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Abstract: Cloud detection is an essential step in optical remote sensing data processing. With the
development of deep learning technology, cloud detection methods have made remarkable progress.
Among them, researchers have started to try to introduce Transformer into cloud detection tasks due
to its excellent performance in image semantic segmentation tasks. However, the current Transformer-
based methods suffer from training difficulty and low detection accuracy of small clouds. To solve
these problems, this paper proposes Cloudformer V2 based on the previously proposed Cloudformer.
For the training difficulty, Cloudformer V2 uses Set Attention Block to extract intermediate features
as Set Prior Prediction to participate in supervision, which enables the model to converge faster. For
the detection of small clouds, Cloudformer V2 decodes the features by a multi-scale Transformer
decoder, which uses multi-resolution features to improve the modeling accuracy. In addition, a
binary mask weighted loss function (BW Loss) is designed to construct weights by counting pixels
classified as clouds; thus, guiding the network to focus on features of small clouds and improving the
overall detection accuracy. Cloudformer V2 is experimented on the dataset from GF-1 satellite and
has excellent performance.

Keywords: cloud detection; remote-sensing images; transformer

MSC: 68T01

1. Introduction

With the development of remote sensing technology, the requirements for processing
remote sensing data have increased, and researchers have therefore proposed a variety
of efficient and accurate processing methods [1,2]. The quality of optical remote sensing
images has been significantly improved. Sub-meter remote sensing data is becoming more
and more common, and applications are expanding. However, optical remote sensing is
highly susceptible to weather factors, one of which is cloud cover, which forms highly
reflective regions in the acquired images. When the image contains many clouds, its
application value will be greatly reduced [3]. Automated cloud detection methods can help
researchers evaluate and process optical remote sensing data and improve the efficiency
of remote sensing data analysis. Therefore, numerous scholars focus on the research of
high-precision cloud detection methods.

Over the years, many cloud detection methods have emerged [4]. In the early days,
cloud detection methods were dominated by traditional image processing methods [5–7].
Starting from 2016, with the development of deep learning technology, cloud detection
methods based on deep learning have gradually occupied the mainstream [8–12], and
they are characterized by high automation, high accuracy, and high generalizability. The
cloud detection task can basically be regarded as a dichotomous image semantic segmen-
tation task, so the development of image semantic segmentation algorithms also drives
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the progress of cloud detection technology. Advanced results have been achieved in cloud
detection methods based on convolutional neural networks. For example, GCDB-UNet [13]
and DABNet [14] are based on a fully convolutional neural network. However, the cur-
rent methods based on the full convolutional neural network architecture have shown
bottlenecks and it is difficult to further improve the detection accuracy.

With the advancement of semantic segmentation methods, Transformer-based net-
work architecture is introduced to computer vision tasks [15,16], which shows excellent
performance with the powerful feature modeling capability of the multi-headed attention
mechanism. Transformer network segments images into multiple non-overlapping patches,
and transforms these patches into tokens, which are fed into the multi-headed attention
mechanism. The attention mechanism establishes connections among the different patches
for feature extraction.

Although the Transformer has excellent modelling capabilities, it ignores the connec-
tion relationships between elements within patches, resulting in reduced detection accuracy
when the target size is small [17]. In addition, the Transformer’s global self-attention
calculation is also detrimental to the image processing task [18]. In contrast with language,
which has high semantic and information density, images, as natural signals, have severe
information redundancy. Language has a stronger need for global understanding, while im-
age information is more concerned with the connections between adjacent features [19]. At
the same time, the overly free computation, which is devastatingly disastrous for training,
makes it difficult to converge for the Transformer. Cloudformer [20] has tried to introduce
the Transformer model to cloud detection tasks with excellent results. However, due to
the problems mentioned above, Cloudformer still has several drawbacks: (1) long training
rounds, large amount of data required for training, and difficulty in convergence. (2) the
detection rate of small clouds is strongly influenced by the imbalance between positive and
negative samples.

To address these problems, we propose Cloudformer V2, which is based on Cloud-
former [20]. The problem of slow training and difficult convergence is addressed by using
an a priori ensemble prediction branch to extract intermediate features to assist the super-
vised network. The multi-scale Transformer decoder will model features at multiple scales,
while the binary mask-weighted loss function (BW Loss) increases the weight of small cloud
data during training, and they enhance the network’s small cloud detection capability.

The rest of the paper is organized as follows. In Section 2, we describe our approach
in detail. Section 3 shows the experimental results. Section 4 discusses the overall design
details and analyses the experimental results. Finally, Section 5 concludes the overall work.

2. Materials and Methods
2.1. Overall Structure of Cloudformer V2

The overall structure of the proposed Cloudformer V2 is shown in Figure 1. The input
is first partitioned into non-overlapping patches of 4 × 4 pixels, as smaller patches can be
better used for the detection of small-sized clouds. These patches act as tokens to be passed
into the encoding part.

The encoding part models the features at four different scales, i.e., 1/4, 1/8, 1/16
and 1/32 of the original image resolution. Each encoding part consists of two layers:
(1) Transformer layer, which is a stack of the Scale Change module and the Swin Transformer
module: (2) Set Prediction layer, which consists of Set Attention Block and is responsible
for extracting intermediate Set Prior Predictions. The Set Prediction layer uses the features
of the Transformer layer to encode and return an intermediate Set Prior mapping.

As shown by the red line in Figure 1, a lightweight upsampling decoder is used to
aggregate the four scales of the Set Prior mapping in order to obtain the Set Prior mask
prediction and to supervise it using binary mask weighted loss function (BW Loss) to assist
in the training of the whole network. In addition, the Set Prediction layer also gives mask
features, which are fed into the Transformer hierarchical decoder in order from lowest to
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highest resolution, using Feature-aligned Pyramid Network (FaPN) [21] as a pixel-level
decoder for resolution reconstruction.
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A classification prediction and an ensemble mask prediction are then generated,
and their combination is the final output at prediction time. At training time, the final
output, together with the a priori ensemble mask prediction, oversees the training of the
entire network.

2.2. Encoder

The encoder consists of four encoding parts. Each encoding part consists of two layers:
Transformer layer [22] and Set Prediction layer.

The first Transformer layer contains a Linear Embedding layer and a standard Swin
Transformer module. The Linear Embedding layer is used to change the feature dimension
of the patches. The other Transformer layer contains a Scale Change module and a standard
Swin Transformer module, which extracts features from the image. In the Scale Change
module, we discard Patch Merging in the last three parts and use a convolution operation to
reduce the resolution. The image information is not extremely dependent on long-distance
information, so the excessive degrees of freedom of the Transformer are somewhat negative
for extracting image features, while convolution is an operation with a strong inductive
bias [23], which will impose some limitations on the overall network and thus improve the
performance of the Transformer model in image processing tasks. The structure of the Swin
Transformer layer not only has good feature extraction capability but also has only linear
computational complexity with respect to the image resolution. Each Swin Transformer
block is divided into multiple non-overlapping windows, with attention computed only
within the windows [24]. Window shifts are used to deal with intersection regions, allowing
for efficient image feature modeling.

The Set Prediction layer takes the features extracted by the Transformer layer as input
and maps the features to the set space using Set Attention Block with the aim of generating
set mask predictions. Set mask prediction is an intermediate feature. By fusing these
intermediate features with a pyramid structure and restoring them to the resolution of
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the original image, a preliminary prediction can be obtained. This prediction is not very
accurate. However, they contain the intermediate features of the loss of the final prediction
results, so using it to guide the update of weights in the network will help the network
converge faster and more stably. In addition, the Set Prior Prediction process only occurs in
the training stage. Therefore, such a strategy will not affect the reasoning speed of the final
network. Set Attention Block is computed with a single-headed set attention. As shown in
Figure 2, Set Attention Block to divide the input features Y into three individuals using the
parametrically learnable linear layers WQ, WK and WV: the set query SQ, the set key SK and
the feature values SV. The dimension of SV is M × C, where M is the length of the sequence
in each window, C is the number of windows. The dimensions of SQ and SK are M × N,
respectively, where N is equal to the number of queries set in the Transformer decoder. In
this article N is set to 100 as in Cloudformer. SQ returns a priori set predictions, and SQ and
SK act together to update SV to acquire Y’ to pass to the next stage. Set attention process is
as follows:

SQ = Y·WQ (1)

SK = Y·WK (2)

SV = Y·WV (3)

Set Attention(SQ, SK, SV) = SoftMax(SQST
K)SV (4)

Y′ = linear(Set Attention(SQ, SK, SV)) + Y (5)
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2.3. Decoder

In the pixel-level decoder, we use FaPN [21] to produce context-aligned multi-scale
feature maps. In the Transformer decoder, we provide one resolution feature at a time to
one Transformer decoder layer to build a multi-scale Transformer decoding structure [25].
Specifically, multiple resolution features are generated in the pixel-level decoder, and their
resolutions are 1/32, 1/16, 1/8 and 1/4 of the original image, respectively. The result of
the Transformer decoder is resized through a multilayer perceptron (MLP) layer. Features
with 1/4 resolution are embedded and the mask prediction output is obtained by simple
upsampling and has dimensions H ×W × N. The Transformer decoder is connected to
another MLP layer to obtain the classification prediction, which has dimensions K × N.
Finally, the mask prediction output and the classification prediction output are combined
as the final output of the framework.

2.4. Binary Mask Weighted Loss Function

The detection of small clouds in optical remote sensing images has always been a
challenge. When the number of positive samples in the data is too small, it usually leads to
the problem of positive and negative sample imbalance. For cloud detection tasks, small
clouds contain relatively few pixels, and the presence of a large number of sparse small
clouds in an image can lead to the problem of positive and negative sample imbalance.
Moreover, the pixel information of small clouds is more likely to be influenced by the
surrounding pixels, which leads to the reduction of detection accuracy.

We adopt a masked classification design in the network structure, which has been shown
to work well in Cloudformer for cloud detection tasks. Based on the mask classification, we
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solve the small cloud detection problem by adding weights to the loss function. When the
number of cloud pixels contained in the image will be small, the loss will be scaled up as a
way to increase the penalty to the network for errors in detecting small clouds. In order to
train the masked classification model, we process the labels of the dataset [26] and transform

the ground truth Ngt into a set zgt = {
(
ci

gt, mi
gt)| ci

gt ∈ {1, . . . , K}, mi
gt ∈ {0, 1}H×W}Ngt

i=0.
We fill the “no object ∅“ element so that Ngt = N. It can match the output of the framework,
where cgt

i is the class label corresponding to the i element of the set. mgt
i is the binary

masks corresponding to the i element of the set. On this basis, a Binary mask Weighted
loss function (BW Loss) based on mask classification is proposed to optimize small cloud
detection rate fluctuations in the network due to sample imbalance. It is defined as follows:

LBW = ∑N
j=1 [ωjIg(c

gt
j )(λceLce + λdiceLdice)] (6)

Ig(c
gt
j ) =

{
1 cgt

j = ∅
0 cgt

j = ∅
(7)

where Lce is the cross-entropy loss and Ldice is the dice loss [27]. As with Mask2former [25],
we set λce = 5.0 and λdice = 5.0.

Taking advantage of the mask classification, we calculate the total number of pixels in
each set that is classified as a cloud. Loss weights are then calculated for each collection
based on the total number of pixels, thereby amplifying the weights of the cloud collections
with fewer pixels. Making the network more focused on small cloud pixel sets. Specif-
ically, in Cloudformer V2, the mask set branch gives a set of predictions R. R belongs
to N × H ×W and N is the number of queries in Transformer decoder. R is the set of N
predictions containing cloud features, and we count the number of pixels classified as
clouds for each prediction, from which we calculate the weight ωj of the mask loss value
for each outcome (a combination of cross-entropy loss and dice loss are used as our mask
loss) The procedure for calculating the weights can be expressed as:

ωj = line(Sigmoid(

H
∑

h=0

W
∑

w=0
ph,w

H ×W
− 0.5)) (8)

where p is the pixel value in the binary mask prediction, and ωj is mapped to (1,2) by
a linear transformation after activation using the Sigmoid function. The Binary mask
Weighted loss function is used in the mask classification branch as well as in the ensemble
prior prediction branch as an aid to training. In the experimental section, the Binary mask
Weighted loss function will be analyzed in detail.

3. Results
3.1. Evaluation Criteria and Data Processing

To evaluate and compare the performances of different methods, three metrics, in-
cluding Mean Intersection with Union (MIoU) [28], Mean Accuracy (MAcc) [29] and Pixel
Accuracy (PAcc) [30] are used. For all experimental data, they can be divided into four
cases as follows: true positive (TP), false positive (FP), true negative (TN) and false negative
(FN). The resulting metric formula for the evaluation indicator is expressed as follows:

MIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(9)

MAcc =
1

k + 1

k

∑
i=0

TP
FP + TP

(10)
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PAcc =
TP + TN

TP + TN + FP + TN
(11)

3.2. Cloud Detection Dataset

The experiment data are multispectral data from the GF-1 satellite [31], containing
three bands of visible RGB and near-infrared, with a variety of scenes of snowy mountains,
cities, water, vegetation, etc. An example is shown in Figure 3.
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The data were acquired between May 2021 and December 2021. To construct the
dataset for the experiment, we discarded the NIR band and used only the visible band.
The data are converted to RGB full color images, which were then enhanced by random
cropping and rotation. The dataset contains 10,250 images of 512 × 512 pixel size, divided
into training set and test set in the ratio of 8:2, with 8200 images in the training set and 2050
images in the test set.

3.3. Comparisonl Models and Experimental Settings

To illustrate the effectiveness of Cloudformer V2, we compare it with typical cloud
detection models and superior semantic segmentation models on the cloud detection
dataset. Two cloud detection models, Cloudformer [20] and GCDB-UNet [13] are selected.
Moreover, the well-known SwinTransformer-UperNet [32] and Mask2former [25] models
for semantic segmentation are also chosen. Cloudformer and GCDB-UNet are recently
proposed methods for cloud detection, and they perform well in cloud detection tasks.
Swin Transformer includes a sliding window operation and a hierarchical design structure.
It has performed well in several tasks in computer vision. Mask2Former is an excellent
transformer-base segmentation architecture that has achieved state-of-the-art on several
publicly available datasets.

In the experiments, each model is trained on the same dataset with the same dataset
partitioning strategy to ensure the comparability of the experiments. In addition, we only
detect clouds and do not detect cloud shadows. In the training phase, the batch size is set
to 8 and the learning rate warm up radio is set to 10−6. After 1500 iterations, the initial
value of 6 × 10−5 is restored, and the learning rate decays approximately exponentially
in the later training. A total of 160,000 iterations are trained. Adam [33] is used as the
optimization strategy. The experiments are implemented with the help of MMSegmentation
on an NVIDIA RTX2080TI GPU.

3.4. Ablation Experiment

In this subsection, we show ablation experiments on the priori Set Prediction, Set
Attention Block, the multi-scale Transformer decoder and the Binary mask Weighted
loss function. These experiments form a key basis for analyzing the performance of the
Cloudformer V2 model.



Mathematics 2022, 10, 2710 7 of 12

3.4.1. Effect of Set Prior Prediction

The training is carried out in two ways while keeping the rest of the structure the same.
One way is to keep the structure in Figure 1 and train it. The other way is to discard the
red arrowed part in Figure 1 and no longer separate the Set Prior Predictions from the Set
Prediction layer to aid training. In Figure 4, the trend of MIoU for the two training ways is
shown. It is clear that Set Prior Prediction improves training efficiency.

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 12 
 

 

In the experiments, each model is trained on the same dataset with the same dataset 
partitioning strategy to ensure the comparability of the experiments. In addition, we only 
detect clouds and do not detect cloud shadows. In the training phase, the batch size is set 
to 8 and the learning rate warm up radio is set to 10−6. After 1500 iterations, the initial 
value of 6 × 10−5 is restored, and the learning rate decays approximately exponentially in 
the later training. A total of 160,000 iterations are trained. Adam [33] is used as the opti-
mization strategy. The experiments are implemented with the help of MMSegmentation 
on an NVIDIA RTX2080TI GPU. 

3.4. Ablation Experiment 
In this subsection, we show ablation experiments on the priori Set Prediction, Set 

Attention Block, the multi-scale Transformer decoder and the Binary mask Weighted loss 
function. These experiments form a key basis for analyzing the performance of the Cloud-
former v2 model. 

3.4.1. Effect of Set Prior Prediction 
The training is carried out in two ways while keeping the rest of the structure the 

same. One way is to keep the structure in Figure 1 and train it. The other way is to discard 
the red arrowed part in Figure 1 and no longer separate the Set Prior Predictions from the 
Set Prediction layer to aid training. In Figure 4, the trend of MIoU for the two training 
ways is shown. It is clear that Set Prior Prediction improves training efficiency. 

 
Figure 4. Results of the Set Prior Prediction ablation experiment. 

3.4.2. Effect of Set Attention Block 
To investigate the effect of Set Attention Block on the overall performance, we replace 

the Set Attention with a normal Attention and block the Set Prior Prediction branch, and 
the experimental results are shown in Table 1. Set Attention Block can help the framework 
to improve the prediction accuracy by a small amount. 

  

Figure 4. Results of the Set Prior Prediction ablation experiment.

3.4.2. Effect of Set Attention Block

To investigate the effect of Set Attention Block on the overall performance, we replace
the Set Attention with a normal Attention and block the Set Prior Prediction branch, and
the experimental results are shown in Table 1. Set Attention Block can help the framework
to improve the prediction accuracy by a small amount.

Table 1. Set Attention Block ablation experiment results.

Method MIoU (%) MAcc (%) PAcc (%)

Base Attention 90.82 94.52 96.23
Set Attention 91.33 95.45 97.58

3.4.3. Effect of Multi-Scale Transformer Decoder

Figure 5a shows the multi-scale transformer decoder structure of the Cloudformer V2
framework, while Figure 5b shows the normal transformer decoder structure. The main
difference is that the traditional Transformer decoder only models features at the smallest
resolution, which results in a loss of features. The Multi-Scale Transformer decoder, on
the other hand, takes in multiple scales of feature maps for modelling, which significantly
improves the modelling capability of the network. We compare the overall effect of the two
structures on the framework.

Table 2 shows the ablation experiment results and it can be seen that the multi-scale
Transformer decoder has performance improvement on the framework. This indicates that
the multi-scale transformer decoder is able to make better use of the information in the
feature map.
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Table 2. Multi-scale Transformer decoder ablation experiment results.

Method MIoU (%) MAcc (%) PAcc (%)

Base Transformer decoder 91.32 94.84 96.23
Multi-scale Transformer decoder 92.49 95.41 97.21

3.4.4. Effect of Binary Mask Weighted Loss Function

To solve the sample imbalance problem of small clouds, the Binary mask Weighted
loss function (BW Loss) is proposed in this paper. To verify the contribution of the loss
function on the framework, we train the model using two loss functions, i.e., BW Loss
and a linear combination of cross-entropy loss and dice loss. The experimental results are
shown in Table 3. We quantify its performance by metrics such as MIoU and qualitatively
demonstrate the compared results in Figure 6.

Table 3. Binary mask weighted loss function ablation experiment results.

Method MIoU (%) MAcc (%) PAcc (%)

Base mask loss 90.76 93.11 95.76
BW loss 91.89 94.31 96.68
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3.5. Comparison with State-of-the-Art Methods

Table 4 and Figure 7 show the performance of the Cloudformer V2 framework compared
to other methods on GF-1 satellite data. The overall evaluation results show that Cloudformer
V2 has a 1 to 3% improvement in accuracy compared to all other recent methods.

Table 4. Performance Comparison with State-of-the-Art Methods.

Method MIoU (%) MAcc (%) PAcc (%)

GCDB-UNet 89.45 93.62 94.08
SwinTransformer-UperNet 90.47 93.37 94.12

Mask2former 90.89 94.69 94.89
Cloudformer 91.78 94.49 95.07

Cloudformer V2 92.52 95.66 96.75
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4. Discussion
4.1. The Effectiveness of the Transformer Network and Set Attention Block

In terms of receptive field, the Transformer network has a larger receptive field initially
compared to the convolutional neural network, which can help the network to obtain
more valid information early on [34]. In terms of the core computational mechanism,
the convolutional neural network is channel-driven, while the multi-headed attention
mechanism is data-driven. The Transformer network can retain more spatial location
information, which is very important in cloud detection tasks, so the above advantages
make it an excellent feature extractor.

However, the free-form nature of the multi-headed attention mechanism makes it
difficult to train the network for convergence, and although in the encoding part we use the
Swin Transformer local attention mechanism designed to enhance inductive bias, training
is still very difficult. Therefore, we use ensemble prior prediction as an intermediate feature
to assist in the training of the entire network. The ensemble prior prediction is obtained by
combining a simple single-headed ensemble attention mechanism with bilinear difference
upsampling.

4.2. Binary Mask Weighted Loss Function Design and Analysis

When processing remote sensing images, we find that many clouds can be seen in the
original image. However, after data enhancement operations such as random cropping, a
large number of images in the dataset contain only a few clouds, which leads to positive
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and negative sample imbalance. The Binary mask Weighted loss function is therefore
proposed. Using the binary mask predictions obtained by the multi-scale Transformer as a
base, a weight is computed to control the size of the current predicted loss. The smaller the
cloud, the greater the weighting, which increases the loss in small cloud scenes and enables
the network to learn small cloud scenes more actively, thus reducing the impact of sample
imbalance on the network.

4.3. Analysis of Experimental Results

To illustrate the effectiveness of Cloudformer V2, several experiments are designed and
performed. In the ablation experiment, Figure 4 shows the performance of set-prior maps. It
can be seen that with the set-prior maps structure, the network is able to start converging at
an earlier epoch and obtain better results with fewer rounds. The experimental results also
show that there is a small reduction in the degree of oscillation during the training process,
especially at the 30–50 epoch in the figure. Table 1 then demonstrates the performance gains
from Set Attention Block. Table 2 shows that the multi-scale Transformer decoder improves
the overall performance of the network, and that the multi-scale structure allows for better
use of image information to obtain more accurate predictions. Table 3 shows quantitatively
the performance improvement of the Binary mask weighted loss function in GF-1 data. The
visualization in Figure 6 further illustrates that the Binary mask Weighted loss function
achieves the objectives of our design. From a full graph perspective, the results on the right
side ignore the large number of small clouds. The results of the BW loss used on the left
side detect the small clouds very well.

Cloudformer V2 performs well in comparison to other advanced methods. In Figure 7,
we can visually see that Cloudformer V2 has an advantage in the detection accuracy on
small clouds, thin clouds and cloud edges. Table 4 shows that Cloudformer V2 achieves a 1
to 3% improvement in overall accuracy over all other methods.

5. Conclusions

The Cloudformer V2, a high-precision cloud detection method based on Cloudformer
is presented in this paper. It focuses on optimizing the Transformer network for slow
training in cloud detection tasks and sample imbalance in small cloud scenes. We propose
to use ensemble prior prediction-assisted training to optimize the training speed of the net-
work. We also proposed to use the Binary mask Weighted loss function to solve the sample
imbalance problem in small cloud detection. The multi-scale Transformer decoder makes
more effective use of image information and further improves the overall accuracy. Several
experimental results show that Cloudformer V2 outperforms other existing cloud detection
methods. In the future, we will be committed to the lightweight work of Cloudformer
V2. We hope to find the parts of the framework that have less impact on the final results
and improve or delete them. We try to further compress the scale of the model without
reducing the accuracy of the framework, so that it can be used for real-time cloud detection
tasks on airborne platforms whose performance is lower than that of ground servers. At
the same time, we will try to put Cloudformer V2 into other tasks (such as water detection)
to further verify the versatility of our method.
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