs), then Srt ⊆ Srs ;

where Srx is a face of X, and [m] is equal to {0, 1, 2, . . . , m}.
As showed in Figure 2, on the left side of this figure is a chromatic 2-simplex α =

{v0, v1, v2} with colors {0, 1, 2}, and in the middle of it is a once standard chromatic
subdivision Ch(α) of α, and on the right is a general chromatic subdivision Div(α) of α,
since it is easy to check that it does not satisfy the second condition.
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Figure 2. Once standard chromatic and general chromatic subdivision of 2-simplex α.

2.2. Distributed Computing Model

For the sake of the discussion, we first construct a series datatype for an arbitrary given
datatype D. The datatype Vk(D) (k is a non-negative integer) can be defined inductively as
follows:

• V0(D) , {(pi, xi) : xi ∈ D ∪ {⊥}, i ∈ [n]};
• Vk(D) , {(pi, si) : si ⊂ Vk−1(D) ∪ {⊥}, i ∈ [n]}, where pi can be regarded as the

location for some data, ⊥means nothing but a placeholder, and (pi, si) is a pair.

Following the model by Moses and Rajsbaum [15], there are n + 1 processes, up to
t of which may fail by crashing. The processes execute a round-by-round protocol in an
asynchronous manner. A decision task is a specification of eligible outputs with regard to
the inputs, which intuitively models coordination problems. A protocol is a distributed
program consisting of the processes. We say that a protocol solves a decision task if the
outputs of any execution sequence (which consists of a series of round executions) conform
with the specification of the task.

Our distributed computing model is based on the delayed object, denoted DOn,t, a
delayed algorithm proposed by Saraph et al. [33], and has been showed to be a useful build-
ing block for analysis of a t-resilient distributed asynchronous system; see Algorithm A1.
Although Delporte et al. [36] showed that a t-resilient immediate snapshot is impossible,
two snapshots each in delayed objects are wait-free immediate snapshots which can be
implemented in a t-resilient asynchronous distributed system [37].

Intuitively, DOn,t consists of three phases, the first and the third phases each are
wait-free immediate snapshot (IS) operations, and the middle phase is a waiting operation.
Before each process executes the second IS, it may need to wait until the view of some
process contains at least n− t + 1 pairs after the first IS. Formally, we can specify DOn,t
as an I/O automata for (n + 1)-processes with at most t processes crashing and datatype
D, denoted by DOn,t[0]V0(D). Here, we only take 1 ≤ t < n, since t = n means the model
is wait-free, and the complexity of that situation had been investigated by Hoest and
shavit [30].

Our memory model is an iterated delayed model abbreviated as IDM, in which
each process communicates with the other processes only by delayed object DOn,t, and
every process accesses that object at most once in every round. It assumes an unbounded
sequence of delayed objects DOn,t[0]V0×2(D), DOn,t[1]V1×2(D), DOn,t[2]V2×2(D) . . . with
initial datatype D, abbreviated as DOn,t[0], DOn,t[1], DOn,t[2], . . . , if the datatype is explicit
in the context. This model has each participating process proceed in ascending order in
the sequence.

Suppose P(n,t,τ,δ), as in Algorithm 1, is a protocol in IDM, and each process starts
with a value coming from the datatype Vm(D) in that model, where m is a non-negative
integer and D is some given datatype. Before communicating with other processes in round
ri by object DOn,t[ri], process pi needs to check whether or not its local state lsi can be
decidable by a evaluated function τ :

⋃∞
i=0 V

m+2i(D)→ { f alse, true}, and a decision map
δ :

⋃∞
i=0 V

m+2i(D)→ V0(DO), where DO is called the output datatype. If τ(lsi) is true, the
process can decide and execute a decision operation; otherwise, do nothing. In addition,
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Sig is taken as the signal that records whether or not a process has output before the current
round, and it admits only two possible values 0 and 1, where Sig = 0 means the process
does not have an output before the current round; otherwise, it means it already has an
output. If τi(lsi) = true and Sigi = 0, the process pi can make a decision but has no output;
then, it decides and outputs δi(lsi); Otherwise, it needs to access the object DOn,t[ri] to
accumulate information and then it accesses the next round with object DOn,t[ri + 1].

Algorithm 1: An execution of a protocol P(n,t,τ,δ) for process pi in IDM
(1) lsi ← input value;
(2) Sigi ← 0;
(3) ri ← 0;
(4) forever do
(5) ri ← ri + 1;
(6) if τi(lsi) = true and Sigi = 0
(7) then output δi(lsi) and Sigi ← 1;
(8) lsi ← DOn,t[ri].communicate(i, lsi);
(9) od;

2.3. Topological Task Specification

In this subsection, we set some notions to make our statement straightforward. Let
DI be the set of input values and DO the set of output values; then, any local state of the
process pi can be regarded as a pair si = (pi, vi) such that pi = Ids(si), vi = val(si) and
si ∈ Vm(DI), where m is a non-negative integer.

The input configurations for n + 1 processes with input DI are a chromatic n-complex,
in which each k-simplex, 0 ≤ k ≤ n, has form {si}k

i=0, si ∈ V0(DI)—likewise for output
configurations except si ∈ V0(DO). Formally, a topological specification of a decision
task with n + 1 processes is a triple T = (I ,O, ∆), where I = V0(DI) and O = V0(DO)
are input n-complex and output n-complex, respectively, and ∆ : I −→ 2O is a name
(color)-preserving carrier map [17,38].

3. The Topological Description of IDM
This section introduces a topological structure, k-fold delayed complex, which can be

showed a sub-complex of 2k times standard chromatic subdivision, and investigate their
properties. By this, we give a characterization of computing power of IDM, which is a
modification of the results showed by Saraph et al. in [33].

3.1. Delayed Complexes

Suppose In is a chromatic n-simplex with the coloring map χ and the colors C =
{pi}n

i=0, and In = G (In) is the chromatic n-complex generated by In. |In| and ||In||mean
the geometric realization and the number of vertices of In, respectively.

Definition 1. A P-partition of a given finite set S is a partition π0, π1, . . . , πm such that S =
∪m

i=0πi, πi ∩ πj = ∅ for any i 6= j ∈ [m], and πi � πj if 0 ≤ i < j ≤ m, where ” � ” means
some "priority" to the property P .

Lemma 1. There is a one-to-one correspondence between the set of the facets of Ch(In) and the
collection of all P-partitions of the set C = χ(In).

Proof of Lemma 1. Suppose Π = π0, π1, . . . , πm is a P-partition of C. Let P be the
containment in the complex In, that is, if α ⊂ β for any simplexes α, β ∈ In, χ(α) � χ(β).
Consider set V = {(pi, Si)| pi ∈ χ(Si) ⊆ C, Si ∈ In}; there must be a subset VΠ of V with
||VΠ|| = n + 1, such that, for any two elements (pi, Si), (pj, Sj) ∈ VΠ, there are Si = Sj if
pi, pj ∈ πs for s ∈ [m], and Si ⊂ Sj if pi ∈ πs, pj ∈ πk for 0 ≤ s < k ≤ m. In fact, it only
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needs to take the subset {Si} of In, in which each simplex satisfies χ(Si) = ∪i
t=0πt. By

Kozlov [39], Vπ can span a facet of Ch(In).
On the contrary, let α = {(pi, Si)}n

i=0 be a facet of Ch(In), by the definition of standard
chromatic subdivision of In. There is naturally a partition of the colorings set C under the
containment in the set {Si ⊆ In|(pi, Si) ∈ α}.

By this lemma, any facet of a standard chromatic subdivision of a chromatic n-simplex
can be represented by a P-partition of its colors, which provides a simple way to describe
a sub-complex structure of the standard chromatic subdivision. Suppose X is any facet of
standard chromatic subdivision Ch(In) corresponding to a P-partition π0, π1, · · · , πs.

Definition 2. A n-simplex is said to be a C-extended of the facet X in Ch(I), denoted by Flipi(X),
if it can be given as follows:

Flipi(X) =

{
{pi} ∪ π1, π2, . . . , πs if π0 = {pi},
{pi}, π0 − {pi}, π1, π2 . . . , πs if ||π0|| > 1 and pi ∈ π0.

(1)

Call the collection {Flipi(X)|pi ∈ π0} the C-extended of X, denoted by Flip(X). Further-
more, call Flip(X) ∪ X the C-neighborhood of X, denoted by X̂.

It is not hard to see that the C-extended is symmetrical, that is, if X is a C-extended of
Y, Y is also a C-extended of X. In addition, a C-extended of a facet is usually not unique
unless the cardinal number of the first component in its P-partition is equal to one.

The C-neighborhood describes a combinatorial adjacent relation of two facets in Ch(In),
which is not a neighborhood in the usual sense in topology or geometry. In general, a
neighborhood of a facet in the triangulation of an n-manifold is equal to the union of facets
in itself and its collar, which is indeed not its C-neighborhood. Seeing Figure 3, let X be
the black fields, the collection of all the facets of the star of Ch2(skel0(I2)) in Ch2(I2), the
green areas are the C-extended of X, and the C-neighborhood is the collection of all the
2-simplexes colored black and green.

Figure 3. C-extended and C-neighborhood.

Lemma 2. Suppose α is a facet of Ch(I2); then, a C-extended Flipi(α) is also a facet in Ch(I2).

Proof of Lemma 2. This is a direct result of the Definition 2 and the Lemma 1.

For general discussion, letK be any pure chromatic n-complex with the coloring map χ
and colors C = {pi}i∈[n], and let SK be the collection of the facets of St(Ch2(skeln−t−1(K)),
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Ch2(K)), where t is an integer and 0 ≤ t < n. The C-neighborhood ŜK of SK is equal to
(
⋃

α∈SK Flip(α))
⋃
SK. Set CSK = {α ∈ Ch2(K)|α /∈ ŜK, dim(α) = n}.

Definition 3. A subcomplex, denoted Ĉhn,t(K), of Ch2(K) is called the delayed complex about
complex K if Ĉhn,t(K) =

⋃
α∈CSK

G (α), where G (α) is the complex generated by simplex α. Induc-

tively, the k-fold delayed complex about complexK can be defined as Ĉh
k
n,t(K) = Ĉhn,t(Ĉh

k−1
n,t (K)).

Example 1. Consider an execution in delayed object DO2,t with an input 2-simplex I2 =
{(pi, vi)}2

i=0, where the colors red, black, and yellow are corresponding to p0, p1, and p2, and
vi (i ∈ [2]) is the input value of the process pi, seeing the left side of Figure 4. Each 2-simplex
colored black in the middle and the right of Figure 4 corresponds to a possible execution for t = 1
and t = 0, respectively. Comparing Figure 3 and the middle of Figure 4, it can be seen that each
black 2-simplex in the middle of Figure 4 is a 2-simplex of Ĉhn,1(I2).

Figure 4. Execution for three processes with input simplex I2.

It is not hard to see that any two vertices can be linked by a path (a sequence of
1-simplexes) in Ĉh2,1(I2), that is to say, it is 0-connected. In fact, by the similar arguments

as Theorem 5 and Theorem 6 in [33], we can also show that Ĉh
k
n,t(K) is (t− 1)-connected,

which means that any continuous map f from (t− 1)-sphere St−1 to the geometric real-

ization |Ĉh
k
n,t(K)| of Ĉh

k
n,t(K) can be extended to a continuous map f̄ from t-disk Dt to

|Ĉh
k
n,t(K)|. Here, we do not re-show those topology properties of delayed complexes any

more, while we focus on the relation between executions in a delayed object and delayed
complex. Saraph et al. introduced a sub-complex of Ch2(In), denoted by Cht(In), which
is in fact the complementary of the star of Ch2(skeln−t−1(In)) in Ch2(In)). In addition,
they implied that there is one-to-one correspondence between a simplex in Cht(In) and an
execution of that object, which is actually inaccurate. There actually exists some simplex in
Cht(In) that does not correspond to any execution of object DOn,t. The next results present
some properties of C-extended and aC-neighborhood of the complex K, by which will give
an accurate geometric description of object DOn,t.

Lemma 3. Suppose α = {(pi, Si)}i∈[n] is any facet of Sk with the P-partition Πα = π0, π1, . . . , πt;
then, there exists an integer m such that ||Si|| ≤ n− t and ||S′i || ≤ n− t for any x ∈ [m], any pi ∈
πx and any (pi, S′i) ∈ Si, where (pi, Si) ∈ V2(val(V(K))), (pj, S′j) ∈ Si ⊆ V1(val(V(K))) and
m ≤ t.

Proof of Lemma 3. Let Aα = {β ∈ Ch2(K) | β ∈ Ch2(skeln−t−1(In)), β ⊆ α ∈ SK, In =
carrier(α, K)}; then, for any vertex (pi, Si) ∈ V(α), there are (pi, Si) ∈ V2(val(V(In))) and
(pj, S′j) ∈ Si ⊂ V1(val(V(In))). Take a simplex, denoted B(α), from Aα with the maximal
dimension, and it is obvious that B(α) is unique. In addition, then there exists a P-partition
π̄0, π̄i, . . . , π̄s of B(α), denoted ΠB(α).

We claim that ΠB(α) is the front of s + 1 components of Πα. If not, ΠB(α) must be a
successive truncation in the interior of Πα, for B(α) is a face of α. Hence, there exists at least
one component πx in Πα but not in ΠB(α), such that, for any element pi in πx with vertex
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(pi, Si) ∈ V(α), there is Si ⊂ Sj, where pj is any element of an arbitrary component of ΠB(α)
with vertex (pj, Sj) ∈ V(α). Therefore, ||Si|| < ||Sj||. Note that dim(skeln−t−1(In)) =
n− t− 1; then, dim(B(α)) ≤ n− t− 1, and then ||Sj|| ≤ ||ΠB(α)|| = ∑i∈[s] ||π̄i|| ≤ n− t.
Since (pi, Si) ∈ α but (pi, Si) /∈ B(α), there is ||Si|| ≥ n− t + 1; then, ||Si|| > ||Sj||, which
is an obvious contradiction. It follows that there is always π̄i = πi for any 0 ≤ i ≤ s. Next,
it needs to show that m = s is a satisfied integer.

In fact, it has showed that ||val((pi, Si))|| = ||Si|| ≤ n− t for any element pi in any
component πx with 0 ≤ x ≤ s. Hence, it only needs to show that ||S′j|| ≤ n− t for any
element (pj, S′j) ∈ Si. If it is not true, there is a vertex (pi, Si) ∈ V(B(α)) such that there

exists a vertex (pj, S′j) ∈ Si with ||S′j|| ≥ n− t + 1. Since B(α) ∈ Ch2(skeln−t−1(In)), there

must be a simplex β ∈ Ch(skeln−t−1(In)) with B(α) ∈ Ch(β). Note that (pi, Si) ∈ V(B(α)),
and it follows that (pj, S′j) ∈ V(β); then, pj ∈ χ(β). By the construction of B(α), there

is χ(β) = χ(B(α)) ⊆ ∪r∈[s]π̄r. Note that dim(skeln−t−1(In)) = n − t − 1 and S′j ∈
skeln−t−1(In), hence ||S′j|| ≤ dim(skeln−t−1(In)) + 1 = n− t, which is a contradiction.

If we take In as an input n-simplex in an execution of DOn,t, it is obvious that α
corresponds to an impossible execution. Any process pi ∈ π̄0 executing the second IS
does not need to wait after the first IS leading to ||S′i || ≥ n− t + 1, which contradicts with
Lemma 3. The next lemma implies that, if a facet is in C-extended of the SK, it corresponds
to an impossible execution of object DOn,t.

Lemma 4. Suppose α is an arbitrary facet of SK, and α′ is any facet in Flip(α) with P-partition
Π′ = π̄0, π̄1, . . . , π̄m. Then, there exists an integer q such that, for any integer x ∈ [q] and any
element pi ∈ π̄x, there is either ||Si|| ≤ n− t and ||S′j|| ≤ n− t for any vertex (pj, S′j) ∈ Si, or
||Si|| ≥ n− t + 1, and there exists at least one vertex (pj, S′j) ∈ Si with ||S′j|| ≤ n− t, where
(pi, Si) is a vertex of α′.

Proof of Lemma 4. Assume the P-partition of α is Π = π0, π0, . . . , πp. If ||π0|| = 1,
there is only one element pi in π0, and then the P-partition of α′ can be represented as
Π′ = π0 ∪ π1, π2, . . . , πp by Definition 2. Otherwise, ||π0|| > 1, and the P-partition of α′

is Π′ = {pi}, π0 − {pi}, π1, . . . , πp, where pi is an arbitrary element of π0.
SetAα = {β ∈ Ch2(K) | β ∈ Ch2(skeln−t−1(In)), β ⊆ α ∈ SK, In = carrier(α, Ch(K))}.

Let B(α) be a simplex of Aα with the maximal dimension; then, P-partition of B(α) is
the previous s + 1 components of Π by the same argument of the proof of Lemma 3,
denoted ΠB(α) = π0, π1, . . . , πs, 0 ≤ s < p. Since 0 ≤ dim(B(α)) ≤ n − t − 1, there is
1 ≤ || ∪i∈[s] πi|| ≤ n− t.

If || ∪s
i=0 πi|| = 1, then s = 0, and there is only one element in π0. Suppose it is p0;

then, P-partition of B(α) is π0 = p0. By Lemma 3, for any non-negative integer j, if j = 0,
then ||S0|| = 1 ≤ n − t and ||S′0|| ≤ n − t, where (p0, S′0) ∈ S0. Otherwise, j 6= 0, and
there is ||Sj|| ≥ n− t + 1 for the choice of α, where (pj, Sj) is a vertex of α but not for B(α),
and (p0, S′0) ∈ Sj. By Definition 2, Π′ = {p0} ∪ π1, π2, . . . , πp, then p = m + 1, π̄i = πi+1
with 0 ≤ i ≤ m, which implies that it only changes S0 of the vertex (p0, S0) of α into S̄0 of
the vertex (p0, S̄0) of α′ with S̄0 = Sx, where (px, Sx) is any vertex of α with px ∈ π1. It
follows that ||Sj|| ≥ n− t + 1 and at least one vertex (p0, S′0) ∈ Sj with ||S′0|| ≤ n− t for
any 0 ≤ q ≤ m, any component π̄x with 0 ≤ x ≤ q, and any element pj ∈ π̄x, where (pj, Sj)
is a vertex of α′.

If || ∪s
i=0 πi|| ≥ 2, then s = 0 or s ≥ 1.

For the former case, the P-partition of B(α) is {p0}. By Lemma 3, for any pi ∈ π0,
there are ||Si|| ≤ n− t and ||S′j|| ≤ n− t, where (pj, S′j) is an arbitrary element of Si and
(pi, andSi) is a vertex of α. Hence, Π′ = {pi}, π0 − {pi}, π1, . . . , πp, where pi ∈ π0; then,
π̄0 = {pi}, π̄1 = π0 − {pi}, π̄2 = π1, . . . , π̄m = πp. Note that the transformation from α to
α′ is only changing Si into S̄i, which contains only one element, where (pi, S̄i) is a vertex of
α′. Let q = 1; then, for any x ∈ [q] and any pr ∈ π̄x, pr = pi or pr ∈ π0 − {pi}. It follows
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that ||S̄r|| = 1 ≤ n− t or ||S̄r|| ≤ n− t, and ||S̄′j|| ≤ n− t, where (pr, S̄r) is a vertex of α′

and (pj, S̄′j) is any element of S̄r.
For the latter case, the P-partition ofB(α) is π0, π1, . . . , πs; then, either Π′ = {pi}, π0−

{pi}, π1, . . . , πp for pi ∈ π0 and ||π0|| ≥ 2, or Π′ = π0 ∪ π1, π2, . . . , πp for ||π0|| = 1. For
the former situation, let q = s + 1, and, for the latter situation, let q = s− 1. By the similar
arguments as the situation s = 0, it can always obtain that, for any 0 ≤ x ≤ q and any
pi ∈ π̄x, there are ||Si|| ≤ n− t and ||S′j|| ≤ n− t, where Si is the value of the corresponding
vertex of pi in α′, and (pj, S′j) is an arbitrary element of Si.

Through the discussion above, we can obtain the following result directly.

Corollary 1. Suppose α is an n-simplex of ŜK with the P-partition Π = π0, π1, . . . , πm; then,
there is a non-negative integer q such that, for any x ∈ [q] and any pi ∈ πx, there exists one vertex
(pj, S′j) ∈ Si with ||S′j|| ≤ n− t and (pi, Si) ∈ V(α).

3.2. The Characterization of IDM
In the previous section, we have given the concepts of the k-fold delayed complex

and C-neighborhood, and then discussed about their properties. In this section, we will
characterize IDM from a topological point of view.

Suppose ε is an execution in a protocol P with a given input n-simplex In; we say
a simplex X is reachable by execution ε if it can take V(X) as a possible return after
executing ε.

Lemma 5. Suppose P is the delayed algorithm in Algorithm A1 and In an input n-simplex, then
the protocol complex P(In) is equivalent to delayed complex Ĉhn,t(In).

Proof of Lemma 5. We only need to show that there is a one-to-one correspondence be-
tween the facets of P(In) and the facets of Ĉhn,t(In).

Suppose α is an arbitrary facet in P(In); then, there exists an execution εα in P such
that α is reachable. Every process in εα just accesses object DOn,t once. That is, the process
runs the first IS (denoted by IS1), waits or not, and then runs the second IS (denoted by IS2).
Hence, it can model εα as a composite of ε1

α and ε2
α, each of which having a wait-free IS.

Following Kozlov [39], every IS can be modeled as an ordered partition π0 � π1 · · · � πm
along the processes’ running, such that processes in the same component run concurrently,
and processes in πi run after the processes in πj for j < i. It follows that there are
ordered partitions for ε1

α and ε2
α, denoted π1

0 � π1
1 · · · � π1

m1
and π2

0 � π2
1 · · · � π2

m2
,

respectively. Assuming {(pi, ls1
i )}i∈[n] is a return after executing IS1, then ls1

i is a face
of In for any i ∈ [n], and ls1

i ⊂ ls1
j for pi ∈ π1

s , pj ∈ π1
t and s < t, and ls1

i = ls1
j for

pi, pj ∈ π1
x, where s, t, x ∈ [m1]. Likewise, for a return α = {(pi, lsi)}i∈[n] except after

executing IS2. Let Si = lsi and ᾱ = {(pi, Si)}i∈[n]; then, ᾱ is a facet in Ch2(I2). In the next,
it only needs to show that ᾱ is not a facet in a C-neighborhood of an arbitrary facet of
St(Ch2(skeln−t−1(In)), Ch2(In)).

By steps 5 and step 6 in a delayed algorithm in Algorithm A1, we know that, if the
number of elements of the view of a process is at most n− t after finishing ε1

α, it needs to
wait until done is true. Assume −1 ≤ s < m1 is the largest integer such that all processes
need to wait in π1

x, x ≤ s (here, s = −1 means that all processes are wait-free). Then, any
process in π1

x should wait until at least one process in π1
s+1 has finished εα. Meanwhile,

processes in π1
y do not need to wait and immediately run IS2 after IS1, where x ≤ s,

y ≥ s + 1. It follows that, for any process pi in π2
0 , it must appear in π1

x with s + 1 ≤ x ≤ m1.
Assume ls1

i is the view of pi after executing IS1; then, ||ls1
i || ≥ n− t + 1. Let S′i = ls1

i ; then,
α′ = {(pi, S′i)}i∈[n] is an n-simplex in Ch(In) with ||S′i || ≥ n− t + 1 for pi ∈ π1

y, y ≥ s + 1.
Since π2

0, π2
1, . . . , π2

m2
is actual, the P-partition of α and α ∈ Ch(α′) ⊂ Ch2(In), it follows
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that ᾱ /∈ (Ch2(In)− Ĉhn,t(In)) by Corollary 1. As a result, ᾱ ∈ Ĉhn,t(In). Since α is arbitrary,
P(In) ⊆ Ĉhn,t(In) up to equivalence.

On the other hand, assume β = {(pi, Si)}i∈[n] is an arbitrary facet of Ĉhn,t(In). We
will construct an execution ε in object DOn,t, such that β is a reachable n-simplex for ε.

Since Ĉhn,t(In) ⊂ Ch2(In), there exists only one facet β′ ∈ Ch(In) admitting form
{(pi, S′i)}i∈[n] such that β is a facet in Ch(β′), where S′i is a face of In for any i ∈ [n]. By
Lemma 1, β′ has a P-partition under containment of the values of its vertices, denoted
Π′ = π′0, π′1, . . . , π′m, such that, for any vertex (pi, S′i), (pj, S′j), S′i ⊂ S′j if pi ∈ π′s, pj ∈ π′q
and s < q, and Si = Sj if pi, pj ∈ π′x, x ∈ [m]. Note that this partition corresponds to
an execution IS, hence we can divide the first IS into a sequence of executions, denoted
ε′ = ε′0 ◦ ε′1 · · · ε′m′ , such that processes run ε′i concurrently if they are in the same component
π′i , and processes in π′i execute ε′i after processes in π′j running ε′j for i > j. It not hard to
see that β′ is a reachable n-simplex after executing ε′. Likewise, the argument for the P-
partition of β except a series of executions ε = ε0 ◦ ε1 · · · εq and β is a reachable n-simplex
after executing ε. Let εβ = ε′ ◦ ε. It only needs to show that εβ is possible executing in object
DOn,t with input In. Equivalently, it only needs to show that, for any vertex (pi, S′i) ∈ β′, if
|S′i | ≤ n− t, pi does not appear in π0. That is, process pi does not execute ε immediately
after running ε′, and it needs to wait until “done” is true.

Assume there exists a vertex (pi, S′i) in β′ such that pi ∈ π′0 when ||S′i || ≤ n− t. By
Corollary 1, β is an n-simplex of the C-neighborhood of an facet in St(Ch2(skeln−t−1(In),
Ch2(In)), which is an obvious contradiction for β ∈ Ĉhn,t(In). As a result, εβ is indeed an
execution in DOn,t with input In.

Let lsi be the view of process pi after executing εβ, then lsi = Si. It follows that
β is indeed a reachable n-simplex after executing εβ. Since β is arbitrary in Ĉhn,t(In),
Ĉhn,t(In) ⊆ P(In) up to equivalence. By the upper arguments, P(In) is equivalent to
Ĉhn,t(In).

Corollary 2. Suppose In is an input n-simplex and P a protocol with k rounds in which each
executes a delayed algorithm in Algorithm A1; then, the protocol complex P(In) is equivalent to
k-fold delayed complex Ĉhn,t(In).

Proof of Corollary 2. Execution ε in P can be modeled as a sequence of executions, denoted
by ε1 ◦ ε2 ◦ · · · ◦ εk, in which each execution εi is an one round execution in delayed object
DO(n,t)[i], and each return of a process after executing εi is as an input in execution εi+1 for

0 ≤ i < k. By Lemma 5 and Definition 3, we know that P(In) is equivalent to Ĉh
k
n,t(In).

4. Measure Complexity

In this section, we introduce some concepts about the measure of complexity of
arbitrary resilient IDM, and then we give a topological characterization of the complexity
for that model.

4.1. Complexity of the Delayed Model

Suppose T = (I ,O, ∆) is a decision task and P(n,t,τ,δ) is a general algorithm solving
T in IDM. Let ε be an arbitrary execution of P(n,t,τ,δ) with a legal input simplex I (i.e.,
dim(I) ≥ n− t), and tε the maximum number among the effective access to object DOn,t
for all participating processes in the execution ε with input I. Here, “effective” means the
number of outputs is less than or equal to n− t in an execution in a distributed system. In
addition, from now on, once we refer to a protocol P(n,t,τ,δ), it means that the protocol can
aways solve some implied decision task.

Definition 4. The time complexity of a protocol P(n,t,τ,δ) on a given input simplex I is the supre-
mum of the set {tε|ε is any execution of the P(n,t,τ,δ) with input I}, denoted tI .
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Remark 1. Set tI = −1 if an input simplex is illegal, since the dimension of that input simplex is
less than n− t and this time any participating process could not make a decision or output.

Definition 5. The time complexity of a protocol P(n,t,τ,δ) on a given input complex I , denoted
tP(n,t,τ,δ)

, is the supremum of the set {tI |I ∈ In}.

Before we explore the complexity of a protocol in a delayed model, we introduce some
properties of any execution in DOn,t, which may be useful for the next discussing.

Lemma 6. Any execution ε′ in object DOn,t is finite.

Proof of Lemma 6. Since any execution in DOn,t can be modeled as an execution of two-
round executions of wait-free IS, even though there is a barrier layer between the two-round
IS, it does not contain other actions except for waiting. Note that any execution of IS is
finite by Hoest [30], then any execution of two-round IS is also finite. Hence, ε′ is finite.

Lemma 7. Let ε be any execution of protocol P(n,t,τ,δ) for a task T in IDM, then ε is finite.

Proof of Lemma 7. Suppose there is no process stopping by crashing; then, ε contains at
most n + 1 starting actions and n + 1 decision actions for there are at most n + 1 processes
and each of them has at most one initial state and one final state. Consider an integer
t̄ε which is the time complexity of ε; then, ε can be modeled as an ordered executing
sequence with at most t̄ε one-round execution of delayed object DOn,t, denoted ε1, ε2, . . . ,
ε t̄ε

. Despite the fact that some processes may make a decision and output a value among
those executions, there is no essential effect on the finiteness. By Lemma 6, each εi is finite.
Note that t̄ε is finite, hence ε is finite.

4.2. Reduced Delayed Complex

Suppose I is a pure chromatic n-complex with coloring map χ and colors C = {pi}i∈[n].
Let X be an m-simplex in I and G (X) the complex generated by X; then, there is a facet X̄ in
I such that X ⊆ X̄, χ(X) ⊆ χ(X̄) and G (X) ⊆ G (X̄). Let (SX , AX) be any partition of the
set of vertices V(X) of X with AX 6= ∅, such that V(X) = SX ∪ AX , χ(SX) ∩ χ(AX) = ∅.

Definition 6. CallR(X) a reduced delayed complex of X about χ(X) if
(a) each simplex has form C ∗ T, where C ∈ G (SX)

⋃
∅, T ∈ Ĉhn,t(X̄)

⋃
∅ and χ(T) ⊆ χ(AX)};

(b) there exists one simplex carrier(T, X̄) in X̄ such that C ∗ carrier(T, X̄) is a face of X.
Furthermore, callR(I) a reduced delayed complex of I about C ifR(I) = ⋃

X∈I R(X).

Remark 2.

• C and T can not be empty-set at the same time.
• If SX = ∅, thenR(X) is a sub-complex of Ĉhn,t(X̄).
• R(X) is also a pure chromatic m-complex with the same set of colors as X.
• Suppose (SX̄ , AX̄) is a partition of X̄; then, there must be SX ⊆ SX̄ and AX ⊆ AX̄ .
• Suppose Y is another simplex in I with a partition (SY, AY), and assume X ∩Y = H 6= ∅.

If v ∈ H and v ∈ SX , then v ∈ SY, and vice versa; if v ∈ H and v ∈ AX , then v ∈ AY, and
vice versa.

• In fact, it needs only to consider all the facets of complex I to construct the reduced delayed
complexR(I); that is,

⋃
X∈I R(X) =

⋃
X∈I ,dim(X)=nR(X).

Example 2. Let I2 = {v0, v1, v2} be a chromatic 2-simplex with coloring map χ, where χ(v0) =
red, χ(v1) = black and χ(v2) = yellow, seeing the left in Figure 5. Suppose SI2 = {v0} and
AI2 = {v1, v2}; then, V(R(I2)) is a collection of v0 and all the vertices coloring black and yellow
in the black area of the middle figure in Figure 5. Reduced delayed complexR(I2) can be obtained
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by pulling all vertices coloring red in the black area of the middle figure in Figure 5 over the flat and
then pasting them together as just one vertex, seeing the right in Figure 5.

Inductively, we can define a k-fold reduced delayed complex for n-complex I , denoted
Rk(I). For k = 0, it is equal to I . For k ≥ 1, it can be given by the following procedure:
the vertices of I can be divided into two disjoint parts, denoted S0 and A0 with A0 6= ∅,
respectively. Let Ī = {X ∈ I | dim(X) = n}; then, for any element X ∈ Ī, there exists a
partition (S0,X , A0,X) of X such that S0,X ⊆ S0, A0,X ⊆ A0 and χ(A0,X) ⊆ χ(X) = C. Hence,

S0 =
⋃

X∈ Ī

S0,X , A0 =
⋃

X∈ Ī

A0,X .

Let S0 =
⋃

X∈ Ī G (S0,X) be a sub-complex of complex I , and CA0 = χ(A0), CA0,X =

χ(A0,X). Any simplex inRk(I) has form C′ ∗ T′, where C′ ∈ S0, T′ ∈ Rk−1(Ĉhn,t(I)CA0
),

C′ ∗ carrier(T′, I) is an n-simplex of I , and Ĉhn,t(I)CA0
=

⋃
X∈ Ī Ĉhn,t(X)CA0,X

. Here,

Ĉhn,t(X)CA0,X
represents a complex, in which each simplex α is a face of a simplex β ∈

Ĉhn,t(X) with χ(α) ⊆ CA0,X . It is not hard to show that Ĉhn,t(X)CA0,X
is a pure sub-complex

of the complex Ĉhn,t(X) with dimension ||CA0,X || − 1. By Definition 6, we can construct

Rk−1(Ĉhn,t(X)CA0,X
) inductively.

Intuitively, each vertex of the reduced delayed complexR(X) with input simplex X
records a local state, in which the process can decide and has no output. Without loss
of generality, assume X ∈ I is a facet. For each process px, it needs to check whether
its initial state can decide by the predicted function before accessing DOn,t[1]. If it can
decide and there is no output, then it will make a decision and give an output, and then the
process px may continue executing in the following round or just stop for crashing; anyway,
it has nothing to do with output of the process px. If it can not, it needs to accumulate
more information by object DOn,t[1], which does have an effect on its output. Putting
all initial states in which each process can decide together as a set SX; it not hard to see
that SX can span a face of X. Since, for a process that is not in χ(SX), it needs to access
object DOn,t to obtain more information to decide, each local state of a process pj with on
output after executing object DOn,t[1] corresponds to a vertex in V(Ĉhn,t(X)CAX

), where
AX = V(X)− SX . By the Definition 6,R(X) indeed describes the one-round execution of
P(n,t,τ,δ). The next two lemmas show the general execution (i.e., there are many rounds in
it) of P(n,t,τ,δ).

Figure 5. An intuitive procedure of 2-simplex I2 to some reduced delayed complex.

Lemma 8. Suppose P(n,t,τ,δ) is a protocol in IDM with input n-complex I . If the time complexity
of P(n,t,τ,δ) about I is k, then protocol complex P(n,t,τ,δ)(I) is equivalent to a k-fold reduced delayed
complexRk(I) of I , where k is non-negative integer.

Proof of Lemma 8. Use induction to the complexity. Assume tP(n,t,τ,δ)
= 0, it is obvious

that P(n,t,τ,δ)(I) ∼= I . Note that R0(I) = I , hence P(n,t,τ,δ)(I) ∼= R0(I). Suppose the
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conclusion is established for any non-negative integer tP(n,t,τ,δ)
, which is less than k. Consider

tP(n,t,τ,δ)
= k.

Let vi = (pi, xi) be any vertex in I , and χ and val the coloring map and assignment
function for I such that χ(vi) = pi and val(vi) = xi. Note that whether the process pi can
make a decision and output a value in its initial state before accessing object DOn,t[1] or
not depends on the value of predicted function τ on vi. If τ(vi) is true and pi does not
output, pi is decidable and outputs δ(vi) before proceeding. Otherwise, process pi can not
make a decision, and it needs to accumulate information by accessing object DOn,t[1]. It
follows that τ divides V(I) into two disjoint parts, denoted S0 and A0, respectively, such
that τ(S0) = true and τ(A0) = f alse. Since k = tP(n,t,τ,δ)

≥ 1, there is at least one vertex vx

in V(I) such that τ(vx) = f alse, and then A0 6= ∅.
Consider an arbitrary facet X ∈ I , such that the time complexity of the protocol

P(n,t,τ,δ) about X is k. By the former argument, there must exist a partition of V(X), denoted
by (S0,X, A0,X), such that S0,X ⊆ S0, A0,X ⊆ A0 and X = S0,X ∗ A0,X. Any execution of
P(n,t,τ,δ) can be modeled as a composite of an ordered sequence of one-round executions, in
which each participating process accesses object DOn,t[r] at most once in round r, and the
returns of concurrent round can be as the inputs to the next round. By Lemma 5, each return
after executing round 1 is a simplex in Ĉhn,t(X); then, the time complexity of P(n,t,τ,δ) on

each simplex in Ĉhn,t(X) is at most k− 1. By hypothesis,

P(n,t,τ,δ)(Ĉhn,t(X)) ∼= Rk−1(Ĉhn,t(X)).

If χ(v̄) ∈ χ(S0,X) for a vertex v̄ ∈ V(Ĉhn,t(X)), the process χ(v̄) has obtained an
output before accessing object DOn,t[1]. Hence, it only needs to focus on the sub-complex
Ĉhn,t(X)CA0,X

of complex Ĉhn,t(X), and there is

P(n,t,τ,δ)(Ĉhn,t(X)CA0,X
) ∼= Rk−1(Ĉhn,t(X)CA0,X

).

Let G (SX) ∗P(n,t,τ,δ)(Ĉhn,t(X)) be the collection of all simplexes with form α ∗ β, where

α ∈ G (S0,X)∪∅, β ∈ Ĉhn,t(XCA0,X
)∪∅, and α and β can not be empty sets at the same time.

Since G (S0,X) and Ĉhn,t(XCA0,X
) all are chromatic complexes and χ(P(n,t,τ,δ)(Ĉhn,t(X)CA0,X

))∩
χ(S0,X) = ∅, G (SX) ∗ P(n,t,τ,δ)(Ĉhn,t(X)) is a chromatic complex. Likewise, G (S0,X) ∗
Rk−1(Ĉhn,t(X)CA0,X

) is also a chromatic complex.
It follows that

G (SX) ∗ P(n,t,τ,δ)(Ĉhn,t(X)) ∼= G (S0,X) ∗ Rk−1(Ĉhn,t(X)CA0,X
).

Note that P(n,t,τ,δ)(X) = G (S0,X) ∗ P(n,t,τ,δ)(Ĉhn,t(X)CA0,X
) and Rk(X) = G (S0,X) ∗

Rk−1(Ĉhn,t(X)CA0,X
). Hence, P(n,t,τ,δ)(X) ∼= Rk(X). Since X is arbitrary facet in I , there is

P(n,t,τ,δ)(I) =
⋃

X∈I , dim(X)=n

P(n,t,τ,δ)(X).

Therefore,
P(n,t,τ,δ)(I) ∼=

⋃
X∈I , dim(X)=n

Rk(X).

By Definition 6, there is ⋃
X∈I , dim(X)=n

Rk(X) = Rk(I).
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It follows that P(n,t,τ,δ)(I) ∼= Rk(I).

Lemma 9. Suppose I is a pure chromatic n-complex with coloring map χ, andRk(I) is a k-fold
reduced delayed complex about I , where k is a non-negative integer. Then, there exists a protocol
P(n,t,τ,δ) in IDM with time complexity k about complex I , such that its protocol complex is
equivalent toRk(I).

Proof of Lemma 9. Assume we have obtained the predicted function τ and the decision
map δ in the delayed system with n + 1 processes, then we can construct a protocol P(n,t,τ,δ)
in that model in the way shown as in Algorithm A1. By Lemma 8, the protocol complex
P(n,t,τ,δ)(I) is indeed equivalent to complexRk(I). Next, we mainly focus on constructing
the predicted function τ and the decision map δ.

Consider an arbitrary facet X in n-complex I . By Definition 6 and the fundamen-
tal configuration process of k-fold reduced delayed complex Rk(X), there is a sequence
of complexes, denoted X,R(X),R2(X), . . . ,Rk(X), respectively, and two corresponding
complex sequences, denoted S0,X,S1,X,S2,X, . . . ,Sk−1,X and A0,X,A1,X,A2,X, . . . ,Ak−1,X,
respectively. Such that, for any i, j ∈ [k− 1], if i 6= j, there are χ(Si,X) ∩ χ(Sj,X) = ∅ and
χ(Si,X) ∩ χ(Ai,X) = ∅, and, for any r ∈ [k− 2], there is χ(Ar,X) = χ(Sr+1,X) ∪ χ(Sr+1,X).

Note that, for any i ∈ [k − 1], V(Si,X) and V(Ai,X) are the subsets of V2i(Dval(X)).
Define function

τX :
⋃

i∈[k−1]

V2i(Dval(X)) −→ {true, f alse},

satisfying if v ∈ V(Si,X), i ∈ [k− 1], then τX(v) = true, otherwise τX(v) = f alse. Since
V(Si,X) ∩V(Sj,X) = ∅ for any i 6= j ∈ [k− 1], τX is well-defined. By the similar way, we
can define a color-preserving simplicial map

δX :
⋃

i∈[k−1]

V2i(Dval(X)) −→ V0(Dval(O)),

such that, for any v ∈ ⋃
i∈[k−1] V

2i(Dval(X)), if τX(v) = true, then δX(v) = (χ(v), x),
otherwise δX(v) = (χ(v),⊥), where x is a value in val(O) and ⊥ is just a placeholder. It is
obvious that δX is also well-defined.

Note that I is pure and X is arbitrary in complex I , and let

τ = ∑
X∈I ,dim(X)=n

τX , δ = ∑
X∈I , dim(X)=n

δX .

Next, we only need to check that τ and δ are well-defined. Assume Y is another facet in
complex I and X ∩Y = C 6= ∅. By Definition 6 and the construction of τX and τY, there is

τX(
⋃

i∈[k−1]

V2i(Dval(C))) = τY(
⋃

i∈[k−1]

V2i(Dval(C))),

which implies that τ is well-defined. Therefore, τ is exactly a satisfied predicted function
from

⋃
i∈[k−1] V

2i(Dval(I)) to {true, f alse}. In a similar way, it can also show that δ is
well-defined and a satisfied decision map from

⋃
i∈[k−1] V

2i(Dval(I)) to V0(DO).

4.3. Arbitrary Resilient Asynchronous Complexity Theorem

The strength and usefulness of IDM of computation comes from the fact that each of
its associated protocol complexes has a slightly nice, recursive structure. In fact, it turns
out that any protocol complex of IDM is equivalent to a reduced delayed complex which
can be constructed by iterated chromatic subdivision of the input complex, and vice versa.
This is the essence of our main theorem, which we state and prove in this section. The level
of subdivision necessary for the existence of a simplicial map from the input to the output
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complex of a decision task that agrees with the task specification can be interpreted as a
topological measure of the task’s time complexity.

Let T = (I ,O, ∆) be a decision task and k a non-negative integer. We sayRk(I) is a
mappable reduced subdivision of the input complex and k is a mappable level of reduced
subdivision if there exists a color-preserving simplicial map µ fromRk(I) to O such that,
for all X ∈ Rk(I), µ(X) ∈ ∆(carrier(T, I)).

Theorem 1. A decision task T = (I ,O, ∆) has a t-resilient solvable protocol in IDM with worst
case time complexity kX on legal inputs X ∈ I if and only if there is a mappable reduced subdivision
Rk(I) with level kX on X.

Proof of Theorem 1. Herlihy and Shavit in [40] imply that decision task T has a t-resilient
solvable protocol P(n,t,τ,δ) in IDM if and only if the following triangle is commutative,
where µ is a color and carrier preserving simplicial map from P(n,t,τ,δ) to O.

P(n,t,τ,δ)(I)

δ
��

I

P(n,t,τ,δ)
::

∆ // O

By Lemma 8, any protocol complex P(n,t,τ,δ)(I) is equivalent to a k-fold reduced
delayed complexRk(I). The protocol P(n,t,τ,δ) solves task T in IDM with worst case time
complexity kX on X. It follows that k ≥ kX . Let k be equal to kX and µ′ a color-preserving
isomorphism fromRk(I) to P(n,t,τ,δ)(I), and let µ = δ ◦ µ′. Then, µ is a color and carrier
preserving simplicial map fromRk(I) to O. It follows thatRk(I) is mappable.

On the other hand, any mappable reduced subdivision Rk(I) with level kX on X is
equivalent to the protocol complex P(n,t,τ,δ)(I) of a protocol in the delayed model with
worst case complexity kX on legal input X by Lemma 9. Assume γ is a color-preserving
simplicial map from P(n,t,τ,δ)(I) toRk(I). If there is a color and carrier preserving simpli-
cial map µ from Rk(I) to O, by setting δ = µ ◦ γ, then protocol P(n,t,τ,δ) can solve T in a
delayed model with worst case time complexity kX on legal inputs X ∈ I .

Remark 3. When t = n, IDM is actually a wait-free non-standard iterated immediate snapshot
model(NIIS) proposed by Hoest and Shavit [30]. As a corollary of Theorem 1, it can easily obtain
the wait-free asynchronous complexity theorem.

5. Application

In this section, we will analyze the time complexity of the well-known Approximate
Agreement task as an application of Theorem 1. An approximate agreement T = (I ,O, ∆)
in a distributed system with n + 1 processes can be specified as follows: each n-simplex
I ∈ I has form {(pi, vi)}i∈[n], where each vi is in a finite set S of real numbers, and pi is the
ID of the process. In addition, each n-simplex O ∈ O has the form {(pi, wi)}i∈[n], such that,
for any i ∈ [n], wi is also in S; and, for any i, j ∈ [n], there is |wi − wj| < ε, where ε is the
same predetermined number that is more than 0, and (I, O) ∈ ∆ if val(O) ⊆ val(I) ∪ {⊥}.

For a wait-free model, Hoest et al. [30] have showed that the time complexity of
approximate agreement is blogd

max{val(I)}−min{val(I)}
ε c for d = 3 if n = 1 and d = 2 if

n ≥ 2 with any input simplex I. Here, we investigate the time complexity of approximate
agreement in IDM. Since any legal input simplex αI , there is always a facet α ∈ I such
that αI is a face of α, and they admit the same time complexity. Therefore, it only needs to
consider all the facets in the input complex I .

In order to make the next discussion brief, let D(α) = max{val(α)} − min{val(α)}
for any chromatic simplex α, and D(K) = maxα∈KD(α) for a chromatic complex K. In
addition, let χ be the coloring map with the collection of all the IDs of the processes.
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Theorem 2. Suppose ε > 0 is a predetermined number and T = (I ,O, ∆) is an approximate
agreement, then there is a protocol P solving T in IDM with time complexity blogm

D(I)
ε c on any

input n-simplex I, where m = 9 if n = 1 and m = 4 if n ≥ 2.

Proof of Theorem 2. Assume task T has protocol P with the time complexity kI on input
n-simplex I ∈ I . By Theorem 1, there is a color-preserving simplicial map

ψ : Rk(I) −→ O,

carried by ∆, such that k = kI if ψ acts on the sub-complexRk(I) of the complexRk(I).
Relabel all of the vertices of Rk(I) by associating map ψ in the following way. For

each vertex v ∈ Rk(I), label v with val(ψ(v)) while retaining its coloring. It is obvious that
this labeling satisfies the task specification, since, for any n-simplex α ∈ I that contains v,
the labeling val(ψ(v)) must be in val(α). Note that ψ is a simplicial map fromRk(I) to O;
then,

D(ψ(α)) < ε

for any α ∈ Rk(I). Since D(α) = D(ψ(α)) and α is chosen arbitrary, then

D(Rk(I)) < ε.

Consider an arbitrary n-simplex I ∈ I . By the Definition 6, (l + 1)-fold reduced
delayed complexRl+1(I) can be obtained from an l-fold reduced delayed complexRl(I).
That is, V(Rl+1(I)) can be divided into two disjoint sets of vertices Sl,I and Al,I , such that

Sl,I ⊆ V(Rl(I)) ⊆ V(Rk(I)) and Al,I ⊆ V(Ĉh
2l
n,t(I)) and each simplex of Rl(I) can be

spanned by a subset of Sl,I and a subset of Al,I . Hence, D(Rl(I)) = D(G ′(Al,I)), where

G ′(Al,I) is the complex generated by Al,I in which each simplex in Ĉh
2l
n,t(I). By the similar

argument of the proof of Theorem 6.1 [30], there is

D(Rk(I)) ≥ D(I)
d2kI

,

where kI is the complexity on I, and d = 3 if n = 1 and d = 2 if n ≥ 2. Then,

D(I)
d2kI

< ε.

Let m = d2, then

blogm
D(I)

ε
c ≤ kI ,

where n = 1 if m = 9 and m = 4 if n ≥ 2. Therefore, blogm
D(I)

ε c is a lower bound of the
time complexity on simplex I.

On the other hand, suppose there is a color and carrier preserving simplicial map ψ

from k-fold reduced delayed complexRk(I) toO, such that k = blogm
D(I)

ε c if ψ acts on the
sub-complexRk(I) of the complexRk(I) for any input facet I ∈ I , where m = 9 if n = 1
and m = 4 if n ≥ 2. By Theorem 1, there is a protocol that solves approximate agreement T
with the worst case time complexity blogm

D(I)
ε c on input n-simplex I, which implies that

blogm
D(I)

ε c is also an upper bound of the time complexity on input I.
In fact, the existence of that map ψ is equivalent to that there exists a labeling of the

vertices ofRk(I) which agrees with the initial values of input complex I with D(Rk(I)) <
ε. By definition 6, we know that k-fold reduced delayed complexRk(I) is recursive, hence
we can label each vertex of Rk(I) at each fold as follows. Consider any facet I of I ; for

each fold 1 ≤ l ≤ k, a vertex v is in Al−1,I if there exists a facet α in Ĉh
l
n,t(I) taking v as

one of its vertices, such that |val(v)− val(w)| > ε; otherwise, v is in Sl−1,I , where w is a
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vertex in α. Assume it has relabelled all vertices of Ĉh
l
n,t(I) but with colors in χ(Al−1,I).

Before entering the next fold, it needs to relabel all vertices of Ĉh
l
n,t(I)CAl−1,I

but in Sl,I .

Consider any facet α in Ĉh
l−1
n,t (I). At first, relabel all vertices of Ch2(α) as follows: If

dim(α) = 1, label the new vertices with values Ml+8·ml
9 , 2·Ml+7·ml

9 , · · · , 8·Ml+ml
9 , such that

D(Ch2(α)) = Ml−ml
9 ; otherwise, label new vertices with Ml+3·ml

4 , 2·Ml+2·ml
4 , 3·Ml+ml

4 , such
that D(Ch2(α)) = Ml−ml

4 , where Ml = max{val(α)}, ml = min{val(α)}. It follows that
D(Ĉhn,t(α)) ≤ D(Ch2(α) for the su-bcomplex Ĉhn,t(α) of Ch2(α). By this construction, we

can see that, if D(Rl(I)) > ε, either D(Rl+1(I)) < ε or D(Rl+1(I)) = D(Rl(I))
m , where

m = 9 or 4, which implies that, for any facet I ∈ I ,Rk(I) is as a blogm
D(I)

ε c-fold reduced
sub-complex ofRk(I) for m = 9 if dim(I) = 1 and m = 4 if dim(I) ≥ 2.

Remark 4. We only consider the input simplex which is a facet, since, for any legal input simplex
α, there always exists a facet α0(⊇ α) such that they have the same time complexity for it only needs
to assign the processes that are in χ(α0) but not in χ(α) with the same value as any value in val(α).

6. Conclusions and Future Work

This paper modifies the description of a protocol complex of a delayed algorithm
proposed by Saraph, Herlihy, and Gafni in [33], in which they thought the protocol complex
was equivalent to Cht(In). However, we give a precisely topological characterization of
that algorithm and show that the protocol complex is equivalent to Ĉhn,t(In), which is a
proper subset of complex Cht(In), which implies there exists a simplex in complex Cht(In)
corresponding to an impossible execution in DOn,t.

Take DOn,t as a black-box and then construct an iterated delayed model (IDM),
which turns out to be an arbitrary resilient algorithm in an asynchronous distributed
system. Even though Delporte et al. [36] have showed that a t-resilient immediate snapshot
is impossible in a t-resilient asynchronous distributed system by showing the equivalence of
consensus (2t− n+ 1-set agreement) and a t-resilient immediate snapshot for t < (n+ 1)/2
(t ≥ (n + 1)/2), there exist some tasks that admit weaker computing power than consensus
and set agreement. In addition, each immediate snapshot in IDM is actually a wait-free
immediate snapshot from a local point of view, which turns out to be implemented in a
t-resilient asynchronous distributed system [37] but not for a t-immediate snapshot. Hence,
it makes sense for the construction of IDM.

This paper gives a topological characterization of the time complexity of an arbitrary
resilient distributed asynchronous model theoretically by the number of subdivisions of
the worst input case. Although the topological structures are very complex and difficult
to construct, it turns the dynamic analysis of that system into a static geometric structure
analysis, which may lead to a great significance in practical applications. Using that charac-
terization gives a time complexity of approximate agreement in t-resilient IDM, in which
it can obtain the time complexity of approximate agreement in a wait-free asynchronous
model by taking t = n, showed by Hoest et al. [30].

Unfortunately, any model involved in this paper refers to only a crashing failure
model, which is an ideal failure model. Meanwhile, the most common failure model is
the Byzantine failure model, in which the behavior of a byzantine process is out of control,
leading to difficulty in analyzing its complexity in a distributed asynchronous system.
In addition, in order to obtain the characterization of the complexity of the Byzantine
failure model, it may be necessary to obtain more information during an execution, not just
the initial states and terminal states. However, the main technique of our work is based
on the method and framework proposed by Herlihy et al. [8,18,40,41], in which it is not
necessary to care about the intermediate process during an execution but the initial states
and terminal states.
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In the future, we will construct a new geometric structure, the directed topological
model, which is proposed mainly to be used to study concurrent computation [42], and
from which it may catch up not only the initial states and terminal states but also almost all
information during an execution. Investigating the topological characterization, such as the
invariant of directed homotopy or directed homology, and then exploring the relationship
between the computational complexity and those topological characterizations, may give
us a feasible way to study Byzantine complexity.
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Abbreviations
The following abbreviations are used in this manuscript:

Symbol Corresponding Meaning

K, I (abstract) simplicial complexes
X, α, β, γ (abstract) simplexes
V(X)/V(K) the set of vertices of simplex X / simplicial complexes K
||X|| the number of vertices (or elements) of simplex (or set) X
|X| the geometric realization of simplex X
G (X) the complex generated by simplex X
DOn,t delayed object consists of n + 1 processes with t-resilience
DOn,t[r] invoking delayed object DOn,t in r-th round execution
Vk(D) the datatype generated by k-fold iterations with data D
Flip(X) C-extended of simplex X
X̂ C-neighborhood of simplex X

Ĉh
k
n,t(I) k-fold delayed complex about n-simplicial complex I

Rk(K) k-fold reduced delayed complex about n-simplicial complex I
IDM iterated delayed model
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Appendix A. Delayed Algorithm

Algorithm A1: Delayed algorithm [33]
(1) shared mem0[n + 1], mem1[n + 1], done;
(2) done← false;
(3) immediate
(4) mem0[id]← inputid;
(5) snap0[id]← snapshot(mem0);
(6) if |snap0[id]| ≤ n− t then
(7) while not done
(8) skip
(9) immediate
(10) men1[id]← snap0[id];
(11) snap1← snapshot(mem1);
(12) done← ture;
(13) return snap1;
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