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Abstract: The outcome of a dimensionless characterization study in a two-dimensional porous media
domain in which groundwater flows at a constant horizontal velocity is presented in this report. Using
spatial discrimination, the dimensionless groups that govern the solution patterns are determined
from dimensionless governing equations. As a boundary condition on the surface, the case of constant
temperature is studied. From the mathematical deduction of the groups, a characteristic horizontal
length emerges. This length determines the region in which temperature–depth profiles are affected
by flow. Existing analytical solutions have been shown to be invalid due to the severe assumption
that the horizontal thermal gradient has a constant value. Therefore, universal solutions based on pi
theorem have been obtained for the characteristic horizontal length, temperature field, temperature–
depth profiles and horizontal temperature profiles. Dependencies between dimensionless groups
have been depicted by universal curves, abacuses and surfaces. These graphical solutions are used
in an easy way to estimate groundwater velocity from experimental temperature measurements
in the form of an inverse problem. In addition, an easy and fast protocol for estimating fluid flow
velocity and groundwater inlet temperature from temperature profile measurements is proposed.
This protocol is applied in a scenario of groundwater discharge from a quaternary aquifer to a salty
lagoon located in the southeast of Spain.

Keywords: nondimensionalization; inverse problem; analytical solutions; numerical modeling;
groundwater flow

MSC: 80A23; 80A19; 76M55; 4A55

1. Introduction

The study of the temperature field (temperature patterns) or its dimensionless form
coming from the heat balance in semiconfined aquifers with horizontal water flow velocity
is a complex problem due to the large number of geometrical and physical parameters
involved. However, it is a problem of great interest since this field depends on water
velocity that could be derived through experimental measurements of temperature–depth
profiles in the form of an inverse problem, avoiding the costly installation of flow meters [1].
The increase in temperature with increased depth in the Earth, known as the geothermal
gradient, is not uniform around the globe as this temperature rises in a range of 2–3 ◦C per
100 m of depth on average [2]. There are many numerical methods for related studies, such
as the finite element method, which can provide a general analysis [3], and the boundary
element method, which allows for more accurate calculation [4]. Numerical methods
cannot quantify transfer in porous media as sufficiently as analytical methods. Therefore,
the fractal theory is well-accepted for analytical analysis of porous media, because it can
treat complicated geometry in porous media with higher precision [5,6]. The relationship
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between temperature–depth profiles and water velocity has been studied by many authors,
some of them providing empirical or semiempirical models [7–15].

Suzuki [7] was the first author who proposed a solution in semiconfined aquifers with
constant vertical water flow. His solution, later rearranged by Stallman [8], introduced two
empirical constants with no clear physical meaning. Lapham [1] presented steady-state and
transient solutions based on finite-differences methods, applying them to real scenarios in
the United States. Taniguchi [11], based on the work of Stallman [13], provided a new set of
universal curves that allows direct estimation of vertical groundwater fluxes in relatively
shallow aquifers. Ziagos and Blackwell [10] presented analytical studies for horizontal
flow through a thin, permeable layer located between two impermeable regions. Lu and
Ge [12] proposed analytical solutions for horizontal and vertical fluid flow under the severe
assumption of constant horizontal temperature gradients. Kulongoski and Izbicki [14]
proposed an inverse problem that characterizes the physical properties of sediments as well
as regions (points) to implement artificial recharges. Finally, Duque et al. [15] estimated the
vertical upward velocity in a groundwater–surface water interaction scenario (Ringkøbing
Fjord, a coastal lagoon on the west coast of Denmark) using the solution of Bredehoeft and
Papadopulos [9], for which a steady state had been reached. Temperature–depth profiles
were taken very close to the bed of the coastal lagoon. In relation to two-dimensional
problems, many authors try to investigate from a qualitative point of view the flow of water
from temperature profiles [16–18]. Apart from the old work of Stallman [8], Cartwright [19]
is the only author who studies in a qualitative way the thermal profiles derived from
the existence of a horizontal water flow in a shallow semiconfined aquifer. However, his
solution assumes the severe assumption of a constant horizontal thermal gradient along the
aquifer. Actually, such a gradient emerges in the entrance region where a lineal temperature
profile develops. Beyond this region, the vertical temperature profile is lineal and does not
depend on water velocity.

Regardless of the temperature boundary conditions at the surface and at the bottom
of the aquifer, the existence of horizontal flow with a given inlet temperature different
from the others gives rise to a balance of advective and diffusive heat fluxes, determining
a steady-state temperature field in a limited region of the aquifer. The characteristic
horizontal length is defined as the extent of the developed region of this profile. Our
interest in this work is to study temperature–depth profiles within the characteristic length
in which the influence of the water velocity can be appreciated and to search for the
dimensionless groups that rule the temperature profiles and look for simplified hypotheses
that allow obtaining universal solutions [20]. Pi theorem [21] allows us to express these
unknowns (characteristic length, temperature profiles, temperatures field, etc.), written
in their dimensionless form, as a function of the dimensionless groups [22]. Once it has
been verified that the set of dimensionless groups correctly determine the problem, the
precise dependence between them is graphically adjusted through numerical simulations.
As in many other recent works [23,24], dimensionless groups are formally derived from the
dimensionless mathematical model which, in turn, is deduced by introducing dependent
and independent, dimensionless and normalized variables (discriminated dimensional
analysis). Using spatial discrimination ensures that the references used to set dimensionless
variables are different according to each spatial direction while normalization confines the
range of values of the variables to interval [0, 1]. Once the dimensionless groups of the
problem have been established, they are verified by means of a set of cases in which it is
proved that the dimensionless temperature patterns are identical for the same values of the
dimensionless groups. Based on these results, a protocol is proposed to solve the inverse
problem of estimating water velocity from experimental measurements.

2. Physical, Mathematical and Network Models

Figure 1 shows the physical scheme of the problem as well as temperature and flow
boundary conditions in the saturated aquifer. Water penetrates at the left vertical boundary.
The upper and lower horizontal surfaces are no-flow conditions. As regards temperature,
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surface, bottom and left boundaries are first class conditions (Diritlech). The aquifer is
large enough to satisfy the temperature profile being completely developed before the right
limit, and in order to ensure that water leaves the aquifer with a temperature at the right
boundary, a free condition (temperature at this edge does not affect temperatures within
the domain) is imposed there. The origin of the domain is shown in Figure 1. The study
area is delimited by the length L, a region in which the groundwater velocity has a single
horizontal component of constant value.
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Figure 1. Physical scheme of the problem and boundary conditions.

The velocity field is known, v(x, y) = vx,o. Thus, the governing equation is reduced to
the expression for heat conservation, resulting from the local balance between diffusion,
jd = k·∇T (Fourier), advection, jc = ρe,wce,wv.∇T and storage js = ρece

T
t terms. The

equation for the simultaneous flow of fluid and heat on Earth [7] is the governing equation:

ρece
∂T
∂t
− k∇2(T) + ρe,wce,wv.∇(T) = 0 (1)

In homogeneous, isotropic domains and rectangular geometry, Equation (1) is writ-
ten as

k
(

∂2T
∂x2 +

∂2T
∂y2

)
− ρe,wce,w

(
vx,o

∂T
∂x

)
= ρece

∂T
∂t

(2)

The equations that establish the initial and boundary conditions complete the mathe-
matical model. These are:

T(x,y=H,t) = T1 (3)

T(x,y=0,t) = T2 (4)

T(x=0,y,t) = T3 (5)

∂T
∂x

∣∣∣∣
x=L

= 0 (6)

Although it is not relevant for a steady-state solution, the initial temperature (Tini) is
assumed in the entire domain to simulate both transient and steady-state solutions. The
mathematical model is simulated numerically using the free software Ngspice through a
precise model based on the Network Simulation Method [25], a tool that has proven to be
effective and reliable in many other problems of similar or greater complexity [26].

The “Network Simulation Method” has been used to carry out the numerical simu-
lations necessary for the construction of universal curves. Instead of using commercial
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software, this numerical tool (computationally fast) has been chosen thanks to its ease of
handling. The Network Simulation Method is a tool that allows the study of any process
that can be determined by space-time partial derivative equations to which initial and
boundary conditions must be added. The application of the method consists of two phases:
first, elaboration of a network model and, second, simulation of the physical process by
means of an appropriate electrical circuits software (NgSpice) that allows obtaining the
solution of the network model [25]. For the elaboration of a network model, the space
must be reticulated in elementary volume elements or cells. Differential equations (in finite
differences) are applied to the elements, and the correspondence between variables of the
physical problem and those of the network model is established. In this particular case, the
electric current corresponds to the groundwater velocity and voltage to the temperature.

Parameters that remain constant are defined: thermal conductivity, specific heats of
water and of the water–soil matrix, geometry of the aquifer and horizontal groundwater
velocity. For the largest number of simulations carried out, the number of cells was
200 columns and 40 rows (8000 cells in total). The electrical circuit elements within the
cells, as well as the electrical elements in the boundary conditions cells, are reflected in
Figure 2. The network model will be composed of resistors, capacitors, batteries and
voltage generators.
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Spatial discretization of the governing equation for horizontal flow is:

k
[

1
∆x

(
∆T
∆x

∣∣∣∣
x+
− ∆T

∆x

∣∣∣∣
x−

)]
+ k

[
1

∆y

(
∆T
∆y

∣∣∣∣
y+
− ∆T

∆y

∣∣∣∣
y−

)]
−
(

ce,wρe,wvx,o
∆T
∆x

)
− (ceρe)

dT
dt

= 0 (7)

On the other hand, finite difference equation is:

(T)
i+ ∆x

2 ,j
−(T)i,j

(∆x)2

2km,x

+
(T)i,j−(T)i− ∆x

2 ,j

(∆x)2

2km,x

+
(T)

i,j+ ∆y
2
−(T)i,j

(∆y)2

2km,y

+
(T)i,j−(T)i,j− ∆y

2
(∆y)2

2km,y

−ρe,wce,wvx,o
(T)

i+ ∆x
2 ,j
−(T)

i+ ∆x
2 ,j

∆x − (ρece)
dTi,j
dt = 0

(8)

Each addend of Equation (9) can be considered as an electric current, which balance
each other at the central node of the volume element. From (9), expressions of each
parameter of the circuit elements are obtained:

Rxl = Rxr =
(∆x)2

2·km,x
(9)

Ryu = Ryd =
(∆y)2

2·km,y
(10)

Gc = ρe,wce,w
vx,oV((i, j)xT, (i + 1, j)xT)

∆x
(11)

The initial temperature of each volume element is set in the capacitors. The batteries
located in the cells on the ground surface and in the cells at the bottom of the domain, as
well as the cells on the left border (groundwater inflow), will generate a constant value
voltage throughout the simulation. These voltages implement the Diritlech condition
(constant temperature) at the boundaries.

3. Preliminary Discussion

Regarding the steady-state temperature field, by way of illustration, Figure 3 shows
the solution patterns for four typical scenarios whose parameters are listed in Table 1. The
temperature at the soil surface is constant for all of them, and, for simplicity, simple values
are chosen for lengths and temperatures. These patterns confirm the more relevant aspects
of the solution, such as the appearance of a characteristic length (for steady-state solutions
in sufficiently extensive scenarios) in which the temperature–depth profiles depend, among
other parameters, on groundwater flow velocity. The precise definition of this characteristic
length will be established later. Beyond this length, on the one hand, the temperature
profiles (T− y) are lineal, independent on time and water velocity. If this length is named
l∗x,T, temperature–depth profiles develop at x < l∗x,T, and bend progressively more the
smaller x is compared to l∗x,T, that is, they bend as they approach the left edge of the
groundwater inlet. On the other hand, the relative value of T3 compared to T1 and T2
determines the existence (or not) of inflections in temperature profiles within a small region
close to the left boundary, seeming to weakly influence the value of the characteristic length.
As will be seen later, in this small region, the diffusive and advective horizontal effects are
comparable. It can be seen that inflections at the profiles emerge when T3 is within [T2, T1]
(see Figure 3).

In real aquifers, with depths of several meters and greater, the horizontal characteristic
length increases with the square of the thickness of the aquifer. This dependence will be
derived later.

Vertical profiles of temperature at x = 2 m are shown in Figure 4 for these four
scenarios. According to these results, while the profile is almost lineal for Scenario II,
Scenario III provides a clearly bent profile with a weak inflection at a point closer to the
surface due to |T3 − T1| < |T2 − T1|. In Scenario I, curvature of the temperature profile is
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even more noticeable, and the inflection has disappeared because T3 = T1. Finally, Scenario
IV shows a pronounced curvature with different concavity and no bending, since T3 is out
of the range [T1, T2].
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Continuing with the aim of illustration, Figure 5 shows the horizontal temperature
profiles of Scenarios I and III at five depths, y = H

6 , 2H
6 , 3H

6 , 4H
6 and 5H

6 . To ensure that
l∗x,T < L, L = 10 m has been used in the simulations in this section, although some figures
cut this length for a better graphical representation of the region where the temperature
profiles develop. It is observed that, although the profiles are less steep near the surface,
the temperature ranges in which they move are also of lesser value.
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Figure 5. Steady-state, horizontal temperature profiles of Scenarios I (up) and III (down) at
y = H

6 , 2H
6 , 3H

6 , 4H
6 and 5H

6 .

Based on these results and assuming that the aquifers are extensive enough, in the
sense that the horizontal diffusive effects are negligible with respect to advective effects, l∗x,T
would be defined as the extension of the aquifer from which the dimensionless temperature
at the center line of the aquifer (y = H/2) reaches a significant percentage (95–99%) of its
steady-state value, (T1 + T2)/2. From Figure 5, for Scenario III with (T1 + T2)/2 = 0.5, the
characteristic lengths related to percentages 95 and 99% are:

T = 0.95·0.5 = 0.475 ◦C, l∗x,T (95%) = 2.1 m

T = 0.99·0.5 = 0.495 ◦C, l∗x,T (99%) = 3.3 m
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Other criteria to define l∗x,T would be equally valid, for example, the distance at
which the dimensionless, horizontal temperature gradient, on the line y = H/2, has a
sufficiently small value. Figure 6 shows this component of the gradient for Scenario III in
which T3 ∈ [T1, T2]. In the figure, ∂T/∂x has been depicted for five regularly distributed
depths, y = H

6 , 2H
6 , 3H

6 , 4H
6 and 5H

6 m. The values of l∗x,T are, for ∂T/∂x = 0.02 (1.15 ◦C/m),
l∗x,T = 3.05 m, while for ∂T/∂x = 0.01 (0.57 ◦C/m), l∗x,T = 3.55 m.
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Finally, for scenarios where L < l∗x,T, L itself instead of l∗x,T is the parameter that rules
the temperature patterns of the problem.

Let us now study the influence of horizontal diffusivity against advection to justify
in most real cases the hypothesis of neglecting the former. The comparison between both
effects can be made through the quotient between the diffusive and advective horizontal
terms of Equation (2), k

(
∂2T
∂x2

)
and ρe,wce,w

(
vx,o

∂T
∂x

)
, respectively. The dimensionless group

that characterizes this ratio (a kind of Peclet number), the result of nondimensionalizing
and averaging over the domain of the aquifer bounded by l∗x (Bejan [27]), is

πdiff−adv =
k

ρe,wce,wvx,ol∗x
(12)

Assuming the same order of magnitude for horizontal diffusion and advective effects,
the order of magnitude of l∗x (which, in contrast to l∗x,T, does not depend on H) is given by:

l∗x ∼
k

ρe,wce,wvx,o
(13)

For the fluid to reach this length, a time value of τ∗(s) = l∗x
vx,o

will be necessary.
Below this time, diffusive effects (in the region x < l∗x) predominate, while above this time
advective effects (in the region x > l∗x) predominate.

Figure 7 shows the dependencies l∗x − log(vx,o) and τ∗ − log(vx,o). The horizontal
diffusive effect will be negligible as long as l∗x is well below l∗x,T and at times when the
temperature field reaches its steady-state value. For example, if k

ρe,wce,w
= 1·10−6 m2/s

and velocity is 10−5 m/s, typical values in many soils, from Figure 7, l∗x = 0.1 m and
τ∗ = 10,000 s are values that allow us to neglect horizontal diffusivity. However, for a
velocity of 10−7 m/s, l∗x = 10 m and τ∗ = 1157 days.
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4. Dimensionless Characterization

This means the search of the most precise dimensionless groups on which the un-
knowns of interest expressed in their dimensionless form depend. An analytical expression
is derived for the characteristic length since this parameter depends on a single group.
In contrast, the dimensionless temperature field depends on more than one group, thus
requiring numerical simulation to establish this dependence graphically.

4.1. Horizontal Characteristic Length

In this section, using pi theorem [21], the relations between the dimensionless form, the
unknowns of interest and independent dimensionless groups that can be formed with the
physical and geometric parameters (as well as boundary conditions) will be deduced. There
are several ways to determine the dimensionless groups of a problem. The most direct
is to deduce them from the dimensionless equations (Sonin [28]). In addition to a deep
knowledge of the physical phenomena involved in the problem, an accurate application
of dimensional analysis requires a correct choice of the dimensional basis and, in two-
dimensional scenarios, the use of spatial discrimination [29].

Another more precise technique to derive the dimensionless groups is to work with
the dimensionless mathematical model, that is, with governing equations and boundary
conditions. It consists of defining dependent or independent variables in a dimensionless
form, inserting them into the governing equations and deducing the coefficients that
arise from the new equation. The independent ratios between these coefficients are the
searched groups. However, to obtain the minimum and most accurate set of monomials,
nondimensionalization has to be carried out in its discriminated form (discriminated
dimensional analysis), which assumes that lengths, parameters and variables associated
with different spatial directions have different dimensionless equations according to those
directions.

The relevant variables, for the case of constant temperature at the aquifer surface that
defines the steady-state temperature field in large aquifers, in which horizontal diffusivity
can be neglected, are the set 〈H, vx,o, α〉. Introducing the normalized dimensionless
variables T′, x′ and y′ (whose value ranges are approximately [0, 1], except for the case
T3 > max(T1, T2) for which T′ > 1), defined in the forms

T′ =
T− T1

T2 − T1
(14)

x′ =
x

l∗x,T
(15)



Mathematics 2022, 10, 2717 10 of 19

y′ =
y
H

(16)

into the governing equation k
(

∂2T
∂y2

)
− ρe,wce,w

(
vx,o

∂T
∂x

)
= 0 yields the dimensionless equation:

ky
(T2 − T1)

H2
∂2 T′

∂y′2 − ρe,wce,wvx,o
(T2 − T1)

l∗x,T

∂ T′

∂x′
= 0 (17)

or, re-arranging coefficients,

l∗x,Tky

ce,wρe,wH2vx,o

∂2 T′

∂y′2 −
∂ T′

∂x′
= 0 (18)

Therefore, the solution depends on the value of the dimensionless ratio
l∗x,Tky

ce,wρe,wH2vx,o
=

l∗x,Tαm

H2vx,o
(a kind of discriminated Peclet number), which becomes a dimensionless group

named πl∗x,T
, precisely the dimensionless form of l∗x,T. Since the equation constitutes a

balance of addends, assuming that derivative terms ∂ T′
∂x′ and ∂2 T′

∂y′2 can be averaged to unit

by the normalized range of values of variables, the ratio
l∗x,Tαm

H2vx,o
must necessarily be of the

order of unity. Pi theorem states that πl∗x,T
~1, or

l∗x,T
H2vx,o

αm
(19)

This expression can be written as an equality,

l∗x,T = C1
H2vx,o

αm
(20)

where C1 is a constant that can be deduced by single numerical simulation. l∗x,T will be
defined as the distance from the left border to the point on the line y = H/2 where the
dimensionless temperature has reached 95 (or 99)% of its steady-state value or the point
for which ∂T/∂x = 0.01 (or 0.02). If the dimensionless temperature has reached 99% of its
steady-state value, C1 = 0.49.

4.2. Dimensionless Temperature Field

In relation to the temperature field and referring firstly to the case of constant temper-
ature at the ground surface, the existence of three boundary temperatures gives rise to the
immediate appearance of a monomial that can be arbitrarily chosen as a dimensionless
expression that contains these temperatures. Due to the great variety of cases that could
arise in relation to values of T1, T2 and T3, the construction of universal temperature curves
would be a very extensive task. We will stick to the cases that, we believe, are closer to real
situations in which T3 has a value that is within interval [T1,T2]. The emergent monomial
is defined in the form

πT1, T2,T3 =
T3 − T1

T2 − T3
(21)

so that its values, always positive, are confined to [0, ∞] when T3 = T1, being infinite
when T3 = T2. Defining the dimensionless temperature in the form T′(x, y) = T− T1

T2− T1
, the

steady-state temperature field in the region of interest (0 ≤ x ≤ l∗x,T, 0 ≤ y ≤ H), according
to pi theorem, is given by

T′(x, y) =
T− T1

T2 − T1
= f

(
x

l∗x,T
,

y
H

,
T3 − T1

T2 − T3

)
(22)
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This expression can be particularized in horizontal and vertical profiles

T′(x)vertical profile =
T− T1

T2 − T1
= f

(
x

l∗x,T
,

T3 − T1

T2 − T3

)
(23)

T′(y)horizontal profile =
T− T1

T2 − T1
= f

(
y
H

,
T3 − T1

T2 − T3

)
(24)

According to these expressions, the vertical profiles can be depicted by universal
curves (abacus) in which each graph, which represents T′ versus dimensionless depth
y/H, is related with a specific value of x/l∗x,T (abacus parameter). Each abacus, in turn,
would correspond to a different value of πT1, T2,T3 . Similarly, the horizontal profiles would
be collected in abacuses in which each graph, which represents T′ versus x/l∗x,T, would
be associated with a specific value of y/H (abacus parameter), and each abacus would
correspond to a value of πT1, T2,T3 . Figure 8 represents universal surfaces (Expression (23)) of
the temperature field for which πT1, T2,T3 takes five typical values, πT1, T2,T3 = 0 for T3 = T1,
πT1, T2,T3 = 0.25 for T3 = (T2 − T1)/5, πT1, T2,T3 = 1 for T3 = (T2 − T1)/2, πT1, T2,T3 = 4 for
T3 = 4(T2 − T1)/5 and πT1, T2,T3 = ∞ for T3 = T2. Note that the surfaces corresponding to
πT1, T2,T3 = 0.25 and πT1, T2,T3 = 4 can be obtained from each other by rotating 180 degrees
about the horizontal axis and changing the vertical scale from T− T1

T2− T1
to 1− T− T1

T2− T1
.
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Figure 9 shows universal vertical profiles for which πT1, T2,T3 takes five typical values
πT1, T2,T3 = 0, πT1, T2,T3 = 0.25, πT1, T2,T3 = 1, πT1, T2,T3 = 4 y πT1, T2,T3 = ∞.
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The use of an adequate manipulation of these abacuses allows a parametric study to
be carried out to find the sensitivity of the solution to changes in the values of the physical
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parameters. The universal curves of Figure 9 implicitly contain this study. For example, let
us define a specific scenario with known physical parameters (velocity, thermal conductivity,
specific heat and height of the aquifer). For this scenario, a particular characteristic length
is given by Equation (20). The profiles corresponding to each relative position x/l∗x,T are
shown in Figure 9 (or Figure 10 for T3=T2). If we double the thermal conductivity (retaining
the value of the rest of physical parameters: velocity, specific heat and height of the aquifer),
the characteristic length is reduced by half. Thus, each profile in Figure 9 moves leftwards
to the curve 2(x/l∗x,T). Therefore, the solution for the new conductivity can be inferred by
direct inspection of the new set of curves.
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In the same way, you can infer the influence of any other parameter by looking at
Equation (20). Furthermore, it is seen that certain changes in one of the parameters have
similar effects from the point of view of the parametric study as certain changes in others.
So, doubling the thermal conductivity has the same effect as halving the velocity, doubling
the height of the aquifer has the same effect as quadrupling the thermal conductivity (or
dividing the velocity by four), etc.

In summary, all the information related to the parametric study is collected in the
universal solutions (abacus) of Figure 8. The shape of such curves reflects that the sensitivity
of the curves to each parameter can be observed by inspection. Small characteristic lengths,
which are determined either by large thermal conductivities, small specific values, small
velocities and small heights or a combination of these effects, make the solution more
sensitive to changes in these parameters. In contrast, large characteristic lengths determined
by small thermal conductivities, large specific values, large velocities and large heights or a
combination of these effects cause the curves of the abacus to close off each other.

5. Inverse Problem and Application

Firstly, we propose a protocol for the application of the inverse problem that allows
estimating the water velocity flow from measurements of temperature–depth profiles. After
that, an application is developed.
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5.1. Inverse Problem Protocol

To estimate groundwater horizontal velocity and temperature at the left border
(groundwater inlet edge), the protocol of the inverse problem described below can be
applied.

Data that must be known for the application of the protocol are (a large number of
measurements for locations x1 and x2 can be chosen):

• Depth of the aquifer: H.
• Thermal diffusivity: αm.
• Temperatures at the surface and at the bottom of the aquifer (T1 and T2).
• Steady state, average temperature measured at position (x1, y1 = H/4): Tx1,H/4.
• Steady state, average temperature measured at position (x2 > x1, y1 = H/4): Tx2,H/4.
• Steady state, average temperature measured at position (x1, y1 = H/2): Tx1,H/2.
• Steady state, average temperature measured at position (x2 > x1, y1 = H/2): Tx2,H/2.
• Steady state, average temperature measured at position (x1, y1 = 3H/4): Tx1,3H/4.
• Steady state, average temperature measured at position (x2 > x1, y1 = 3H/4):

Tx2,3H/4.

The most unfavorable case, in which the temperature at the water inlet boundary to
the domain (left boundary) is an unknown of the problem, is assumed. If temperatures
T1, T2 and T3 were known, we would know directly which universal abacus to use, since
πT1, T2,T3 would be known.

The steps of the protocol of the inverse problem are the following:
Step (1). Nondimensionalize temperatures Tx1,H/4, Tx1,H/2, Tx1,3H/4, Tx2,H/4 Tx2,H/2,

Tx2,3H/4 using expressions (25) to (30):

Tx1,H/4
′ =

Tx1,H/4 − T1

T2 − T1
(25)

Tx1,H/2
′ =

Tx1,H/2 − T1

T2 − T1
(26)

Tx1,3H/4
′ =

Tx1,3H/4 − T1

T2 − T1
(27)

Tx2,H/4
′ =

Tx2,H/4 − T1

T2 − T1
(28)

Tx2,H/2
′ =

Tx2,H/2 − T1

T2 − T1
(29)

Tx2,3H/4
′ =

Tx2,3H/4 − T1

T2 − T1
(30)

Step (2). Find the set of universal vertical temperature–depth profiles in Figure 8 that
best fit the six dimensionless temperatures. When the best-fit set of curves is found, T3 is
obtained from πT1, T2,T3 .

Step (3). From the universal vertical temperature–depth profiles in Figure 8, x1
′ = x1

l∗x,T

and x2
′ = x2

l∗x,T
are obtained.

Step (4). Calculate the value of l∗x,T = x2−x1
x2
′−x1

′ .

Step (5). Clear the value of velocity from Equation (21): l∗x,T = C1
H2vx,o
αm

.

5.2. Application in the Quaternary Aquifer–Mar Menor Interaction Scenario

To verify the protocol of the inverse problem, it will be applied to a surface water–
groundwater interaction scenario. Discharges from the Quaternary aquifer (Campo de
Cartagena) to the salty lagoon of the Mar Menor (SE of Spain) will be studied (Figure 10).
Campo de Cartagena is a complex hydrogeological unit that occupies an approximate
area of 1450 km2, of which 1200 km2 belongs to the Region of Murcia and the rest to the
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province of Alicante (Valencian Community). The Quaternary aquifer, formed by clay, silt,
local conglomerate and sand facies, has an approximate thickness of between 40 and 60 m
and can reach 100 m at points near the coastline [30]. The Quaternary aquifer is a very
important surface aquifer from an environmental point of view, since it is the main route of
discharge of groundwater and therefore of anthropogenic nutrients (mainly of agricultural
origin) to the salty and coastal lagoon of Mar Menor [30–32].

Groundwater temperatures were recorded for approximately one month (26 full days
from 27 January to 22 February 2022) every hour and in two wells separated by 519 m
(x2− x1 = 519 m). The closest well to the coastline was 244 m from it. From the temperature–
depth profiles measured, the average temperatures necessary for the application of the
inverse problem are reflected in Table 2. On the other hand, from the bibliography [11],
average thermal diffusivity is αm = 10−6 m2/s.

Table 2. Measured temperatures in wells 1 (x1) and 2 (x2).

Temperature Mean Value (◦C)

T1 17.45

T2 22.12

Tx1,H/4 19.93

Tx1,H/2 21.50

Tx1,3H/4 21.75

Tx2,H/4 18.80

Tx2,H/2 20.15

Tx2,3H/4 21.15

Applying step one of the inverse problem protocol, dimensionless temperatures
reflected in Table 3 are obtained.

Table 3. Dimensionless temperatures in wells 1 (x1) and 2 (x2).

Temperature Value

Tx1,H/4
′ 0.53

Tx1,H/2
′ 0.87

Tx1,3H/4
′ 0.92

Tx2,H/4
′ 0.29

Tx2,H/2
′ 0.58

Tx2,3H/4
′ 0.79

Substituting values from Table 3 into the sets of universal curves of Figure 9, it is found
that the set of curves in which dimensionless temperatures best fit are those of the abacus
with parameter πT1, T2,T3 = ∞. Therefore, T3 = T2 (see Figure 11).

From Figure 11 (applying step three), x1
′ = x1

l∗x,T
= 0.25 and x2

′ = x2
l∗x,T

= 0.75. Applying

step four: l∗x,T = x2−x1
x2
′−x1

′ =
519 m

0.5 = 1038 m. Therefore, x1 = 259.20 m and x2 = 778.50 m.

Finally, the last step is to clear vx,o from Equation (21): l∗x,T = C1
H2vx,o
αm

.
Then, the horizontal component of groundwater discharge from the Quaternary

aquifer to the salty lagoon of Mar Menor is vx,o =
αml∗x,T
H2C1

= 10−6m2/s·1038 m
(33.75 m)2·0.49

= 1.86·10−6 m/s.

Since it is the first time that groundwater velocity is obtained in the study area, to
verify the results, the direct problem will be solved with the following input data (Table 4).
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Table 4. Input data for direct problem.

T1 (◦C) 17.45

T2 (◦C) 22.12

T3 (◦C) 22.12

αm (m2/s) 1.00·10−6

H (m) 33.75

L (m) 1300.00

vx,o (m/s) 1.86·10−6

The results of the direct problem as well as the error are reflected in Table 5.

Table 5. Measured temperatures in wells 1 (x1) and 2 (x2).

Temperature Measured (◦C) Direct Problem (◦C) e%

Tx1,H/4 19.93 19.31 3.21

Tx1,H/2 21.50 20.73 3.71

Tx1,3H/4 21.75 21.61 0.65

Tx2,H/4 18.80 18.69 0.59

Tx2,H/2 20.15 19.88 1.6

Tx2,3H/4 21.15 21.02 0.62

In view of these results, it can be said that velocity is correctly estimated.

6. Contributions and Conclusions

The dimensionless groups that rule the solution patterns of the coupled 2D problem of
horizontal water flow and heat transfer in aquifers under constant temperature boundary
conditions have been derived. The procedure to deduce these groups starts from the
dimensionless form of the governing equations which, in turn, comes from the introduction
of adequate and discriminated dimensionless variables in the mathematical model. From
this arises a characteristic length that defines the region in which the temperature–depth
profiles depend on horizontal velocity. The simple dependence between this length and
the only group on which it depends allows us to derive a precise analytical formula for
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this unknown. Regarding the temperature profiles, these depend on several groups: the
horizontal location relative to the characteristic length, the vertical location relative to the
height of the aquifer and, for the case of three temperaures at the boundary conditions, on
dimensionless groups formed by these temperatures. These complex dependencies are
graphically represented by abacuses using numerical simulations.

In addition, the expression that allows knowing the horizontal extension in which the
diffusive and advective effects are comparable, as well as the time it would take for the
fluid to travel that distance, has been obtained. This allows establishing the extent beyond
which the horizontal component of thermal diffusivity is negligible compared to the effect
of advection. Furthermore, the horizontal temperature gradients are not constant at any
depth but rather vary as we move away from the left border until a null value is reached.

Based on previous results, particularly on the fact that steady-state temperature profiles
only depend on the relative position of the measurement point in relation to the mentioned
characteristic length, an inverse problem protocol is proposed. This protocol, which is easy
to apply, allows estimation of water velocity flow from the experimental measurements
of six average temperatures at regular depths y = H/4, y = H/2 and y = 3H/4 in
two different horizontal locations. The inverse problem protocol uses dimensionless
temperature–depth profiles as an auxiliary tool to determine the characteristic length and
subsequently the groundwater velocity. An application of the inverse problem at the
Quaternary aquifer of Mar Menor lagoon (Spain) allows us to deduce the discharge of
groundwater into the lagoon from agricultural activities.
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Nomenclature

C1 Constant.
Cc Capacitor connected to central node of the elementary cell.
ce Volumetric heat capacity of the soil–fluid matrix (Jm−3 k−1).
ce,w Volumetric specific heat of the water (Jm−3 k−1).
f Denotes function.
Gc Current generator to implement flow rate.
H Total depth of the domain (m).
(i, j)T Central node of the elementary cell.
(i, j)xT Central node of the left edge of each elementary cell.
(i, j)yT Central node of the right edge of each elementary cell.
jc Convection heat flux density (Jm−2s−1).
jd Diffusion heat flux density (Jm−2s−1).
js Storage heat flux density (Jm−2s−1).
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k Thermal conductivity of the soil–fluid matrix (cal/(sm◦C)).
L Length of the aquifer (m).
l∗x Characteristic length along which the diffusive and advective effects are of

the same order of magnitude (m).
l∗x,T Thermal characteristic length (m).
Rxl Resistor arranged in direction of the x-axis in the left half of the cell.
Rxr Resistor arranged in direction of the x-axis in the right half of the cell.
Ryd Resistance placed in direction of the y-axis at the bottom of the cell.
Ryu Resistance placed in direction of the y-axis at the top of the cell.
t Time (s).
T Temperature (◦C).
T1 Temperature at the soil surface (◦C).
T2 Temperature at the bottom of the aquifer (◦C).
T3 Temperature at the left border (◦C).
Tini Initial soil temperature (◦C).
T′(x) vertical profile Vertical dimensionless temperature profile.
T′(y) horizontal profile Horizontal dimensionless temperature profile.
(T− y) Vertical temperature–depth profiles (◦C).
v Water flow velocity vector (m/s).
v Fluid velocity (m/s).
V Denotes voltage generator.
Vf Battery connected at central node of the bottom edge to fix a constant value

temperature at the bottom of the aquifer.
Vl Battery connected at central node of the left edge to fix a constant value

temperature at the left boundary of the aquifer.
Vs Battery connected at central node of the top boundary to fix a constant value

temperature at the surface of the aquifer.
vx,o Horizontal flow velocity (m/s).
x, y Spatial coordinates (m).
α Thermal diffusivity of the soil–fluid matrix (m2/s), α = k/ρece.
αm αm = k/ρe,wce,w (m2/s).
∇ Mathematical gradient operator.
πdiff−adv Dimensionless group that characterizes the ratio between diffusion and

advective effects over the aquifer domain l∗x .
πl∗x,T

Dimensionless monomial of horizontal characteristic length.
πT1,T2,T3 Dimensionless temperatures monomial.
ρe Wet bulk density of the soil–fluid matrix (kg/m3).
ρe,w Fluid density of the water (kgm−3).
τ∗ Characteristic time (s).
|| Absolute value.
[] To denote range of values.
∈ Contained in.
~ Order of magnitude.
〈〉 Symbol that encloses the list of relevant parameters of a problem.
x, y Related to spatial directions x and y, respectively.
H
2 , 3H

4 Related to positions H
2 , H

4 within the aquifer.
x1, x2 Related to positions x1 and x2 in the inverse problem protocol.
(i, j)T Related to central node of the elementary cell.
* Denotes characteristic quantity.
´ Dimensionless quantity.

References
1. Lapham, W.W. Use of Temperature Profiles Beneath Streams to Determine Rates of Vertical Ground-Water Flow and Vertical Hydraulic

Conductivity; U.S. Geological Survey Water-Supply 1989, Paper 2337; United States Geological Survey: Reston, VA, USA, 1989.
2. Animasaun, I.L.; Shah, N.A.; Wakif, A.; Mahanthesh, B.; Sivaraj, R.; Koriko, O.K. Ratio of Momentum Diffusivity to Thermal

Diffusivity: Introduction, Meta-Analysis, and Scrutinization; Taylor & Francis: Abingdon, UK, 2022.
3. Hosseini, N.; Khoei, A.R. Modeling Fluid Flow in Fractured Porous Media with the Interfacial Conditions Between Porous

Medium and Fracture. Transp. Porous Media 2021, 139, 109–129. [CrossRef]

http://doi.org/10.1007/s11242-021-01648-5


Mathematics 2022, 10, 2717 19 of 19

4. Long, G.; Xu, G. The effects of perforation erosion on practical hydraulic-fracturing applications. SPE J. 2017, 22, 645–659.
[CrossRef]

5. Yu, B. Analysis of flow in fractal porous media. Appl. Mech. Rev. 2008, 61, 050801. [CrossRef]
6. Xiao, B.; Li, Y.; Long, G. A fractal model of power-law fluid through charged fibrous porous media by using the fractional-

derivative theory. Fractals 2022, 30, 2250072-446. [CrossRef]
7. Suzuki, S. Percolation measurements based on heat flow through soil with special reference to paddy fields. J. Geophys. Res. 1960,

65, 2883–2885. [CrossRef]
8. Stallman, R.W. Computation of ground-water velocity from temperature data. USGS Water Supply Pap. 1963, 1544, 36–46.
9. Bredehoeft, J.D.; Papadopulos, I.S. Rates of vertical groundwater movement estimated from the Earth’s thermal profile. Water

Resour. Res. 1965, 1, 325–328. [CrossRef]
10. Ziagos, J.P.; Blackwell, D.D. A model for the transient temperature effects of horizontal fluid flow in geothermal systems. J.

Volcanol. Geotherm. Res. 1986, 27, 371–397. [CrossRef]
11. Taniguchi, M. Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature-depth

profiles. Water Resour. Res. 1993, 29, 2021–2026. [CrossRef]
12. Lu, N.; Ge, S. Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer. Water

Resour. Res. 1996, 32, 1449–1453. [CrossRef]
13. Holzbecher, E. Inversion of temperature time series from near-surface porous sediments. J. Geophys. Eng. 2005, 2, 343–348.

[CrossRef]
14. Kulongoski, J.T.; Izbicki, J.A. Simulation of fluid, heat transport to estimate desert stream infiltration. Groundwater 2008, 46,

462–474. [CrossRef]
15. Duque, C.; Müller, D.; Sebok, E.; Haider, K.; Engesgaard, P. Estimating groundwater discharge to surface waters using heat as a

tracer in low flux environments: The role of thermal conductivity. Hydrol. Process. 2016, 30, 383–395. [CrossRef]
16. McCord, J.; Reiter, M.; Phillips, F. Heat-flow data suggest large ground-water fluxes through Fruitland coals of the northern San

Juan basin, Colorado-New Mexico. Geology 1992, 20, 419–422. [CrossRef]
17. Constantz, J. Heat as a tracer to determine streambed water exchanges. Water Resour. Res. 2008, 44. [CrossRef]
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