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Abstract: Cyber physical systems (CPS), in the event of a cyber attack, can have a serious impact
on the operating physical equipment. In order to improve the attack detection capability of CPS, an
support vector machine (SVM) attacks detection model based on particle swarm optimization (PSO)
is proposed. First, the box plot anomaly detection method is used to detect the characteristic variables,
and the characteristic variables with abnormal distribution are discretized. Secondly, the number
of attack samples was increased by the SMOTE method to solve the problem of data imbalance,
and the linear combination of characteristic variables was performed on the high-dimensional CPS
network traffic data using principal component analysis (PCA). Then, the penalty coefficient and
the hyperparameter of the kernel function in the SVM model are optimized by the PSO algorithm.
Finally, Experiments on attack detection of CPS network traffic data show that the proposed model
can detect different types of attack data and has higher detection accuracy compared with general
detection models.

Keywords: attack detection; cyber physical systems; data imbalance; principal component analysis;
particle swarm optimization; support vector machine

MSC: 68T09; 94A16

1. Introduction

CPS realizes the collaboration and integration of information systems and physical
systems [1], and has been widely used in the fields of power distribution, pipeline trans-
portation, and intelligent production [2–4]. CPS improves production quality and efficiency
while also exposing security issues, the communication network as a bridge between infor-
mation systems and physical systems is the key to system security. The attack detection of
a communication network can effectively maintain the security of the CPS system, but it
is necessary to consider the characteristics of the CPS to set up targeted attack detection
methods. The continuous operation of the CPS generates a large amount of network traffic
data, which can interfere with attack detection and increase computational overhead.

CPS network traffic data suffer from high dimensionality and information redundancy,
which can reduce the efficiency of attack detection. Martin-Barreiro et al. mention that
PCA as a popular multivariate statistical method to reduce the dimensionality of the data
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matrix [5]. Zhang et al. mention that machine learning models based on hypergraph theory
can represent the information in the network as low-dimensional dense real vectors, which
can be effective for anomaly and attack detection [6]. Gao et al. proposed an anomaly
detection model of network traffic sequences, using PCA to reduce the dimensionality
of network traffic characteristic variables, then establishing an LSTM neural network to
detect anomalies in traffic sequences [7]. The network traffic data generated by the CPS
in real time include normal request and response data, and contain anomalous data that
are under attack. There is an imbalance problem in the number of normal samples and
abnormal samples [8], which causes the attack detection models to be unable to effectively
extract the information of the attack samples. The common solutions to the data imbalance
problem encountered in classification problems are undersampling and oversampling and
combined sampling, these methods can balance the number of samples between different
categories [9]. Deng et al. investigated the problem of attack detection in CPS systems and
solved the problem of data imbalance by using an adversarial network to expand the rare
attack samples, and verified the effectiveness of the method through experiments [10].

With the increasing openness of CPS access to the network, the diversity and conceal-
ment of cyber attacks increase the difficulty of attack detection. Ding et al. studied CPS
systems from the perspective of control theory; summarized the modeling approach of CPS
and the common types of network attacks as denial-of-service attacks, replay attacks and
spoofing attacks; and detected network attacks by establishing a reasonable system state
estimator [11]. The SVM model, as a machine learning model with a complete mathemati-
cal theory, has a wide range of applications in classification problems [12], and compared
with other machine learning models, SVM has better pattern recognition in complex data
sets [13]. The process data generated in real time in CPS networks have a complex structure
and noise, the characteristics of the SVM model whether the model is suitable for solving
the problem of identifying abnormal behavior patterns in CPS process data. PSO is an
optimization algorithm driven by the intelligent population behavior of animals [14]. The
PSO algorithm has the ability to quickly find the global optimal solution. Using the PSO
algorithm to optimize the SVM classifier can improve the accuracy of detection, suitable
for the attack detection scenario of CPS network traffic. Chen et al. investigate the problem
of network intrusion detection in industrial control systems and establish a neural network
model with PSO for effective detection of unknown types of abnormal traffic data [15].
Shang et al. analyzed the characteristics of network data based on Modbus industrial
communication protocol and used an improved SVM model optimized by PSO to detect
anomalies in the data, and the experimental results show the validity of the method [16].
Current research related to CPS network attack detection focuses on the analysis of network
traffic data or on the optimization and design of detection models but, in fact, these two
parts have equal importance.

Therefore, in this paper, when studying the attack detection problem of the CPS system,
both the characteristics of network traffic data and the accuracy of the detection model
are considered to establish the PSO-SVM attack detection model. In the rest of the paper,
Section 2 investigates the composition structure of CPS, then the network characteristics of
CPS are analyzed and compared with the traditional IT internet, and the attack principles
of common attack types are analyzed. Section 3 describes the principle of processing CPS
network traffic data and the principle of PSO-SVM model, and illustrates the flow of the
model. Section 4 experiments on the proposed method using real CPS network traffic
data, and shows the specific process and results of the experiments. Section 5 discusses the
conclusions of this study and future research.

2. CPS Structure and Attack Detection
2.1. CPS Structure

The CPS composition structure can be divided into three levels from the functional
point of view: sensing layer, network layer, and control layer [17], and the composition
structure of CPS is shown in Figure 1.
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Figure 1. CPS system structure.

As shown in Figure 1, the sensing layer is the source of real-time status data of the CPS
system, converting real-time status information of physical objects into digital information
through various types of sensors or signal acquisition devices arranged on the physical
devices. The control layer enables the CPS system to have intelligent control and decision-
making capabilities, generating control commands that regulate the operational status of
the CPS physical equipment through analysis and the computational processing of state
data. The network layer is the bridge between the physical system and the information
system, allowing real-time sent status data and control commands to be transmitted in both
directions between the perceptual layer and control layer.

2.2. CPS Network

The CPS network layer is the basis for the proper operation of the CPS. The structure of
the CPS network determines some differences between the CPS network and the traditional
IT internet (see Table 1).

Table 1. Comparison of CPS network and traditional IT network.

Network Type Network Structure Type of Data to Be Transferred Communication Protocol

CPS Network Closed-loop network structure Status data and control data Industrial communication protocols

IT Internet Many-to-one network structure Information Data TCP/UDP

As shown in Table 1, the CPS system uses a closed-loop network structure, and the CPS
generates a large amount of high-dimensional state data as well as control command data
in real time during continuous operation. Thus, the CPS network has high requirements
for real time and reliability, and the diversity of the physical devices in the CPS leads to the
diversity of industrial communication protocols used, and the commonly used industrial
communication protocols are CANopen, EtherNet, PROFIBUS, etc. [18]. IT internet mostly
uses a many-to-one client/server architecture. The function of IT internet is based on
the transmission of information data (including text, language, images, video, and other
information data), which has a certain tolerance for delay and allows packet retransmission
after a transmission failure. In order to easily allow various communication devices to
access the interconnection network for communication, the standard TCP/UDP network
communication protocol is used.

2.3. CPS Attack Detection

Considering the structure and characteristics of the CPS network, attacks against the
CPS network layer can seriously threaten the security of the operation of physical devices
in the system. Network attacks can be divided into three categories according to the attack
principle (see Table 2).
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Table 2. Types of network attacks and attack principles.

Type of Attack Attack Principle

Denial of service attacks

Sending a large number of invalid packets to the sensor
channel and control channel of the CPS in a short
period of time [19], resulting in the inability to respond
to normal request packets and delaying or even
suspending the operation of the physical device.

Replay attacks

Randomly selected packets from the packet sequence of
the previous period are sent to the target device [20],
disrupting the normal packet sending process and
disrupting the normal operation of the physical device.

False injection attacks
Send disguised packets to the target device to enable
the attacker to control the operation of the target device
or obtain information of the CPS system [21,22].

As shown in Table 2, the detection of network attacks in traditional IT internet has
been more thoroughly studied. The attack detection of the CPS network needs to maintain
the security of the CPS network traffic and the stability of the system operation, and timely
detection of abnormalities in the CPS network.

3. CPS Network Attack Detection Model
3.1. Data Pre-Processing

CPS network traffic data set {X1, X2, · · ·Xn}, n is the dimension of the characteristic
variable. Since abnormally distributed characteristic variables can reduce the detection
accuracy of the classifier, the statistical information of characteristic variables can be ana-
lyzed to understand the data distribution characteristics of each feature variable, so that
characteristic variables with abnormal data distribution can be found and processed. The
box plot anomaly detection method is used to discretize the characteristic variables with
abnormal data distribution (as shown in Equations (1) and (2)).

upper limit = Q3 + 1.5× (Q3 −Q1) (1)

lower limit = Q1 − 1.5× (Q3 −Q1) (2)

Q3 represents the upper quartile, while Q1 represents the lower quartile. The sample
data of the characteristic variable are coded as 0 if they are between the upper limit and
lower limit, and coded as 1 if the sample data are less than the lower limit or greater than
the upper limit.

Different units of each characteristic variable lead to non-comparability, which reduces
the information extraction ability of the model during the training process. The normal-
ization method can eliminate the difference in magnitude between characteristic variables
(Equation (3)).

Xi =
xj − xmin

xmax − xmin
(3)

j ∈ {1, 2, · · ·m}, i ∈ {1, 2, · · · n}. m is the number of samples, and n is the dimension-
ality of the characteristic variables.

3.2. SMOTE Algorithm

The SMOTE algorithm is a method for oversampling a few sample types to solve
the data imbalance problem. Synthesis of new samples is achieved by calculating the
Euclidean distance between a small number of classes of samples and performing a linear
interpolation operation between the samples and their k nearest neighbors [23]. The SMOTE
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algorithm can avoid to some extent the overfitting problem of the classifier model during
the training process caused by random oversampling.

3.3. PCA Algorithm

PCA is a multivariate statistical analysis method that analyzes the main characteristics
of things [24]. The number of samples increases after SMOTE processing, which increases
the computational overhead of the model training process. By linearly combining the
characteristic variables to generate mutually orthogonal principal component variables,
the data can be compressed to reduce the input of the classification model to improve
the training efficiency while maximizing the retention of characteristic information. The
calculation steps of the PCA are as follows:

1. The preprocessed data set is {X1, X2, . . . , Xn}, n is the number of characteristic vari-
ables, Xi = {x1, x2, . . . xm}, m is the number of samples. Each characteristic variable
is normalized Xi =

Xi−mean(Xi)
var(Xi)

.

2. Compute the covariance matrix C = XT × X, with T denoting the transpose of the
matrix, to obtain an n-dimensional square matrix. Solve the equation C× β = λβ for
the covariance matrix C to obtain the set of eigenvalues {λ1, λ2, · · · , λn}, (λi > λi+1,
i = 1, 2, · · · , n− 1) and the corresponding set of eigenvectors {β1, β2, · · · , βn}.

3. The characteristic contribution rate of βi is expressed as λi
n
∑

j=1
λj

, and the threshold value

of cumulative characteristic contribution rate is set as K. The characteristic vector
set {β1, β2, · · · , βn} is accumulated sequentially from the characteristic contribution
rate of β1, and the calculation stops when it is greater than or equal to K, and the
subset {β1, β2, · · · , βl} (l ≤ n) of the characteristic vector set is obtained. Compute
X× [β1 β2 · · · βl ] to get the dataset {PCA1, PCA2, · · · , PCAl} after principal compo-
nent analysis, and the dimensionality of dataset is m× l.

3.4. PSO-SVM Attack Detection Model

The SVM model achieves classification by finding the decision boundary with maxi-
mum intervals between samples of different categories [25]. When there are a few outlier
data will affect the decision boundary of SVM, slack variables can ignore the influence
of a few outlier data, which can improve the fault tolerance of SVM model. The penalty
coefficient c is used as a hyperparameter to measure the loss caused by ignoring outliers,
so the selection of the penalty coefficient c can affect the accuracy of the SVM model. Many
practical problems are not linearly separable, so it is difficult to find decision boundaries.
Introducing kernel functions in the SVM model can map the data to a high-dimensional
space and solve the problem by finding the decision boundary with the maximum interval
in the high-dimensional space. RBF kernel function (Equation (4)) in which xi and xj are the
sample vectors in the training set, i = 1, 2, . . . , k, j = 1, 2, . . . , k, i 6= j, k is the total number
of samples in the train set. σ is the hyperparameter of the RBF kernel function, reflecting
the range of action of the kernel function, when σ decreases the range of action of the kernel
function increases. The RBF kernel function has fewer parameters, simple structure and
less computational complexity, which is suitable for fast detection of network traffic. The
values of penalty coefficient c and hyperparameter σ of RBF kernel function will directly
affect the classification accuracy of the model. Using PSO algorithm to determine penalty
coefficient c and hyperparameter σ can improve the classification accuracy of SVM model.

K(xi, xj) = exp(− 1
2σ2 ||xi − xj||2) (4)

PSO achieves the objective of finding the optimal solution of the objective function in
the problem space by simulating the changes in the position and flight speed of a flock of
birds in nature during the feeding process. Let the number of particle swarm be m, and the
particle swarm can be represented by the formula P = {p1, p2 . . . , pm}. The current position
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of individual pi (i ∈ m) can be represented by the formula {xi1, xi2, . . . xin}, and the current
velocity can be represented by the formula {vi1, vi2, . . . vin} (n represents the dimensionality
of the optimization problem solution). The search effect of the particle swarm in the problem
space is evaluated by the fitness value, and the velocity and position of the particles are
updated according to the value of the fitness function (shown in Equations (5) and (6)).
The position vector corresponding to the historical optimal fitness value of individual pi
in the search process is pi

best = {Xi1, Xi2, . . . , Xim}. An individual pbest
global with the global

optimal fitness value is selected from the historical optimal fitness values of all individuals
pbest

i (i ∈ m), and the corresponding position vector is the global optimal solution vector{
Xg1, Xg2, . . . , Xgm

}
.

vt+1
ij = ωvt

ij + c1r1(Xt
ij − xt

ij) + c2r2(Xt
gj − xt

ij) (5)

xt+1
ij = xt

ij + vt+1
ij (6)

vt+1
ij and xt+1

ij are the velocity and position of individual pi at the next moment (or the
next iteration); i ∈ m, j ∈ n; ω are inertia weights; c1 and c2 are learning factors; r1 and r2
are random numbers between 0 and 1; Xt

ij is the constituent element of the position vector

corresponding to the current pbest
i ; Xt

gj is the constituent element of the position vector

corresponding to the current pbest
global [26].

3.5. CPS Attack Detection Flowchart

The CPS attack detection process is shown in Figure 2.
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As shown in Figure 2, the statistical information of the characteristic variables in the
original dataset is analyzed. The characteristic variables with abnormal data distribution
are discretized using the box plot anomaly detection method; the characteristic variables
with normal data distribution are normalized. A small number of samples with attack
types are augmented using the SMOTE algorithm, and the dataset is divided into a training
set and a test set. The penalty coefficient c and the hyperparameter σ of the RBF kernel
function are searched for using the PSO algorithm on the training set. The obtained globally
optimal penalty coefficient cbest, hyperparameter σbest and the data from the test set are
input to the SVM model for attack detection.

4. Experiment and Analysis

The experiments in this paper were conducted on a computer with a Windows 11
operating system, AMD Ryzen 7 5800H CPU and 16.0 GB RAM. In terms of software,
Anaconda 3 was used to build the Python programming environment, and Pycharm was
used as the IDE.

4.1. Data Set

This paper uses network communication data collected in a natural gas pipeline
control system established by Mississippi State University as the experimental data set [27].
The natural gas pipeline system collects the status data of the pipeline through sensors in
real time and sends the data packets to the controller using the Modbus industrial data
transmission protocol communication network, which calculates and generates control
command packets based on the status data received at the current moment and sends them
to the actuators for pipeline regulation through the network. The natural gas pipeline
industrial control system dataset has 26 dimensions of characteristic variables and eight
types of data (see Table 3).

Table 3. Data types included in the dataset.

Status Type Abbreviations

Normal Normal
Naïve Malicious Response Injection NMRI

Complex Malicious Response Injection CMRI
Malicious State Command Injection MSCI

Malicious Parameter Command Injection MPCI
Malicious Function Code Injection MFCI

Denial of Service DoS
Reconnaissance Recon

As shown in Table 3, Normal type is the normal process data of the system; NMRI,
CMRI, MSCI, MPCI, and MFCI are false injection attacks; Recon is a reconnaissance attack,
and DoS is a denial of service attack. The distribution of the number of samples of each
type is shown in Figure 3.

As shown in Figure 3, the above dataset contains 97,019 samples, which are about
natural gas pipeline control system. However, the dataset has two serious unbalanced
problems. The first problem is the imbalance between samples with normal type and
samples with abnormal type. Another problem is the imbalance among samples with
abnormal type, the ratio of the number of samples of CMRI type and MFCI type is 27:1.
The data imbalance problem will cause the intelligent model or algorithm to be unable to
effectively mine the characteristic information of a small number of sample types, resulting
in the attack detection results favoring the majority of sample types.
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4.2. Dataset Pre-Processing

The statistical information of the dataset reflects the basic nature of the characteristic
variables, and the statistical information of the natural gas pipeline control system dataset
is shown in Table 4.

Table 4. Statistical information of the data set.

Variables Average Value Standard Deviation Lower Quartile Upper Quartile

X1 4.6 9.0 4.0 4.0
X2 3.7 1.0 4.0 4.0
X3 182.9 3.7 183.0 183.0
X4 216.7 59.5 233.0 233.0
X5 9.0 0.3 9.0 9.0
X6 16.7 4.6 18.0 18.0
X7 3.0 0.7 3.0 3.0
X8 10.0 0.0 10.0 10.0
X9 2.5 0.9 1.0 1.0
X10 9.3 2.6 10.0 10.0
X11 0.0 0.2 0.0 0.0
X12 41.0 0.0 41.0 41.0
X13 26.3 26.6 19.0 19.0
X14 115.0 0.0 115.0 115.0
X15 0.2 0.0 0.2 0.2
X16 0.5 0.0 0.5 0.5
X17 1.0 0.0 1.0 1.0
X18 0.0 0.0 0.0 0.0
X19 24.2 14.3 20.0 20.0
X20 0.9 1.0 0.0 2.0
X21 1.0 0.1 1.0 1.0
X22 0.1 0.2 0.0 0.0
X23 0.0 0.2 0.0 0.0
X24 0.0 0.0 0.0 0.0
X25 −2.8 × 1034 1.8 × 1036 0.2 5.3
X26 1.1 0.1 1.1 1.1
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From Table 4, it can be seen that characteristic variables with standard deviation of 0
do not contain valid characteristic information, so removing the characteristic variables X8,
X12, X14, X15, X16, X17, X18, X24. The variance of characteristic variables X1, X11, X22, X23,
X25 is significantly larger than the mean, which does not obey the normal distribution. The
upper quartile and lower quartile of the characteristic variables are approximate, which
means most of the data values of the characteristic variables are more concentrated. If
directly input to the detection model is not conducive to training, and discarding the
characteristic variable will reduce the training effect of the model. According to the box plot
anomaly detection method using Equations (1) and (2) for discretization, the characteristic
variable Xi (i = 1, 11, 22, 23, 25) is coded as 0 when the value of the sample data is between
upper limit and lower limit, and as 1 when the value of the sample data is less than lower
limit or greater than upper limit.

4.3. Sample Amplification and Dimensionality Reduction

There is an imbalance in the number of normal samples and attack samples during the
continuous operation of the industrial control system, and there is also a serious imbalance
in the number of samples between the types of attacks. The imbalance in the number
of samples of each type will lead to the classifier not being able to effectively extract the
characteristic information of a few classes of samples during the training process, resulting
in training process being determined by a larger number of sample types, which directly
affects the attack detection accuracy of the model. Therefore, the SMOTE algorithm is used
to augment the attack types with a small number of samples, and the number of samples of
each type in the dataset after the augmentation of the attack samples is shown in Table 5.

Table 5. Data set after amplification of attack type samples.

Status Type Number of Samples after Amplification Total

Normal 61,156 61,156
NMRI 7637
CMRI 15,466
MSCI 7637
MPCI 7637 61,288
MFCI 7637
DoS 7637

Recon 7637

From Table 5, we can see that the number of normal type samples is 61,156, and the
total number of attack type samples after augmentation is 61,288, and the total number
of attack type samples is close to the total number of normal samples, which basically
eliminates the serious data imbalance problem between various types of samples.

Although balancing the number of various types of samples can improve the detection
accuracy of the model, on the other hand, it is also important to consider the overhead
of reducing the computational time complexity caused by the high dimensionality and
redundancy of the characteristic variables. Therefore, using principal component analysis to
reduce the linear combination of characteristic variables to 13 principal component variables
can reduce the input dimension of the model, which in turn reduces the training time and
improves the detection efficiency. The importance of the raw characteristic variables for the
principal component variables was also analyzed, and the frequency distribution of the
raw characteristic variables that make up the principal component variables is shown in
Figure 4.
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Observing Figure 4, it can be seen that the frequency distribution of the original
characteristic variables is arranged in descending order, with the cumulative line located on
the sub-axis marking the percentage of the total. Among them, X20 is the most important
Variables, and the cumulative ratio of X20, X2, X4, X6, and X10 reaches 80% are the important
factors that make up the principal component variables and reflect most of the information
of the data set.

4.4. PSO-SVM Attack Detection

In order to make the various types of samples get sufficient training, the various types
of samples are divided in the ratio of 3:1 and then combined to form the training set and
the test set to avoid the situation that a certain type of samples are lost in the training set
or the number of samples of a certain type is less than the samples of other types. Then
the training set is disrupted to avoid overfitting. The number of samples in the delimited
training set is 85,710 and the number of samples in the test set is 36,734.

The PSO algorithm is able to find the global optimal values of the hyperparameters
of the RBF kernel function in the SVM model. In the process of finding the global optimal
penalty coefficient c, hyperparameter σ, the fitness value of the PSO algorithm is the cross-
validation score of the SVM model on the training data set when c and σ take different
values. The process of the fitness value change is shown in Figure 5.
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As shown in Figure 5, the fitness value has reached a relatively high level before the
20th iteration, indicating that the PSO algorithm has the capability of fast optimization
search. The global optimal penalty coefficient cbest and hyperparameter σbest are used as
hyperparameters of the SVM, and the attack detection results obtained by using the test set
as input to the SVM model are shown in Figure 6.
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Figure 6. Detection results on the test set.

As shown in Figure 6, the PSO-SVM model has achieved good results for the detection
of normal and attack samples, where the detection of various types of attack samples has
also achieved good results.

4.5. Analysis and Comparison of Experimental Results

To further analyze the results, an confusion matrix is used to evaluate the attack
detection results, and the confusion matrix for the test set attack detection is shown in
Figure 7.
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From the confusion matrix of the detection results in Figure 7, it can be seen that
the detection results are concentrated on the diagonal of the confusion matrix, and the
detection results are less located on both sides of the diagonal, indicating that the overall
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detection effect of the PSO-SVM model is good. To quantitatively measure the detection
performance, Accuracy, Precision, Recall and F-Scores evaluation metrics are calculated
based on the confusion matrix (Table 6).

Table 6. Evaluation indicators of attack detection results.

Sample Category Precision (%) Recall (%) F-Scores (%) Accuracy (%)

Normal 96.04 99.13 97.56
NMRI 100.00 86.29 92.64
CMRI 98.00 98.32 98.16
MSCI 99.68 95.33 97.46 97.22
MPCI 92.91 98.34 95.55
MFCI 100.00 95.02 97.45
DoS 99.90 90.75 95.11

Recon 100.00 100.00 100.00
Average value 98.32 95.40 96.74

As shown in Table 6, good detection results were achieved for each type of sample on
the test set. The accuracy rate was 97.22%, and the average of the precision for all types
was 98.32%, including 100% for NMRI, MFCI, and Recon. Compared with the recall rate of
different types of test results, the recall rate of NMRI type was lower at 86.29%, and the
average of F-Scores was 96.74%. In order to further evaluate the performance of the model,
the model in this paper was compared with other algorithmic models for experiments, and
the results are shown in Table 7.

Table 7. Comparison of model experiments.

Models Accuracy (%) Precision (%) Recall (%) F-Scores (%)

Model of this paper 97.22 98.32 95.40 96.74
PCA-SVM 94.61 85.14 80.86 82.41
PCA-BP 93.81 84.90 72.48 75.91

PCA-Gaussian NB 67.82 74.53 88.40 70.52

As shown in Table 7, the F-Scores of the PCA treated plain Bayesian classification
model is 70.52%, indicating that the classification performance of the classifier is limited.
The PCA-BP model outperforms the plain Bayesian model in each evaluation index, with
F-Scores of 75.91%, indicating that the classification effect is still limited. The evaluation
indexes of PCA-SVM model are better than PCA-BP model overall, while each evaluation
index of this paper’s model is better than PCA-SVM model, among which the F-Scores
index reaches 96.74%, indicating that the classification effect of this paper’s model is better
than SVM model, BP model and Bayesian probability model on the test set.

5. Conclusions, Discussion and Future Research

This paper mainly studies the network attack detection model of CPS system. First, the
model analyzes the statistical information of the CPS network traffic data and discretizes
the characteristic variables with abnormal data distribution using the box plot anomaly
detection method. Second, A small number of types of attack samples are augmented using
the SMOTE method. The PCA method reduces the dimensionality of the network traffic
dataset and analyzes the importance of characteristic variables. Then, the detection model
uses an SVM model with RBF kernel function, the penalty coefficient of SVM model and the
hyperparameter of the RBF kernel function are optimized using the PSO algorithm. Finally,
experiments show that the method proposed in this paper can effectively distinguish
network attack data from normal communication data, and has good detection effect on
different types of network attacks as well. The method proposed in this study is able to
perform attack detection on the network of CPS to protect the information security and
system operation safety, which has practical application value, thus providing a reference
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for the security protection of the CPS system. Since the system structure of CPS determines
a high requirement for real time network communication, future research could introduce
incremental learning based on the method in this paper, which can achieve online network
attack detection and improve the real time performance of detection.
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