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Abstract: The paper considers the slope flow simulation and the problem of finding the optimal
parameter values of this mathematical model. The slope flow is modeled using the finite volume
method applied to the Reynolds-averaged Navier–Stokes equations with closure in the form of the
k−ω SST turbulence model. The optimal values of the turbulence model coefficients for free surface
gravity multiphase flows were found using the global search algorithm. Calibration was performed
to increase the similarity of the experimental and calculated velocity profiles. The Root Mean Square
Error (RMSE) of derivation between the calculated flow velocity profile and the experimental one is
considered as the objective function in the optimization problem. The calibration of the turbulence
model coefficients for calculating the free surface flows on test slopes using the multiphase model for
interphase tracking has not been performed previously. To solve the multi-extremal optimization
problem arising from the search for the minimum of the loss function for the flow velocity profile, we
apply a new optimization approach using a Peano curve to reduce the dimensionality of the problem.
To speed up the optimization procedure, the objective function was approximated using an artificial
neural network. Thus, an interdisciplinary approach was applied which allowed the optimal values
of six turbulence model parameters to be found using OpenFOAM and Globalizer software.

Keywords: global optimization; artificial neural network; function approximation; finite volume
method; CFD; OpenFOAM; interFoam
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1. Introduction

Climate change is accompanied by dangerous natural phenomena that are becoming
more and more frequent. These phenomena inevitably affect human life and daily activities.
Research into these issues involves mathematical modeling and analysis of geophysical data,
as well as data from numerical and field experiments. The current trend in geodata analysis
is associated with the use of machine learning algorithms and artificial neural networks.

Landslides, mudflows, and avalanches are classified as dangerous geological phenom-
ena. These are slope processes associated with the separation of rocks, their movement
along the slope under the influence of gravity and leading to irreversible changes in the
relief. The study of the descent of landslides, mudflows, and avalanches, as well as their
prediction and detection are highly relevant due to the impact of these dangerous phenom-
ena on human life and urban infrastructure. Landslides are distinguished according to
the main causes of their occurrence. These are: abrasive, erosional, anthropogenic, and
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natural/anthropogenic. According to the mechanism of displacement, block landslides,
shear, stretching, and liquefaction landslides are classified, respectively [1].

Data show that between January 2004 and December 2016, landslides killed about
56,000 people in as little as 5000 incidents. The spatial distribution of landslides is uneven,
with Asia as the predominant geographic area [2].

A large number of landslides, avalanches, and mudflows occur in European countries
(Switzerland, Austria, Italy, France, and Iceland). Similar dangerous phenomena occur in
Russia, for example, in the Krasnodar Territory of the Russian Federation and in the North
Caucasus, due to heavy rainfalls in these regions where mountainous terrain is present,
and in connection with the development of the territory (linear and areal objects) in recent
years [3]. The amount of precipitation was outstanding in the above territories of Russia
(Sochi, Krasnaya Polyana) in 2021. This led to the flooding of mountain rivers and increased
the risk of slope flows. Catastrophic descents of mudflows occurred, resulting in damage
to road equipment and blockage of roadways [4].

Mudflows are one of the most complex exogenous geological processes, which inte-
grate the actions of other geological processes. The mudflow is a complex heterogeneous
structure consisting of liquid and solid components. The solid fraction consists of mineral
particles, which are non-uniform from the granulometric viewpoint.

The most well-known landslide problem involves assessing the stability of a landslide
slope for static conditions and seismic impact. Modeling the descent of the slope flow
makes it possible to predict the damage caused by this phenomenon and to correctly
locate the protective structures and vital objects. Such problems are solved using the finite
difference method [5], the finite volume method [6], the discrete elements method [7], the
cellular automata method [8], and hybrid methods. The mudflows can be modeled using
a two-fluid model based on the Volume of Fluid model [9]. The methods listed above
are implemented in various commercial and open source software packages MN2D [10],
TITAN2D [11], and RAMMS.

Previously, the study of avalanches was carried out using computational fluid dynam-
ics methods for Newtonian fluids and analysis of observation data, including the historical
data on avalanches in Japan [12,13]. Similar work was carried out on avalanches in Switzer-
land, Austria, and Italy. A series of works on the study of avalanches using laboratory
experiment in special trays and measuring equipment for studying avalanches in Iceland
were carried out at the University of Iceland [14,15]. An experiment with the descent of a
snow-water stream in Davos, Switzerland was described in [16]. Measurements were made
for the flow depth for a dry snow avalanche and for a snow-water flow.

Cheng et al. [17] used Bayesian analysis to calibrate the coefficients of the Spalart–
Allmaras turbulence model to correct model deficiencies and reproduce the profile of a
turbulent boundary layer over a flat plate. Among similar works, the coefficients were al-
ready calibrated in the k− ε turbulence model when studying the process of the propagation
of impurities in the process of urban development [18].

Bayesian analysis is often used to calibrate the RANS closures turbulence models to
improve forecast accuracy without losing computational efficiency (as was done for k−ε
model with Launder-Sharma damping functions, k−ω Wilcox model, Spalart–Allmaras
and Baldwin–Lomax models [19,20]). De Zordo-Banliat et al. applied Bayesian analysis to
compressor cascades to obtain a set of calibrated turbulence model parameters due to the
inadequacy of the original model [21].

Kotaro Matsui et al. [22] proposed a new set of calibrated coefficients that improved
the ability of the Spalart–Allmaras model to predict compressor cascade flow angular
separation. A comprehensive review of turbulence model uncertainties is given in the
paper of Xiao and Cinnella [23].

A comprehensive analysis of climatic, geological, and hydrological data was applied
to model and predict the slope flows. In the scope of recent trends, huge streams of
data received from satellites, from the experiments, and from mathematical modeling are
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processed using machine learning, which makes it possible to develop efficient models of
these processes [24,25].

Recently, several new optimization and machine learning methods have been pro-
posed. In [26], a new method of regret analysis, called stochastic p-robust optimization, has
been proposed, which allows to simultaneously take advantage of stochastic optimization
and robust optimization methods to study the optimal operation of a hybrid energy system.

A learning-based method for building driving-signal aware full-body avatars was
presented in [27]. The model was a conditional variational auto-encoder that could be
animated with incomplete driving signals, such as human pose and facial keypoints,
and produced a high-quality representation of human geometry and view-dependent
appearance.

A novel multi-class wind turbine bearing fault diagnosis strategy based on the condi-
tional variational generative adversarial network model combining multi-source signals
fusion was proposed in [28]. The strategy converted multi-source 1D vibration signals into
2D signals, and the multi-source 2D signals were fused by using wavelet transform.

A complementary label adversarial network (CLARINET) was proposed to solve com-
pletely complementary unsupervised domain adaptation (CC-UDA) and partly comple-
mentary unsupervised domain adaptation (PC-UDA) problems. CLARINET maintains two
deep networks simultaneously, with one focusing on classifying the complementary-label
source data and the other taking care of the source-to-target distributional adaptation [29].

A challenging problem called unsupervised open set domain adaptation (UOSDA)
was considered in [30]. The authors proposed a practical theoretical bound for UOSDA,
which contained an effective risk estimator to evaluate the risk on data with unknown
classes. In addition, a DNN-based UOSDA method under the guidance of the proposed
theoretical bound was put forward. The method can accurately estimate the risk of the
classifier on data with unknown classes and adequately align the distributions of data with
known classes.

Methods based on convolutional neural networks (CNN) are able to extract stable
spatial and spectral features [31]. A combination of satellite image and topographic data
can be used to generalize the extracted features in order to identify slope flows in satellite
images [32,33].

Calibration of the k − ω SST models [34–36] was mainly carried out for air flows
around various profiles. For example, calibration was performed for the flow around
airfoils at high Reynolds numbers in a wide range of angles of attack [37] (as it was
noted by the authors, the area of applicability of the suggested modification is limited to
flows around airfoils). Calibration was also carried out for the flow around small wind
turbines [38,39] and around a simple flat plate [40]. No calibration of the turbulence model
for fluid flows with a free surface on a slope under the action of gravity was performed.
The work uses a multi-phase model to track the interface to calculate the flow. The effect of
this multiphase nature should also be taken into account when using the coefficients of the
turbulent model. In the present work, for the first time, the coefficients of the turbulent
model are calibrated for the flow of a multiphase fluid under the action of gravity on
a slope.

The slope flow model, as a rule, includes several parameters, the values of which
cannot be specified in advance but can be selected based on the consistency of the numerical
results with the experimental data available. Such a problem is a global optimization
problem with a black box objective function because the specific type of the objective
function is not known, there exists only the algorithm for calculating its values.

The complexity of the phenomena and processes under study is reflected in the
complexity of the corresponding mathematical models and numerical methods for their
analysis. Currently, the main (and often the only possible) tool for such an analysis is
supercomputer modeling of the object behavior. Open source software is used widely
for this purpose. OpenFOAM (an open platform for numerical modeling of continuum
mechanics problems) is a well-known example of open source software of this kind [41].
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The growing performance of modern supercomputer systems goes in parallel with the
complication of mathematical models of the processes considered that makes performing
even a single model calculation (a trial) a computation-costly operation. Consequently,
the choice of the optimal values of the model parameters in reasonable time cannot be
completed by trying all possible variants by the grid method, i.e., by searching on some
regular grid in the range of variation of the parameters. The impossibility of performing a
large number of search trials requires applying efficient search algorithms, which would
provide an acceptable estimate of a problem solution at a relatively small number of trials
using available computational resources.

It is worth noting that most existing methods for finding the optimum of time-
consuming black-box functions have some drawbacks. Gradient-based algorithms cannot
be used in many cases just because the derivatives of an objective function are unknown
while the finite-difference approximations of these derivatives are too computationally
costly. At the same time, in general, gradient-based methods only allow finding a locally
optimal solution to the problem. Classical direct search methods, which do not require the
derivatives, e.g., the Nelder–Mead method [42] or the Hooke–Jeeves method [43], are also
local. As a rule, the application of these methods for solving global optimization problems
involves several restarts from random grid nodes, which requires a large number of trials.

Deterministic methods of the Lipschitz global optimization, such as DIRECT [44], non-
uniform coverages method [45,46], diagonal [47], and simplicial [48] methods guarantee
(in the limit) convergence to the global solution of the problem but may require a large
number of search trials. Finally, heuristic methods, e.g., differential evolution or simulated
annealing, also require a very large amount of computations of the functions to obtain good
estimates of the solutions in global optimization problems and at the same time lose in
quality to the deterministic algorithms [49,50].

So far, the direct application of optimization algorithms to search for the minima of
the time-consuming function may appear too computationally costly when a single trial
takes a great deal of computation time. A well known method to overcome this problem is
to construct an approximation of the objective function (also known as a response surface
model or a metamodel or a surrogate model). Computing its values is a computationally
inexpensive operation. The approximation is used further to find the minimum. There
are many variants of constructing the approximations for multivariate functions. These
are various interpolation methods utilizing polynomials, splines, radial basis functions,
Kriging, as well as various regression models. Many of these algorithms are used in the
development of global optimization methods.

For example, the use of the radial basis functions has been considered in detail
in [51,52]. In [53–55], Kriging-based methods have been proposed. A novel approach
to constructing the metamodels and trust-region methods based on these ones has been
presented in [56–58].

In the present study, we used an efficient global search algorithm [59,60] for solv-
ing the Lipschitz global optimization problems combined with function approximations
based on the regression models. At the first search stage, the algorithm worked with the
objective function as a direct method. Then, an approximation of the objective function
was constructed using the accumulated information. This approximation was used at the
second stage of the search. To construct the approximations, we applied Neural Network
Regression (NNR).

To study the parameters of slope flows, it is advisable to use interdisciplinary ap-
proaches from the fields of computational and experimental hydrodynamics, optimization
theory, parallel computing, and neural networks. This paper uses the results of an experi-
ment in a chute with a different angle of inclination, a mathematical model for modeling
a two-phase flow, global optimization methods, and an artificial neural network. The
mathematical model is based on the averaged Reynolds equations and a two-parameter
turbulence model.
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The turbulence model k − ω SST contains a number of coefficients calibrated for
canonical flows in pipes and channels, air flow around various profiles, etc. [61–63]. Cali-
bration of turbulence model coefficients was not carried out for calculating the free surface
flows on slopes using the multiphase model for interphase tracking was performed. In this
work, the coefficients of the k−ω SST turbulence model were optimized for calculating
the turbulent fluid flow in the chute.

The main part of the paper has the following structure. Section 2 contains a description
of the experiment. Section 3 describes the mathematical model of turbulent two-phase
flows. Section 4 contains the details of numerical methods. Section 5 describes the results
of numerical experiments. Section 6 contains a discussion. Section 7 concludes the paper.

2. Inclined Chute Experiment

To study slope flow parameters, experimental setups were used. The objects of study
were such measurements as flow depth, flow velocity, and force of interaction with an
obstacle. In our study, the velocity profile was studied.

An experimental setup at the Research Institute of Mechanics, Lomonosov Moscow
State University [64], was used for this purpose. To carry out the calibration, a turbulent
flow in an inclined chute was studied. Three different angles of inclination were used
during the work. The chute had a simple rectangular geometry 1 m long, 12 cm wide, and
10 cm high. The section of the chute to be examined was between two points of velocity
and depth measurements located at the distances of 23 cm and 82 cm from the top side of
chute. The schematic diagram of the experimental setup is shown in Figure 1. Tap water
was used in the experiment.

Figure 1. Schematic diagram of the experimental chute.

The experiment was carried out in a stationary mode. Stationarity was provided by
a submersible pump “JEELEX Fekalnik 200” with a capacity of 200 L per minute. The
measurement was carried out using a Pitot tube connected to a “KORUND-DDN-001M”
pressure sensor with an error of 0.1%. Measurement points were spaced every 0.5 mm. A
10 s average was used for each measurement. The water temperature in the experiment
was 20 degrees Celsius (room temperature). All temperature-related model coefficients
were chosen based on this value.

Three series of experiments were performed; the initial flow profile, the initial flow
depth, the slope angle were varied as shown in Table 1 [64], where u0 is the depth-averaged
velocity, h0 is the flow depth, θ is the slope inclination angle.



Mathematics 2022, 10, 2708 6 of 20

Table 1. Parameters of the experiments [64].

u0, m/s h0, mm θ

1.63 4.20 25◦

2.00 4.95 28◦

1.78 3.45 33◦

3. Mathematical Model

The Reynolds-averaged Navier–Stokes equations [65–67] were used to model the
experiment carried out at the Research Institute of Mechanics of Lomonosov Moscow State
University. The k−ω SST turbulence model [34,35] was used to obtain the values of the
Reynolds stress tensor. The position of the free surface of the flow is determined using the
VOF (Volume Of Fluid) method suggested by C.W. Hirt and B.D. Nichols in 1981 [9]. In
this method, the volume fraction of water phase α in the cell is used to determine the free
surface so that if α > 0.6, the cell is considered to be filled with liquid, otherwise—to be
filled with air.

The flow in the experimental setup is described by a system of five equations (1). These
are the Reynolds-averaged Navier–Stokes equations (continuity equation and momentum
conservation equation). The system also includes a transfer equation for the phase volume
fraction to track the interface. The system of equations is closed by two equations of
conservation of turbulent kinetic energy and a special dissipation of turbulent kinetic
energy, which are used to calculate the Reynolds stresses that arise when averaging the
Navier–Stokes equations.

∇ · ū = 0,
∂α

∂t
+∇ · (ūα) = 0,

∂(ρū)
∂t

+∇ · (ρūū) = −∇ p̄ +∇ · τ̄ + ρ f̄ ,

∂(ρk)
∂t

+∇ · (ρūk) = P̃k − β∗ρkω +∇ · ((µ + αkµt)∇k),

∂(ρω)

∂t
+∇ · (ρūω) = γρṡ2 − βρω2 +∇ · ((µ + αωµt)∇ω)+

2(1− F1)ραω2
1
ω
∇k · ∇ω.

(1)

Here, α is the water volume fraction, τ̄ = 2µe f f s̄ is the stress tensor, s̄ is the strain rate
tensor, µe f f = µ + µt is the effective viscosity, µ is a molecular viscosity,
µt = ρa1k/ max(a1ω, b1 ṡF2) is a turbulent viscosity, f̄ is the density of the body forces, ū is
the mixture velocity, ρ is the mixture density, p̄ is the pressure, ω is the specific dissipation
rate of the turbulent kinetic energy, k is the turbulent kinetic energy,

F1 = tanh
((

min
(

max
( √

k
β∗ωy , 500ν

y2ω

)
, 4ραω2k

CDkωy2

))4
)

is the blending function (F1 equals zero

away from the wall and the model turns into the k− ε model, while inside the boundary
layer F1 equals one and the k − ω model is realized), ṡ is the strain rate (invariant of s),

CDkω = max
(

2ραω2
1
ω∇k · ∇ω, 10−10

)
, F2 = tanh

((
max

(
2
√

k
β∗ωy , 500ν

y2ω

))2
)

is the second

blending function, and P̃k = min(µt∇ū ·
[
∇ū + (∇ū)T], 10 · β∗ρkω) is the limiter on the

growth of turbulence used in stagnation modes. Details can be found in the OpenFOAM
package user guide [68].
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The turbulence model contains four coefficients: αk, αω, β, γ. αk, αω, γ are calculated
using the weighted average principle: γ = γ1F1 + γ2(1− F1). By default, the coefficients
of the turbulent model are set by the following values [61–63]:

γ1 = 5/9, β1 = 3/40, αk1 = 0.85, αω1 = 0.5,

γ2 = 0.44, β2 = 0.083, αk2 = 1, αω2 = 0.856,

β∗ = 0.09, a1 = 0.31, b1 = 1.0, c1 = 10.0.

(2)

The details of the turbulence model description are presented in [34,36].

4. Methods
4.1. CFD Numerical Method

To implement the three-dimensional multiphase single-rate approach, the interFoam [69]
solver of OpenFOAM package (v2012, created by Henry Weller in 1989, Bracknell, United
Kingdom) was used.

The approximation schemes used in the work are listed below.

• The time terms were approximated with first order Euler numerical scheme;
• The convection term, the water volume fraction flux term, divergence of the stress

tensor term were approximated with second order numerical scheme;
• The turbulent kinetic energy flux, the dissipation flux of the specific turbulent kinetic

energy term were approximated with first order bounded numerical scheme;
• The gradient terms were calculated using Gaussian integration with linear

interpolation;
• The Laplacian terms were calculated using Gaussian integration with linear interpola-

tion with explicit non-orthogonal correction;
• All other terms in the equations were discretized using a central difference numeri-

cal scheme.

The second order linear upwind scheme used for the convection term is most efficient
and accurate for Reynolds Averaged Navier–Stokes (RANS) simulations [70].

The PIMPLE algorithm [71,72], which was developed to run the equations with a large
Courant number, was used to solve the system equations. The PIMPLE is a combination of
PISO [73] and SIMPLE [74] algorithms.

The conjugate gradient method with preconditioner GAMG is used to solve the
system of linear equations for pressure. The GaussSeidel method is used as a smoother.
The values for volume fraction of water, velocity, k, ω are defined using smoothSolver and
symGaussSeidel method as a smoother.

4.1.1. Definition of the Calculation Domain

The advantage of mathematical modeling is that the model allows virtual sensors
to be placed at any point in the computational domain to measure the values of physical
quantities. In the experiment, the physical sensors were placed at the exit from the chute.
To compare the results of the experiment and the calculation, the virtual sensors were
positioned in the same place.

A section of the experimental chute located between two velocity profile and flow
depth measurement points was simulated. The simulations were performed for the thick
10 mm part of the chute where the influence of the side walls was small. The first measured
profile was used for the input data for the computational domain. The second one was
the object of comparison. The parallelepiped with a size of 590 mm in length, 10 mm in
width, and 10 mm in height was used for the numerical domain. We tested the effect of
grid resolution. Grid convergence was studied for various grid sizes of 290× 10× 30,
590× 10× 60, 1080× 10× 120, and 2160× 10× 240. For each run, the output velocity
profile was compared with the experimental one using the loss function (5). The values of
the loss functions for the last three mesh sizes varied within 0.1%. Therefore, the number
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of cells was chosen to be 590 × 10 × 60 for reasons of reducing computer time while
maintaining accuracy.

4.1.2. Initial and Boundary Conditions

The special boundaries for numerical domain were defined: the chute bottom, the
chute sides, the upper border for numerical domain, and the inlet and outlet planes.

The following boundary conditions were set:

• The solid wall with the no-slip condition was used for the chute bottom;
• The zero gradient condition was used for the chute side;
• The mixed condition with atmospheric pressure was used for the upper border of

numerical domain, no inflow through the border and outflow according to zero
gradient condition and fixed value condition for k and ω;

• The fixed values were used for inlet plane for water volume fraction, velocity profile,
k and ω values;

• The zero gradient condition was used for outlet plane.

The mathematical formulation of the listed initial and boundary conditions is pre-
sented in the OpenFOAM user manual [68].

The average value of Y+ was 17 which satisfied the model of wall functions. The
nutkWallFunction was used for boundary condition for the wall, which provides a wall
constraint on the turbulent viscosity, based on the turbulent kinetic energy for both low-
and high-Reynolds number turbulence models.

The initial conditions in the problem are set so that the volume is completely filled
with stationary air and the liquid flows in through the inlet plane. After a while, the flow
is established and measurements are taken on the outlet plane for comparison with the
experimental data. The time step dt is equal to 0.001 s. The flow is considered steady after
5 s.

4.2. Global Optimization Problem Statement

The Globalizer software (Lobachevsky University) was used to solve the optimization
problem.

Let us assume that the choice of some set of values of the model parameters is deter-
mined by the values of vector y = (y1, y2, . . . , yN) and the quality of the model correspond-
ing to a given value of the vector of parameters is described by the function ϕ(y). Let us
call this function the optimization criterion: a decrease in the criterion value corresponds
to a better mathematical model. Additionally, assume that some requirements must be
satisfied to guarantee the applicability of the model. Meeting these requirements is usually
formulated as the condition for the vector y to belong to the hyperinterval D,

D = {ai ≤ yi ≤ bi, 1 ≤ i ≤ N}. (3)

So far, the process of choosing the optimal set of the model parameters corresponds to
a global optimization problem of the kind:

ϕ(y∗) = min {ϕ(y) : y ∈ D},

D =
{

y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N
}

.
(4)

When optimizing the coefficients of the turbulent model, the Root-Mean-Square Error
(RMSE) of differentiation of the calculated flow velocity profile and the experimental one
on the outlet plane is taken into account.

LRMSE =

√√√√√ N
∑

i=1

(
ui

EXP − ui
k−ω SST

)2

N
(5)
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is minimized. Here, ui
EXP is the horizontal component of velocity at the control point

obtained by experiment, and ui
k−ω SST is the horizontal component of velocity at the control

point calculated by computational fluid dynamic (CFD), N is the number of comparison
points for the horizontal component of velocity over the flow depth at the outlet plane
(right cross-section displayed in Figure 1). Approximately 10 comparison points are used.
Their number is determined by the number of measurements performed in the experiment
and varies depending on the change in the flow depth at different chute inclination angles.
The points are evenly distributed in depth for the operation of measurement tools used in
the experiment.

We will consider the loss function (5) as the objective function ϕ(y) in the global
optimization problem (4). The problems considered are characterized by the fact that the
objective function ϕ(y) is not defined analytically; there is only an algorithm for computing
its values at the points of the domain D. In this case, one search trial corresponds to one
computation according to the model and is a time- consuming operation [75,76].

Multi-extremal optimization problems have much higher computation costs for solv-
ing them as compared to other types of optimization problems since the global optimum is
an integral characteristic of the problem being solved and requires investigating the whole
search domain. As a result, the search for the global optimum is reduced to constructing
some coverage (grid) in some range of parameters and choosing the optimal function value
on this grid. The amount of computations may be reduced by constructing a non-uniform
coverage of the search domain: the grid should be dense enough in the vicinity of the
global optimum and less dense far away from the sought solution.

The assumption that the objective function ϕ(y) satisfies the Lipschitz condition

|ϕ(y1)− ϕ(y2)| ≤ L‖y1 − y2‖, y1, y2 ∈ D, 0 < L < ∞, (6)

is a typical and is used in many global optimization methods [44,46,60,77]. The assumption
of this kind is natural enough for many applied problems since the relative variations
of the function characterizing the process being simulated cannot usually exceed some
threshold imposed by the limited energy of variation. The question of estimating the
Lipschitz constant values unknown a priori arising here can be resolved by introducing
some additive schemes [78,79].

There are several ways to adapt efficient one-dimensional algorithms for solving
multidimensional problems (see, e.g., [47,48]). In this study we apply the dimensionality
reduction using Peano curve y(x) continuously mapping the unit interval [0, 1] onto the
n-dimensional cube{

y ∈ RN : −2−1 ≤ yi ≤ 2−1, 1 ≤ i ≤ N
}
= {y(x) : 0 ≤ x ≤ 1}. (7)

Algorithms for constructing Peano-type space filling curves and the corresponding
theory are considered in detail in [59,60].

By using this kind of mapping, the multivariate problem (4) could be reduced to a
univariate problem

ϕ(y∗) = ϕ(y(x∗)) = min {ϕ(y(x)) : x ∈ [0, 1]}. (8)

An important property of such mapping is that if the function ϕ(y) in the domain D
satisfies the Lipschitz condition, then the function ϕ(y(x)) on the interval [0, 1] will satisfy
a uniform Hölder condition

|ϕ(y(x1))− ϕ(y(x2))| ≤ H|x1 − x2|1/N , (9)

where the Hölder constant H is linked to the Lipschitz constant L by the relation
H = 2L

√
N + 3 [59].
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Therefore, we can consider minimization of univariate function

f (x) = ϕ(y(x)), x ∈ [0, 1], (10)

satisfying the Hölder condition.

4.3. The Global Search Algorithm

The algorithm for solving the problem (4) involves constructing a sequence of points
xk, where the values of the objective function zk = f (xk) = ϕ(y(xk)) are calculated. Let
us call the process of calculating the function value (including the construction of an
image yk = y(xk)) the “trial”, and the pair (yk, zk), the “trial result”. The set of pairs{
(yk, zk), 0 ≤ k ≤ n

}
makes up the search data collected using the method after carrying

out n steps. The rules that determine the work of the global search algorithm are as follows.
The first two trials are performed at the boundary points of the segment [0, 1], i.e.,

x0 = 0 and x1 = 1. The values z0 = f (x0) and z1 = f (x1) of the objective function are
calculated, and the counter k = 1 is set. A next trial point xk+1, k ≥ 1, is chosen using the
following rules.

Step 1. Renumber points of the set Xk = {x0, . . . , xk} with subscripts in increasing
order of coordinate values, i.e.,

0 = x0 < x1 < · · · < xk−1 < xk = 1. (11)

Note that hereinafter superscripts are used to denote the iteration number, and sub-
scripts are used to number the points in order.

Step 2. Supposing that zi = f (xi), 1 ≤ i ≤ k, calculate values

µ = max
1≤i≤k

|zi − zi−1|
∆i

, (12)

M =

{
rµ, µ > 0,
1, µ = 0,

(13)

where the real number r > 1 is the method input parameter, and ∆i = (xi − xi−1)
1/N .

Step 3. For each interval (xi−1, xi), 1 ≤ i ≤ k, calculate a characteristic according to
the following formula

R(i) = ∆i +
(zi − zi−1)

2

M2∆i
− 2

zi + zi−1

M
, 1 ≤ i ≤ k. (14)

Step 4. Select the interval (xt−1, xt) corresponding to the maximum characteristic

R(t) = max {R(i) : 1 ≤ i ≤ k}. (15)

Step 5. Execute the new trial at the point xk+1 ∈ (xt−1, xt), calculated using the
following formula

xk+1 =
xt + xt−1

2
− sign(zt − zt−1)

1
2r

[
|zt − zt−1|

µ

]N
. (16)

The algorithm stops when ∆t < ε, where ε > 0 is the preset accuracy. For estimation
of the global optimum, values

f ∗k = min
0≤i≤k

f (xi), x∗k = arg min
0≤i≤k

f (xi), (17)

are chosen.
A rigorous proof of this algorithm’s convergence is provided in [59].
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4.4. Construction of the Objective Function Approximation
4.4.1. The Use of Neural Networks

There are no universal rules for the choice of the neural network topology to solve
a particular problem. However, in [80] the Kolmogorov theorem has been generalized
and it was proved that any continuous function of N variables can be approximated by
a three-layered artificial feedforward neural network with one hidden layer and an error
backpropagation algorithm as a learning one with any degree of precision. This theorem is
called the Universal Approximation Theorem or the Cybenko theorem [81].

Neural networks as approximators were implemented in many machine learning
libraries. In the present study, MLPRegressor class from scikit-learn machine learning
library was used to construct the objective function approximation. It implements a multi-
layer perceptron (MLP), which is learned using error backpropagation without activation
function in the output layer [82]. MLPs have demonstrated an ability to find approximate
solutions for very complex problems.

A MLP with one hidden layer with a scalar output is shown in Figure 2.

Figure 2. Three-layer perceptron with scalar output.

The left layer called the input layer consists of a set of neurons yi, i = 1, k representing
the input signals (the values of variables). Each neuron in the hidden layer transforms the
values from the previous layer with weighted linear summing

w1y1 + w2y2 + . . . + wkyk + bias, (18)

where wi are the weights of the neurons and bias is a special weight, which does not include
a factor in the form of an input value. Next, the value obtained is transformed into an
output (predicted) value of the layer with a transmission function (the activation function).
The output layer receives the values from the last hidden layer and transforms them into
the output values. The network was trained by the error backpropagation method.

We used a three-layered neural network for solving the approximation problem due to
the following reasons. From the theoretical point of view, such a network will be sufficient
to approximate the function with a high accuracy. From the practical point of view, the
use of deep neural networks here will be redundant, because the set of trial results used to
build the approximation is small and will not be sufficient to train a deep network.

4.4.2. Selection of the Model Parameters

The choice of the solver, the activation function, the value of the regularization param-
eter, the number of neurons in the hidden layer, etc., are the variable adjustment parameters
of the neural network. For example, for small sets of the multidimensional data, the
“lbfgs” solver was demonstrated to be better and faster. This solver is a modification of
the Broyden–Fletcher–Goldfarb–Shanno algorithm [83] and belongs to the quasi-Newton
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methods. All numerical experiments were carried out using this algorithm. The sigmoidal
functions (logistic or hyperbolic tangent) were used as the neuron activation functions. The
number of neurons in each layer and the regularization parameter (alpha) were adjusted in
the experiments and depended on a particular problem.

In the experiments conducted, we chose the following network architecture:

model = MLPRegressor(activation=’logistic’,
solver=’lbfgs’,
alpha=0.001,
hidden_layer_sizes=(20,),
max_iter=5000,
tol=10e-6,
random_state=10)

4.5. The Use of Approximations in Solving the Optimization Problem

In the present study, we applied the following method of using the objective function
approximation in the optimization problems: to construct the objective function approxima-
tion using the accumulated search information, to find the minimum of the approximation,
and to repeat this process, either until the computation resources are exhausted or until the
convergence is achieved.

The method proposed will make sense either in the case when the amount of the
search information accumulated is large enough (that allows constructing a relatively
precise approximation of a multi-extremal function) or in the case when the problem is
similar to a local extremum search problem. The first case corresponds to the final stage of
search and can be interpreted as a method of refining the current solution. However, if the
objective function is time-consuming, it is impossible to conduct a large enough number of
trials. This is where we will encounter an exhaustion of computing resources.

The second case implies constructing a good approximation based on a relatively
small number of trials and, in fact, includes an assumption on a weak multi-extremality of
the objective function that matches well with the problem considered within the framework
of the present study.

The global search algorithm using the objective function approximation can be formu-
lated as follows. Let us assume that the available resources allow for Kmax = K1 + K2 trials
to be performed.

At the first stage, k = K1 trials are performed using the core global search algorithm
from Section 4.3. In the course of performing the first stage, a set of the trial results
Ω =

{
(yk, ϕ(yk)), 0 ≤ k ≤ K1

}
necessary to construct the objective function approximation

is accumulated.
At the second stage, the algorithm works using the approximation. To compute the

point yk+1 of the next (k + 1)th trial, the following operations are performed.
Step 1. Using the set of the trial results Ω formed in the course of the algorithm

execution, to construct an approximation of the objective function ϕ(y);
Step 2. Using the core global search algorithm from Section 4.3 to find the global mini-

mum of the function ϕ(y) and to use this value as the next trial point, i.e.,
yk+1 = arg miny∈D ϕ(y);

Step 3. If either the condition k > Kmax or the condition
∥∥∥yk − yk+1

∥∥∥ ≤ ε is satisfied,

to stop the algorithm. Else, to perform the trial at the point yk+1, to store its result in the set
Ω, to increment the trial counter k = k + 1, and to proceed to Step 1.

The algorithm proposed here ensures the convergence to the global solution in the
case if K1 trials executed at the first stage are sufficient to construct an approximation of the
objective function reflecting the main features of its behavior adequately.
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5. Results

The simulations were conducted using the supercomputer of Lobachevsky University
of Nizhni Novgorod (operated under the Linux CentOS 7.2 operation system). Each
supercomputer node included two Intel Sandy Bridge E5-2660 2.2 GHz processors, 64 Gb
RAM. The central processor unit had 8 cores. The global optimization methods considered
in the present work were implemented in C++ using GCC 5.5.0 compiler and Open MPI
v4.1.1. To construct the objective function approximations using a neural network, scikit-
learn machine learning library from Python 3.9 was applied. To numerically solve the
problem described in Section 3, the open source CFD software OpenFOAM v2012 [84]
was used.

Before starting the calibration, a small study of the significance of each of the 12 co-
efficients of the turbulent model was carried out. As a result, it was revealed that the
coefficients β∗, a1, αk1,2, and αω1,2 make the most significant contribution to the calculation
results. It was decided to calibrate these coefficients. These coefficients determine the
dissipation rate of turbulent kinetic energy, the Reynolds stress, the diffusion fluxes of
turbulent kinetic energy, and the specific dissipation rate. The coefficient β∗ is used in
the mixing functions that describe the mechanism for switching between the k − ε and
k−ω models. The coefficient a1 determines the turbulent viscosity. αk1,2 characterize the
diffusion flux of the kinetic energy of turbulence. αω1,2 characterize the diffusion flow by
the specific rate of dissipation of the kinetic energy of turbulence.

The initial values of the coefficients are

β∗ = 0.09; a1 = 0.31; αk1 = 0.85; αω1 = 0.5; αk2 = 1.0; αω2 = 0.856. (19)

One calculation of the objective function for given values of parameters took 15 min in
average with the use of 8 MPI-processes per node.

The optimal values of parameters were adjusted for pairs, the values of the remaining
parameters were fixed. First, a pair of the most important parameters β∗ and a1 was selected.
To investigate the optimization problem posed, both possible approaches to solving it were
applied: without the use of the objective function approximation and with the use of the
approximation.

In the first experiment, the global search algorithm described in Section 4.3 was applied
without the use of approximation. The parameters of the method were set as follows: r = 3
and ε = 10−3. In 24 h, 100 iterations of the algorithm were performed; the required accuracy
was not achieved.

In the second experiment, the approach described in Section 4.5 was applied to solve
the same problem. First, K1 = 30 iterations of global search algorithm were performed.
Afterwards, the algorithm employing the approximation with the neural network was
started. A total of K1 + K2 = 65 iterations of the algorithm were performed, after that the
algorithm stopped on accuracy. As a result, the best value of the objective function 0.375
was found. The total search time was reduced to 16 h, which ensured a more accurate
solution for the problem in a reasonable amount of time.

The trial points and the approximating function plotted according to these points
using the neural network are presented in Figure 3 (the parameters β∗ and a1 were varied).
Several local minima are clearly visible. Our analysis showed good agreement between the
regression model and experimental data. The R2 score and the RMSE between the model
predictions and the simulated results are equal to 0.976 and 0.098, respectively.
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Figure 3. Objective function values (red points) and the approximation plot constructed using the
neural network (parameters β∗ and a1 were varied).

The best values of parameters β∗ and a1 found were fixed, and then optimization in
parameters αk1, αω1, and αk2, αω2 was performed. However, no significant improvement of
the objective function by optimizing on these parameters was achieved: the value of 0.365
was obtained.

As a final result, the following values of the coefficients of the model were obtained:

β∗ = 0.117; a1 = 1.84; αk1 = 1.999;

αω1 = 0.062; αk2 = 1.241; αω2 = 0.003.
(20)

Figure 4 shows the resulting velocity profiles ux as a function of flow depth h on the
exit plane for various slope angles.

Figure 4. The comparison graphs of the experimental velocity profile and the calculated velocity
profile using the standard values of the k−ω SST turbulence model coefficients and the calculated
velocity profile with calibrated values of the coefficients for different slope inclination angles.

During the process of calibration, the minimization of the loss function (5) was
achieved, as shown in Table 2.
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Table 2. Loss function values obtained during the minimization process.

Slope Inclination Angle Initial Loss Function Value Minimized Loss Function
Value

25◦ 0.165 0.155
28◦ 0.085 0.128
33◦ 0.150 0.089

Figure 4 and Table 2 show a decrease in the discrepancy between the calculated
velocity profile and the experimental one for two out of three experiments. Optimization
for the three experiments combined (their loss functions were summarized) was used in
order to avoid the model overfitting. In one experiment, an almost perfect coincidence
of the calculated velocity profile with the experimental one was achieved, which was
not reproduced in other experiments. It should also be noted that the divergence of the
velocity profile in the region near the chute bottom is due to the measurement error in
the experiment, since it is difficult to measure the velocity with the Pitot tube used in this
experiment in the immediate vicinity of the bottom.

The minimum value for the objective function was obtained in the case of the slope
angle of 33 degrees. One calculation of the objective function for the given parameters
took 15 min in average using 8 MPI processes on a node of the Lobachevsky University
supercomputer. Total computation time was 24 h.

6. Discussion

When working on the optimization of the turbulent model coefficients, we faced a
number of tasks: creating an interface for automatic interaction between the Globalizer
software and the OpenFOAM package; in the process of optimization, we encountered the
overfitting problem; and the study of the best loss function was carried out, etc.

Creating an interaction interface between Globalizer and OpenFOAM required the
use of the pyFoam library to prepare calculation runs. Using the script of this library
pyFoamPrepareCase.py, new values of the turbulent model coefficients proposed by the
Globalizer software were written into the calculation cases. Next, the calculation was
carried out in parallel mode and the result was evaluated using a python script that
compared the obtained velocity profile with the experimental one.

A study of various loss functions has been carried out. The loss functions that estimate
the absolute error of the velocity profile and the relative error were compared. The relative
loss function actually penalizes the area near the bottom more, however, optimization using
this loss function did not show significant improvements in the result. This behavior of
the calculation is not due to the shortcomings of the numerical model, but rather due to
the impossibility of taking velocity values correctly in the region very close to the bottom
of the chute. It should be noted that measurements at the point closest to the bottom can
have a significant error, due to the measurement method used (the Pitot tube). However,
most of the profile was measured quite accurately, since for each measurement point in this
stationary experiment, time averaging of 10 s was used. As a result of this study, it was
decided to use the absolute loss function, since it showed the best optimization result.

We performed three experiments to avoid overfitting. It was noticed that when
optimizing for one velocity profile, the algorithm perfectly calibrated the model, but for
other experiments, the result was much worse. When optimizing for three experiments at
once, this effect was avoided. The use of the obtained values of the coefficients for fluid
flows that are close in dimensionless characteristics will allow a more accurate calculation to
be made. However, when generalized to such canonical flows as air flow around different
profiles, the use of the obtained values of the turbulent model coefficients is unlikely to
show the best result.
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This study is part of a larger research effort related to the modeling of currents on
the slopes of mountains. These flows are very difficult to study, since they are turbulent
multi-phase flows of a non-Newtonian fluid on slopes of complex geometry. For such flows,
the use of turbulent models using standard values of coefficients does not predict the flow
in the best way. It is necessary to calibrate the turbulence model coefficients or create new
turbulence models. We are considering both options. Moreover, a new turbulent model
is being developed based on the neural network. However, the use of neural networks
requires hybrid computing clusters, which is not always possible. As a result, it is important
to be able to obtain a solution of sufficient accuracy using the classical turbulent model.
This problem requires the calibration of the coefficients, which was done in this work for
the Newtonian medium. Optimization algorithms were developed and tested, which can
later be used to calibrate the coefficients of any turbulent models. The next stage of the
study is to set up an experiment with a non-Newtonian fluid and calibrate the coefficients
of the turbulent model according to the developed algorithm.

We also note that when searching for the optimal model parameters, optimization was
carried out first with respect to the parameters β∗ and a1, then optimization in αk1, αω1,
and αk2, αω2 was performed. This approach makes it possible to find a good solution in a
reasonable amount of time. The search for a global optimum for all parameters at once
would require orders of magnitude more trials and time. This effect is a key difference
between global optimization and local optimization problems, in which the costs do not
grow as fast.

In terms of solving a time-consuming optimization problem with a black-box objective
function, it is interesting to compare the method used for solving the problem, which uses
objective function approximation by a neural network, with the methods that use kriging-
based approximations. Methods of this class work well in problems with a small number
of local extrema. However, in essentially multi-extremal problems the computational
costs (number of objective function evaluations required for solving the problem) increase
significantly.

7. Conclusions

In this work, a two-phase flow in a chute was simulated using the interFoam solver,
the URANS mathematical model, and the k−ω SST turbulence model. In the optimization
process, six coefficients were investigated in pairs, which make the greatest contribution to
the value of turbulent viscosity.

The results of calculating the velocity profiles were compared with experimental data
obtained at the Research Institute of Mechanics, Moscow State University, at different
sections depending on the angle of inclination of the chute. The search for the optimal
coefficients of the turbulence model was performed by minimizing the objective function
of the divergence of the velocity profile in the chute.

The search for the global minimum of the objective function was performed using
the global search algorithm implemented in the Globalizer software [85]. In addition, a
fully connected neural network with one hidden layer was used to approximate the values
of the objective function by the values of the coefficients in the turbulence model. The
MLPRegressor class from the scikit-learn library was used to build the objective function
approximation.

Based on the results of the study, the following conclusions were drawn.
It is good practice to calibrate the turbulence model coefficients if necessary to improve

the accuracy of the calculations. As shown in the present study, it is possible to improve
the accuracy by up to 10%.

To perform optimization, at least two, or preferably three datasets should be used.
Otherwise, an overfitted model may result. Using a neural network to predict the CFD
calculation significantly reduced the optimization time while maintaining the quality of
the resulting solution.
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The developed calibration algorithm is reliable and can be applied to other models.
The algorithm has such advantages as a parallel mode, it can be used to search not only for
local, but also for global minima, and can optimize several parameters at once. According
to the results of the study, the Globalizer software has performed quite well and will be
used in further work.

The OpenFOAM software also shows good results due to code modularity and good
documentation. These advantages have made it easier to write a software module for the
interaction between the optimizer and OpenFOAM. OpenFOAM also has a high degree of
parallelization and can be used to solve a fairly wide range of tasks.

In the present work, an interdisciplinary approach was utilized, which helped us to
find the optimal values of six turbulence model parameters using the OpenFOAM open
platform and the Globalizer. In the future, it is planned to continue improving the turbulent
models, including the development of a turbulent model based on a neural network. The
Globalizer software will be used to optimize the model parameters.
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