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Abstract: Since open innovation between industry–university is a highly complex phenomenon, its
orchestration may be of great support for better collaboration between these organizations. However,
there is a lack of evidence on how an orchestration framework impacts the collaboration performance
between these organizations in such a setting. Based on a research model that investigates the
influence of the main orchestration dimensions on the performance of collaboration, this study offers
one of the first perspectives of an orchestration process between the industry and university actors
in open innovation. The developed research model was assessed using a deep learning dual-stage
PLS-SEM and artificial neural network (ANN) analysis. In the first stage, the hypotheses of the
research model were tested based on a disjoint two-stage approach of PLS-SEM, and the results reveal
the orchestration dimensions that have a significant impact on collaboration performance. In the
second stage, a deep learning network approach was successfully employed to capture the complex
relationships among the significant orchestration dimensions identified through the PLS-SEM analysis.
An importance–performance map analysis provided useful insights into the relative importance of the
components of each orchestration dimension based on their effects on the collaboration performance.
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1. Introduction

Nowadays, organizations perform in a global, networked world where innovation
becomes systemic as it is more and more dependent on knowledge sharing and collabo-
ration [1]. Within this context, the concept of open innovation has attracted considerable
attention from both scientific and business communities, reflecting the technological, or-
ganizational, and societal changes of our times [2]. Defined as “a distributed innovation
process based on purposively managed knowledge flows across organizational boundaries,
using pecuniary and non-pecuniary mechanisms in line with the organization’s business
model” [3] (p. 17), open innovation refers to the industry’s efforts in employing both inflows
and outflows of knowledge to improve its innovation activities [4]. As a result, innovation
emerges through knowledge flows distributed beyond the dyadic collaboration between
two organizations [5,6]. Firms have the opportunity to employ networks of different actors
as external sources of innovations, and existing research has stressed the benefits of such
collaboration [6]. In addition, a more recent view based on ecosystem-driven innovation,
which combines and integrates social and natural systems and environments, highlights the
importance of the pluralism of external innovation actors [7]. Typically extending across
multiple organizations, industries, and units, the innovation ecosystem also stresses the
dynamic involvement of these actors that purposively exploit knowledge flows by opening
up their innovation activities [8].
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Consequently, the increasing drawing of firms from external sources of knowledge
in their innovation activities is recognized to strengthen their competitive advantage,
contributing to economic development and growth [9–12]. Therefore, collaboration and
networking of industry with different external partners are becoming increasingly impor-
tant in innovation activities [5,13–15]. Involving external partners, e.g., from the quadru-
ple/quintuple helix model, has been seen as a driver for knowledge production and
generation of new innovation [7,16]. This not only stimulates innovation but also enhances
the synergy between all involved stakeholders. Among such partners, universities may play
a major role, since their scientific knowledge has been considered as an important source
of innovation advances and technology upgrading [17–19]. Although industry–university
cooperation has a long history [11,20,21], their collaboration in an open innovation context
is a complex and sophisticated process that received less attention [22]. Therefore, it is still
challenging for both partner actors to identify the best way to follow in order to sustain
their collaboration efforts in open innovation. Several studies have started to point out that
cooperation to innovate is an important part of the open innovation model [3,23], which
does not necessarily need the establishment of a governing entity. However, in the context
of leveraging networked research and open innovation activities, there is an inherent need
for a certain level of coordination, such as the setting of some ground rules [24]. Thus,
some level of governance is possible and even necessary in such context. Within this frame-
work, the engagement of industry in open innovation with universities may be influenced
by its ability to a more discreet orchestration of collaboration rather than employing a
management approach in the traditional sense.

As stated above, the interaction between industry and universities is recognized as a
complex phenomenon [11], which in an open innovation context is based on knowledge
that spreads beyond the boundaries of the two organization actors. Therefore, it may not be
viable to rely on a traditional management approach, which in such context may be replaced
by a conscious orchestration [24]. As a result, the management of the relationships between
these organizations from an orchestration perspective may become highly significant to
ensure their collaboration performance [25]. While orchestration deviates from a traditional
management style, it has been mostly explored from theoretical perspectives [24], and
thus empirical studies that provide a more complete analysis of its effects on the success
of collaboration between industry and universities in open innovation are needed. The
performance effect of open innovation has been considered a critical field of study [26].
While the relationship between openness and performance has been recognized in the
literature, there is still no consensus on whether its direction is positive or negative [27,28].
Moreover, few, if any studies investigate the influence of orchestration dimensions on
the collaboration performance between industry and universities. This study thus aims
to address the above research gap by exploring the direction of relationships between
different areas of orchestration and collaboration performance as perceived by industry
in its open innovation with universities. The impact of orchestration dimensions on
collaboration performance between these organizations in the context of open innovation
should be addressed for several reasons. On the one hand, analyzing orchestration areas
that significantly impact the performance of collaboration offers a better understanding
to firms on their employment of open innovation with universities. On the other hand,
evidence of its positive effects on collaboration is expected to further support the legitimacy
of open innovation between industry–university.

The remainder of this article is structured as follows. First, we present the theoretical
background and develop the hypotheses of this study. Next, we describe the research
approach and report the results of the PLS-SEM and ANN analysis. We then discuss the
findings of our analysis and present both theoretical and practical implications. Finally, we
provide a summary of findings, limitations, and suggestions for future research.
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2. Theoretical Framework and Hypotheses Development
2.1. Background

The existing literature reveals the multiple contexts of innovation, such as the sys-
temic and networked nature of innovation [8,29]. On one hand, in a system approach
innovation is the result of knowledge transfer and diffusion through a set of relationships
in the system [29]. Therefore, different actors interact, and innovation is developed through
this system of interaction [30] at different levels (e.g., national, regional, and sectoral). On
the other hand, a network approach is focused on a firm or industry perspective [8], in
which innovation results from the interaction among several actors that often belong to
different industries and technological networks [31]. Today, industry increasingly relies on
universities as external sources of innovation, and their links in an open innovation context
can be seen as network relationships that play an important role in driving innovation
between these organizations [32]. Therefore, this networked interorganizational view of
innovation between firms and universities has led us to consider a network perspective in
this study. Since the idea behind orchestration is related to innovation networks [33], an
orchestration approach may be employed at the firm level to successfully manage these
relationships. According to the extant literature, different perspectives have been used to
study the aspects and determinants associated with the orchestration phenomenon [34,35].
Among such approaches, a conceptual formulation of the orchestration in innovation
networks has been proposed by Dhanaraj and Parkhe [36]. According to them, orches-
tration involves knowledge mobility, innovation appropriability, and network stability,
which influence the output of innovation. Based on Dhanaraj and Parkhe [36], these three
distinctive dimensions are briefly described next. First, concerning knowledge mobility,
it refers to how easily knowledge is acquired, shared, and deployedwithin the network.
Second, regarding innovation appropriability, it is associated with the degree to which
innovation actors are able to fairly retain the profits resulting from the innovations. Finally,
network stability refers to the extent to which innovation partners actively collaborate in
the network.

According to Provan and Kenis [37], network orchestration may be either participant-
governed or externally governed by a unique network administrative organization. The
activities in the participant-governed networks may be without an organization clearly
leading these activities or coordinated by a leading actor that was called by Dhanaraj and
Parkhe [36] a hub firm. As their study is conceptual in nature, Dhanaraj and Parkhe [36]
stated that the higher the level of each orchestration dimension, the greater the innovation
output. Considering the nature of the study, they also pointed out that future empirical
research is requested to tease out their propositions. From then on, several studies explored
the employment of the orchestration framework developed by Dhanaraj and Parkhe [36],
which were identified through the recommendations of the PRISMA statement [38]. First,
a detailed search was conducted using two major academic databases, Web of Science
and Scopus, respectively. The keywords employed for search included “orchestrating
innovation” or “orchestration innovation” in the article title, “2007–2022” as the year
published (the work of Dhanaraj and Parkhe [36] was published in 2006) and “English”
as the language. The “resource” in the article title was not included in the search as our
study was not focused on resource orchestration. As a result, 99 articles were collected.
In addition, another 4 articles were identified through other sources. Then, the duplicate
articles were removed from this collection of 103 records, which resulted in 57 articles.
The studies considered not related to the aim of our study were next excluded from the
collection. Finally, 10 relevant articles [24,33,35,39–45] resulted for a qualitative synthesis
of the literature that is briefly presented next.

Ritala et al. [33] found that individual skills and organizational capabilities have a ma-
jor influence on the three analyzed dimensions. The orchestration dimensions introduced
by Dhanaraj and Parkhe [36] were investigated in the context of different industries, such
as tourism [35], biopharmaceutical [39] or social entrepreneurial venture [40]. At the same
time, the approach of Dhanaraj and Parkhe [36] has been applied to both large industries
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and small and medium-size enterprises [41]. Regarding the orchestration of research and
development networks, it is considered a challenging task [24,42]. Drawing on Dhanaraj
and Parkhe’s framework [36], Levén et al. [42] examined how the relationships between
industry, researchers, and public authorities were managed in cross-industry collaboration.
As a result, they presented a model of managing research and innovation networks. The
model of Levén et al. [42] emphasized the outcomes in terms of providing both value
and economic growth to firms. However, this research is based on a single case study,
and future studies are thus recommended to generalize its constructs and propositions.
Among the existing research, the work of Hurmelinna-Laukkanen et al. [24] is one of
the few studies in which empirical evidence on the influences of different dimensions of
orchestration on innovation performance was provided. They investigated the effect of
relationships’ orchestration on the success of both the network and individual firm, from
the firm’s perspective. Hurmelinna-Laukkanen et al. [24] considered absorptive capacity,
innovation appropriability, and network stability as innovation orchestration dimensions,
while the alliance success and innovation performance stand for performance effects at
the network and individual firm level, respectively. In sum, the framework developed by
Dhanaraj and Parkhe [36] considers orchestration as a cause–effect process [43], in which
the innovation output is related to the above three orchestration dimensions. Regarding
the employment of an orchestration approach in open innovation, this is seen as needed at
both internal and external levels to ensure innovation output [44]. Success facilitation of the
open innovation processes through orchestration mechanisms simultaneously employed at
different levels of innovation networks is also highlighted [45]. However, evidence of the
orchestration effects in an open innovation context is relatively scarce and mainly based
on qualitative research, such as the explorative single case study in the work of Hu and
Sorensen [44] or a longitudinal case study conducted by Schepis et al. [45]. In the study
of Hu and Sorensen [44], open innovation and orchestration capability are investigated
considering an SME enterprise from a low-tech industry (i.e., textile manufacturing), based
on discussions with its managers and key employees as well as other data collected from
different annual reports and information available on the firm’s website. The longitudinal
case study of Schepis et al. [45] is based on in-depth interviews with participants from
start-ups, SME enterprises, and large firms in the mining, oil, and gas industry, which are
part of an open innovation network facilitated by an intermediary organization. To sum
up, these studies are limited to one single firm [44] or one single industry [45], without
taking into account the impact of the orchestration dimensions on the performance of open
innovation. Hence, quantitative research that examines how an orchestration approach
influences open innovation performance should be performed in future studies [45].

In this sense, we aim to conduct a quantitative empirical study on the impact of the
orchestration dimensions on the collaboration performance of the industry–university
relationships in open innovation. We follow Dhanaraj and Parkhe [36] in determining how
their three orchestration dimensions influence the performance of such collaboration using
a survey-based approach. Therefore, we empirically investigate how knowledge mobility,
innovation appropriability, and network stability influence collaboration performance
on the firm level. Figure 1 illustrates the logic that we propose in our research. The
hypothesized relationships illustrated in this framework are further formulated next.
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2.2. Development of Hypotheses

In a world that has become increasingly interconnected and dynamic, multiple actors
contribute to value creation and innovation. The quadruple/quintuple helix model [7,16],
for instance, underlines the effect of heterogeneity and organizational diversity among
different actors (i.e., university, industry, public entities, society, and environment) on
knowledge production and innovation. While such models add multicenteredness in the
innovation ecosystems, firms are seen as central in the model of open innovation [46]. At
the same time, it is generally accepted that critical knowledge is widely distributed in the
economy, beyond the traditional boundaries of firms [3], which can highly benefit from
the collaboration with the other driver actors of the quadruple/quintuple helix model.
Therefore, firms have to open their boundaries to new knowledge and technologies from
different external sources to be successful in a global environment. Among the external
partners, collaboration with universities represents a special case in generating innova-
tions [32], having an important potential to translate into both economic and organizational
benefits [47]. While also considering the Chesbrough and Bogers [3] definition of open
innovation, the interactions among its participants can be analyzed based on pecuniary
versus nonpecuniary logic of exchange [48]. In this line, the collaboration performance
between industry and universities involves both pecuniary and nonpecuniary aspects. As
the former relates to economic indicators, the latter stands for organizational performance.
Although previous research pointed out a significant effect of open innovation on differ-
ent measures of performance [49,50], their collaboration performance has received little
attention until now.

On the other hand, the industry–university relationships are characterized by high
complexity and nonlinearity [51], which manifest themselves as network relationships [32].
Consequently, it is likely that the successful orchestration of these relationships has a
significant effect on the performance of collaboration between industry and universities
in an open context of innovation. The first dimension of orchestration is the mobility of
knowledge, which is recognized as a promotor of value creation [36]. Different ways can
be employed to enhance knowledge mobility, and Milwood and Roehl [35] relate this
dimension to the ability to access relevant knowledge and transfer it to different innovation
partners. Knowledge access and transfer are seen among the essential processes that foster
knowledge mobility as they support sharing and creation of new knowledge. However,
orchestrating knowledge mobility between industry and universities involves actors whose
motivations to access and transfer knowledge may be different in some respects [20]. At the
same time, the knowledge base of universities is sophisticated and continuously expanding,
so that the access and transfer of this source of expertise may influence the performance of
collaboration among the organization actors. If industry has been efficient in this process, it
will also likely be successful in its innovation and valorization activities [24]. Therefore, we
propose the following hypothesis:

Hypothesis 1 (H1). The knowledge mobility in an open innovation context between industry–
university significantly impacts the performance of their collaboration.

The value created through the industry–university collaboration in open innovation
should be equitably distributed among partners, and at the same time, should not be
available to those who have not contributed to its creation. Therefore, ensuring innovation
appropriability is the second dimension in orchestration [36], which is expected to impact
the performance of collaboration. Different joint intellectual properties, such as patents and
licenses, may reduce unauthorized imitation and strengthen appropriability [36]. These
intellectual properties are among the most common form of institutional protection [52],
and their management may enhance appropriability through several means. For example,
it creates a context to develop guidelines of negotiation to solve potential conflicts, increases
the commitment of participants toward achieving shared goals, and also offers incentives
for sharing rewards [36]. Moreover, the value created among partners can be secured
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through intellectual property rights as other organizations are prevented from accessing
valuable joint assets [24]. On the other hand, innovation appropriability also presents
cause for concern, as it has the potential to create protective fences that may slow down
upstream university research [53] or may block other potential collaboration partners [24].
If this is the case, innovation appropriability is supposed to have a detrimental influence
on the success of the collaboration. The beneficial or detrimental effects of innovation
appropriability in the context of open innovation it is also debated [54], and different
opinions have been expressed in the literature [55–58]. At the same time, the role of
innovation appropriability in the frame of our research remains understudied, and therefore
we propose the following hypothesis:

Hypothesis 2 (H2). The innovation appropriability in an open innovation context between
industry–university significantly impacts the performance of their collaboration.

The establishment of stable and trusting relationships among industry and universities
may enhance both knowledge mobility and innovation appropriability. Therefore, fostering
relationship stability is the third dimension of orchestration [36]. Network stability refers to
the dynamic stability of an innovation network that aims for a sustainable membership base
through a nonnegative growth over time, while allowing its members to enter and leave in
order to maintain enough variety in the knowledge stock to encourage the development of
innovation [36]. Preserving the stability of relationships can be achieved in different ways,
including through the enhancement and sustainment of reputation or encouraging forward-
looking expectations of benefits from mutual collaboration [36,42,59]. Stability induces
an interesting dilemma in open innovation relationships. On the one hand, enhancing
reputation and managing expectations of anticipating gains not only support stability
but also contribute to building trust and openness among collaborators [36]. On the
other hand, stability has the potential to negatively influence collaboration as it may turn
into stagnation, may lead to inertia, or may capture actor organizations into their initial
routines [24]. In addition, the behavior of some partners may also negatively influence
relationships’ stability [36]. Therefore, we propose the following hypothesis:

Hypothesis 3 (H3). The stability of relationships in an open innovation context between industry–
university significantly impacts the performance of their collaboration.

3. Research Approach
3.1. Research Model and Its Hierarchical Constructs

Taking into consideration the above argumentation and hypotheses, we developed
a research model based on a hierarchical component structure. Figure 2 presents the con-
structs of the theoretical model and the measures behind each construct, which are grouped
into different categories considering the literature recommendations as described next.
Following Dhanaraj and Parkhe [36], knowledge mobility, innovation appropriability, and
stability of relationships were considered the main orchestration dimensions that influence
the performance of open innovation between industry–university. We conceptualized
knowledge mobility as a third-order construct with two second-order latent variables as
indicated by Milwood and Roehl [35]: knowledge access and knowledge transfer. Based on
the work of Băban et al. [60], these second-order constructs in turn comprised two and five
first-order latent variables, respectively. According to Dhanaraj and Parkhe [36], innovation
appropriability was proposed as a first-order construct and stability of relationships as
a second-order construct with two first-order latent variables. In line with the approach
of Dahlander and Gann [48], collaboration performance included both pecuniary and
nonpecuniary rationale dimensions. Regarding the observable variables in Figure 2, they
were all adapted from Băban et al. [60].
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3.2. Study Setting: Participants and Data Collection

Since there is no empirical evidence on the model depicted in Figure 2, we adopted
an exploratory approach to investigate the relationships among the constructs under
examination in this study. Data for this study were collected from firms located within
industrial areas, as these areas have played an important role in increasing economic growth
and regional competitiveness [61]. Particularly, two industrial Italian and Romanian areas
were chosen considering the extensive Italian experience in the field of agglomeration
economies and the efforts of Romania to support industrial development, efforts that are
based on innovation and business agglomeration. Moreover, the variety and diversity of
actors of these two industrial areas involved in the innovation processes were also taken
into account in our choice, since they have been considered important to the research
in the innovation network field [31,62]. However, this choice may also conduct to some
limited homogeneity among the industries within the two industrial areas, which should be
acknowledged. The Valenza Industrial District has been formally recognized in 2002 by the
Italian Piedmont region, and it is considered among the most important hubs in the jewelry
industry, one of the strongest production fields of so-called ‘Made in Italy’ sectors [63].
Based in the northwest part of Romania, Oradea Industrial Parks started in 2008 and has
been recognized as one of the most successful stories in implementing industrial parks in
Romania [64].

Although industrial areas have long been considered among the driving forces of
economic development, they are facing today the reality of competing in a global envi-
ronment [65]. Trying to respond to the challenges posed by the global economy, the firms
from two industrial areas have to integrate new external knowledge and develop their
capacity for innovation by building up a structured system of network relations with the
external environment. Most of these firms are related to different leading manufacturing
industries, which operate in a world-class manufacturing context. To succeed and thrive in
such a challenging environment, they have to adopt an ongoing transformation of their
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innovation activities. The presence in their proximity of universities provides highly quali-
fied resources for research and innovation activities as well as support for knowledge and
technology transfer, including in an open innovation context [66]. Because the collaboration
between the firms from two industrial areas and universities often involves a relatively
small number of actors, we followed Provan and Kenis [37] and assumed that it is shared
participant-governed, without an organization clearly leading the collaboration activities.

Our exploratory approach was based on a self-administered survey, which addressed
the importance of the main dimensions of open innovation between industry and univer-
sities. The survey scale ranged from 1 as ‘not important’ to 5 as ‘very important’ for all
items of the analyzed main dimensions. The survey questionnaires were distributed to the
companies from both industrial zones that interacted with universities. Considering its
exploratory nature, our study targeted participants from these companies who understand
the orchestration process of innovation between the industry and universities. Since a pop-
ulation list of such persons is not available, a purposive sampling approach was employed
to select the respondents. The criterion for inclusion in the sample was that participants
must be managers at different levels directly responsible for the innovation activities of the
firms or their owners. Considering the nature of our study, the sample should preferably
have at least 100 observations [67]. A prescreening was conducted to identify prospective
candidates, and only the respondents who agreed to participate in the survey were chosen
for the study. In the end, 100 questionnaires were collected. As 2 cases were removed due
to suspicious responses, 98 complete and usable questionnaires were accepted for analysis.
Table 1 presents a sample description.

Table 1. Sample description.

Survey Design

Unit of analysis Firms located in Valenza Industrial District and Oradea Industrial Parks

Sample selection design Purposive sampling

Survey collection method Self-administered survey

Sample size/Accepted
responses 100/98

Sample composition

Distribution of participants’
responses on industry type

Jewelry industry Automotive industry Electronics industry

48.98% 38.78% 12.24%

Distribution of participants’
responses on firm size

Small enterprises (10 to
49 employees)

Medium-sized enterprises
(50 to 249 employees)

Large enterprises (more than
250 employees)

51.02% 8.16% 40.82%

3.3. Data Analysis Method

We applied a dual-stage hybrid SEM–ANN approach in investigating the impact of the
three main orchestration dimensions on the collaboration performance between industry–
university in open innovation. On the one hand, structural equation modeling (SEM)
was employed to examine the relationships among the constructs of our research model,
considering its capacity to assess in the same analysis the measurement and structural
model [68]. Regarding the technique for estimating structural equation models, we have
to take into account the context of the study. Our research was primarily exploratory in
nature and involved a complex model that includes many higher-order constructs and
items/construct. Moreover, the observable variables were not normally distributed, as
the Kolmogorov–Smirnov test for each variable generated a two-tailed p-value of less
than 0.05. Finally, the sample size of the study was relatively small, since only firms
from two industrial areas that interact with universities in their innovation activities were
involved in the survey. Based on the above argumentation and in line with the existing
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literature [69], PLS-SEM was selected as the SEM approach in the first stage of the research.
Concerning the sample size, we followed the recommendations from a power analysis of
Hair et al. [69]. As a result, a minimum sample size of 65 was required to detect a minimum
value of the coefficient of determination at a significance level = 5%, statistical power
level = 80%, and the maximum number of arrows pointing at an independent variable = 4
(see Figure 2). Therefore, the sample sizes of our study (N = 98 participants) can be
considered sufficiently large.

On the other hand, the PLS-SEM methodology formally assumes that structural
models are linear [70], and therefore can not detect nonlinear relationships. At the same
time, the orchestration dimensions involve human decision-making processes that, because
of their complexities, may not necessarily follow a linear model. Moreover, only weak
empirical evidence has been provided to support the hypotheses that link the orchestration
dimensions with the performance of collaboration in open innovation. Nevertheless,
artificial neural networks (ANNs) have been recognized among the constituents of artificial
intelligence, which are capable to work with incomplete information to address both
complex linear and nonlinear relationships [71]. Therefore, in the second stage of the
research, ANN was used to test the predictive power of the significant hypothesized
constructs obtained from the PLS-SEM analysis.

In sum, we take advantage of both PLS-SEM and ANNs in the proposed dual-stage
hybrid approach, where the significant orchestration dimensions were obtained from
the hypotheses testing of the initial PLS-SEM analysis. Then, these dimensions were
used as the inputs for the second stage of ANN analysis to further explore nonlinear
relationships among the constructs of the research model. In this way, more accurate results
are expected [72]. The SmartPLS 3 software [73] and IBM SPSS Modeler software [74] were
employed to conduct the PLS-SEM and ANN analysis, respectively.

4. Results
4.1. The PLS-SEM Analysis

Considering the extant literature, we conceptualized a hierarchical model that included
first, second, and third-order constructs (Figure 2). Since we had to estimate these multiple
higher-order constructs, a disjoint two-stage approach was adopted as it allows a more
parsimonious path model for the higher-level analysis [75]. In this approach, only the
lower-order components of a higher-order construct are considered, which are directly
linked to all other constructs that the higher-order construct is related to in the hierarchical
model [76]. Evaluation of the PLS-SEM results involves a two-step process [69]. The
assessment of the measurement model is performed in the first step, which is followed by
the evaluation of the structural model in the second step.

4.1.1. Assessing the Measurement Model

The assessment of the measurement model is based on the relevant criteria for the
construct reliability and validity [77]. Specifically, the assessment starts with the examina-
tion of the indicator loadings, which is followed by establishing the internal consistency
reliability, convergent validity, and discriminant validity. Because our model included three
second-order constructs and a third-order construct, the disjoint two-stage approach was
carried out in three phases, following the guidelines of Sarstedt et al. [76].

In the initial phase, the path model was developed by linking only the lower-order
components of each KA, KT, IA, and SR construct to the OiP construct. Table 2 presents
the measurement properties of the model developed in this phase. The outer loadings
of all indicators in the model were greater than 0.708, so they were all kept in the model.
The conservative Cronbach’s alphas of all lower-order components were above the thresh-
old of 0.70, except for the KT3 component, which was marginally lower than this value.
Nevertheless, Cronbach’s alpha may decrease in exploratory research to a minimum value
of 0.60 [77]. In addition, the ρA measures of the construct reliability of all lower-order
components were above the value of 0.7. Most of the Cronbach alphas and ρA measures
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were between the recommended 0.70–0.90 values, apart from SR2 and KT1, which were
just above 0.90 and the maximum of 0.95, respectively. Therefore, we may consider that
internal consistency reliability was established. Regarding the convergent validity, the
average variance extracted values (AVEs) in Table 2 were greater than 0.5 for all lower-order
components, which indicates a satisfactory level of convergent validity.

Table 2. Reliability and validity assessment of the path model in the initial phase.

Lower-Order
Component Item Outer Loading Cronbach’s α ρA AVE

KA1
KA1-1 0.9382

0.8647 0.8648 0.8809
KA1-2 0.9389

KA2
KA2-1 0.9121

0.8294 0.8425 0.8536
KA2-2 0.9355

KT1
KT1-1 0.9766

0.9526 0.9529 0.9547
KT1-2 0.9776

KT2

KT2-1 0.8791

0.8267 0.8416 0.7428KT2-2 0.8987

KT2-3 0.8048

KT3
KT3-1 0.9179

0.688 0.7516 0.7568
KT3-2 0.8192

KT4 KT4-1 1 1 1 1

KT5

KT5-1 0.8446

0.8731 0.891 0.7233
KT5-2 0.8979

KT5-3 0.8687

KT5-4 0.7868

IA IA1-1 1 1 1 1

SR1 SR1-1 1 1 1 1

SR2
SR2-1 0.9187

0.8175 0.8176 0.8457
SR2-2 0.9205

OiP

OiP1-1 0.8400

0.9143 0.917 0.747

OiP1-2 0.8688

OiP1-3 0.7820

OiP1-4 0.8988

OiP1-5 0.9249

The assessment of discriminant validity in the initial phase was conducted based on
the heterotrait–monotrait (HTMT) ratio of the correlations. Table 3 reveals that HTMT
values of all the lower-order components were below the threshold of 0.9, while three other
ratios were found between 0.85 and 0.9. All the remainder HTMT ratios were less than
the more conservative value of 0.85. Therefore, we found satisfactory evidence for the
discriminant validity of the lower-order components of the path model in phase one.

Since the estimated measurement properties of the model in the initial phase showed
acceptable values, the latent variable scores of the lower-order components were extracted
and then used to estimate the second phase model. Therefore, the latent variables for KA,
KT, and SR that were captured in the initial phase were employed to create and estimate the
path model in this phase. The assessment of the measurement of this model was conducted
based on a similar approach to that adopted in the initial phase. Table 4 shows the results
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for the reliability and validity of the second-order components of the model. The outer
loadings of all indicators of the second-order components were greater than 0.708, while the
Cronbach alphas exceeded the threshold of 0.70, except for the SR. Nevertheless, Cronbach’s
alpha for this component was greater than 0.60. Moreover, the ρA values of all components
exceeded the threshold of 0.70. At the same time, the AVEs values of all components were
greater than the limit of 0.5. Therefore, evidence of the internal consistency reliability and
convergent validity was provided.

Table 3. Assessment of discriminant validity of the path model in the initial phase using the
HTMT criterion.

IA KA1 KA2 KT1 KT2 KT3 KT4 KT5 OiP SR1 SR2

IA
KA1 0.305
KA2 0.315 0.894 (1)

KT1 0.258 0.563 0.618
KT2 0.191 0.738 0.781 0.832
KT3 0.097 0.756 0.723 0.538 0.815
KT4 0.362 0.492 0.571 0.668 0.665 0.443
KT5 0.333 0.733 0.881 (1) 0.739 0.844 0.729 0.696
OiP 0.289 0.706 0.748 0.718 0.714 0.631 0.717 0.84
SR1 0.210 0.315 0.492 0.342 0.249 0.277 0.264 0.530 0.386
SR2 0.235 0.818 0.865 (1) 0.718 0.800 0.655 0.663 0.825 0.828 0.530

(1) 0.85 < HTMT < 0.9.

Table 4. Reliability and validity assessment of the second-order components.

Second-Order
Component Item Outer Loading Cronbach’s α ρA AVE

KA
KA1 0.935

0.863 0.864 0.880
KA2 0.940

KT

KT1 0.860

0.891 0.903 0.699

KT2 0.888

KT3 0.719

KT4 0.807

KT5 0.893

SR
SR1 0.750

0.648 0.846 0.723
SR2 0.940

Table 5 presents the HTMT values of the components of the path model in phase two,
which were all less than the threshold of 0.9. Four HTMT ratios varied between 0.85 and
0.9, while all the other HTMT ratios were less than 0.85. Therefore, satisfactory support for
the discriminant validity of the model in phase two was also found.

Table 5. Assessment of discriminant validity of the path model in phase two using the HTMT criterion.

IA KA KT OiP SR

IA
KA 0.327
KT 0.298 0.861 (1)

OiP 0.289 0.769 0.866 (1)

SR 0.305 0.888 (1) 0.858 (1) 0.820
(1) 0.85 < HTMT < 0.9.
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In the last phase, the latent variables of KM captured in phase two were used to create
and estimate the third phase model. The assessment of the measurement of this model
was also conducted based on a similar approach to that adopted in the previous phases.
Table 6 illustrates the results for the reliability and validity of the third-order component
of the model. The internal consistency reliability was established as the outer loadings of
all indicators of the third-order component were greater than 0.708, while the Cronbach’s
alpha and ρA values exceeded the threshold of 0.70. Since the AVE value was greater than
the limit of 0.5, evidence of their convergent validity was also provided.

Table 6. Reliability and validity assessment of the third-order component.

Third-Order
Component Item Outer

Loading Cronbach’s α ρA AVE

KM
KA 0.927

0.859 0.872 0.876
KT 0.945

Table 7 shows the HTMT values of the components of the path model in phase three,
which were all less than the threshold of 0.9, apart from that between the KM and SR
components. One HTMT ratio was found between 0.85 and 0.9, while all the other HTMT
ratios were less than 0.85. On the other hand, an improved criterion, i.e., the HTMT2, was
proposed to assess discriminant validity in SEM, which is highly recommendable if all
correlations between involved indicators are positive [78]. This is the case of our research,
and thus the HTMT2 ratios of the components of the last phase model were also computed.

Table 7. Assessment of discriminant validity of the path model in phase three using the HTMT criterion.

IA KM OiP SM

IA
KM 0.3433
OiP 0.2895 0.8870 (1)

SR 0.3051 0.9471 (2) 0.8201
(1) 0.85 < HTMT < 0.9, (2) HTMT > 0.9.

Table 8 displays the computed HTMT2 ratios, which can be employed and interpreted
similarly to the HTMTs [78]. All HTMT2 values were below the threshold of 0.9, while
two ratios varied between 0.85 and 0.9. All the remainder HTMT2 ratios were less than
0.85. Therefore, we found satisfactory evidence for the discriminant validity based on the
HTMT2 criterion.

Table 8. Assessment of discriminant validity of the path model in phase three using the HTMT2 criterion.

IA KM OiP SM

IA
KM 0.3431
OiP 0.2807 0.8871 (1)

SM 0.3055 0.8978 (1) 0.7778
(1) 0.85 < HTMT < 0.9.

4.1.2. Assessing the Structural Model

The next step after adopting the measurement model consists of evaluating the struc-
tural model, taking into account the guidelines provided by Hair et al. [77]. First, collinearity
was investigated based on the variance inflation factor (VIF). The results indicate that the
VIFs values of the three antecedent components of the model varied from 1.112 to 2.517,
which are less than the threshold of 3. Since collinearity was not an issue in the context
of our study, we next evaluated the significance of the path coefficient and tested the
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proposed hypotheses. For this purpose, a bootstrapping analysis with 5000 subsamples
was conducted for the phase three path model. Figure 3 illustrates the structural model,
while Table 9 presents the results of the analysis.
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Table 9. Structural model testing.

Hypothesis Path Path
Coefficient T Statistic p Value Remark

H1 KM -> OiP * 0.638 7.311 0.000 Supported

H2 IA -> OiP NS 0.026 0.336 0.736 Not
supported

H3 SR -> OiP ** 0.188 1.721 0.085 Supported

Note: * p < 0.001, ** p < 0.1, NS-insignificant (two-tailed).

The impact of knowledge mobility in an open innovation context between industry–
university on the performance of their collaboration was found to be significant (β = 0.638,
t = 7.311, and p < 0.001). As a significance level of 10% is commonly used in exploratory
studies [69], the stability of relationships significantly impacts the performance of collabo-
ration between industry–university in open innovation (β = 0.188, t = 1.721, and p < 0.1).
Thus, hypotheses H1 and H3 were supported. However, innovation appropriability did
not significantly impact the performance of collaboration between industry and univer-
sity organizations. (β = 0.026, t = 0.336, and p > 0.1). Consequently, hypothesis H2 was
not supported.

Finally, the quality of the structural model was assessed through the coefficient of
determination R2 and cross-validated redundancy Q2. The KM, IA, and SR constructs
together explained 64% of the variance in collaboration performance (R2

Oip = 0.64). Since
the OiP is explained by only three predictor constructs, its R2 value can be considered
acceptable in the context of this study [77]. Moreover, the Q2 value was greater than
0 (Q2

Oip = 0.4693). These findings suggested that our model has insample predictive
relevance for the OiP construct [77].

4.2. The ANN Analysis

The PLS-SEM analysis pointed out the orchestration dimensions that statistically
significantly impact the performance of open innovation between industry–university.
However, one of the main drawbacks of this approach is its capability to explore only
linear relationships among the constructs of the model. Since the nature of orchestration
dimensions are very complex, nonlinear relationships are also possible in the proposed
model. In addition, only weak empirical evidence supports the hypotheses of our study.
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Nevertheless, an artificial intelligence technique, i.e., ANN, can capture both linear and
nonlinear correlations among the constructs of a model [72]. At the same time, ANNs can
work with incomplete information in the context of a less developed theory that supports
the study’s hypotheses [79]. Therefore, an ANN approach was performed to capture
complex and sophisticated interactions among the variables of the model and to make
the analysis even more useful. For this purpose, the significant orchestration dimensions
identified through the PLS-SEM analysis were employed as inputs for ANN modeling.

Typically, ANNs are based on a hierarchical structure that incorporates several layers,
including one input layer, at least one hidden layer, and one output layer. The ANNs
with a single hidden layer are recognized as shallow networks, while those with two or
more hidden layers are considered as deep neural networks [72]. Recent studies have
shown that properly trained deep neural networks have been successfully employed in
different classification and regression problems [80]. Although most of the dual-stage
PLS-SEM and ANN analyses are based on shallow ANNs [81], the use of deep learning
within a dual-stage PLS-SEM and ANN analysis may provide more in-depth results than
a PLS-SEM and shallow ANN approach [72,81]. Among the different ANNs available
in literature, the multilayer perceptron (MLP) and radial basis function (RBF) networks
are considered as universal approximators for nonlinear functions [82]. While the ability
to learn nonlinear models has been recognized as one of the most useful capabilities of
MLP [83], the RBF network is seen as a popular alternative to the MLP as it has a much
faster learning process [82]. Within this context, both MLP and RFB models were employed
in our study.

In the case of MLP network, we follow the recommendation of Svozil et al. [83], which
argues that there is no theoretical reason to employ a network topology with more than two
hidden layers. Therefore, we have to start with one hidden layer, which has an arbitrarily
large number of neurons. Then, we have to consider a topology with a second hidden layer.
The architecture for these MLP networks implemented in IBM SPSS Modeler is described
next. Let X = (OD1, OD2) be the significant hypothesized orchestration dimensions from
the PLS-SEM analysis and Y = OiP the collaboration performance.

The topology of the MLP network is [74] (pp. 291–292):
Input layer: J0 = 2 neurons, a0:1, a0:2; with a0:j = ODj (j = 1,2).
The ith hidden layer (i = 1,2): Ji neurons, a1:1, . . . , a1:Ji; with ai:k = γi(ci:k) and

ci:k =
Ji−1

∑
j=0

wi:j;kai−1:j, where γi is the activation function for the hidden layer i; wi:j,k is

the weight leading from neuron j of layer i−1 to neuron k of layer i; and ai−1:0 = 1. The
hyperbolic tangent is used as an activation function for these layers, which can be written
as: γ(x) = ex−e−x

ex+e−x .

Output layer: JI = 1 neuron, aI:1 with aI:1 = γI(cI:1) and cI:1 =
J1
∑

j=0
wI:j;1ai−1:j, where

ai−1:0 = 1. The identity function is employed as an activation function for this layer, which
can be expressed as: γ(x) = x.

Concerning the RFB network topology, we also consider an approach based on a
sufficiently large number of neurons in its hidden layer. The architecture of the RFB model
comprises three layers as follows [74] (p. 299):

Input layer: J0 = 2 neurons, a0:1, a0:2; with a0:j= ODj= xj (j = 1, 2).

The RBF layer: J1 neurons, a1:1, . . . , a1:J1 ; with a1:j = ϕj(X) = e
(−

2
∑

p=1
1

2σ2
jp

(xp−µjp)
2)

J1
∑

j=1
e
(−

2
∑

p=1
1

2σ2
jp

(xp−µjp)
2)

,

where µj and σj are the center and width of Φj, respectively.

Output layer: J2 = 1 neuron, a2:1; with a2:1 = w10 +
J1
∑

j=1
w1jϕj(X), where w1j is the

weight connecting the output neuron and jth hidden neuron of the RBF layer.
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The learning algorithms used to train the MLP and RFB networks are presented in
detail in the existing literature see, e.g., [82]. Regarding the determination of the number
of neurons in each hidden layer of the two networks, it was carried out considering a
trial-and-error approach. For this purpose, the dataset was initially split into training,
validation, and testing sets with a typical proportion of 60-20-20 [82]. Different ANN
models with a various number of neurons in each hidden layer were then built, which
were fitted using the training data. These models were compared based on the validation
dataset, and the one with the best fit was identified. Finally, the predicting performance of
the best model was assessed using the testing dataset. The RMSE statistic was employed as
the performance evaluation criterion of each ANN model.

According to the results in Table 10, the lowest value of RMSE for the validation
dataset was reported for the MLP topology with four neurons in the first hidden layer
and one neuron in the second hidden layer (0.8106). Therefore, this MLP(4,1) network was
considered appropriate for the target variable Y = OiP of our model. The RMSE statistic of
the testing data was also computed as 0.574, which is similar to that in the training data
(0.518). In line with the above argumentation, the MLP(4,1) can be viewed as an adequate
predictor of new datasets, and its architecture is illustrated in Figure 4.

Table 10. Variation of the RMSE statistics of the MLP and RBF networks with the number of neurons
in each hidden layer.

ANN
Model Architecture Number of Neurons,

Criterion Number of Neurons in Each Hidden Layer

MLP

1 hidden layer

J1 = 2, . . . ,10 2 3 4 5 6 7 8 9 10

RMSETraining 0.5228 0.5204 0.5176 0.5188 0.5110 0.5133 0.5121 0.5143 0.5165

RMSEValidation 0.8548 0.8474 0.8386 0.8412 0.8265 0.8436 0.8415 0.8380 0.8510

2 hidden layers

J1 = 2, . . . ,10; J2 = 1 2, 1 3, 1 4, 1 5, 1 6, 1 7, 1 8, 1 9, 1 10, 1

RMSETraining 0.5230 0.5150 0.5180 0.5169 0.5143 0.5277 0.5175 0.5238 0.5344

RMSEValidation 0.8296 0.8243 0.8106 0.8271 0.8255 0.8454 0.8211 0.8407 0.8485

J1 = 2, . . . ,10; J2 = 2 2, 2 3, 2 4, 2 5, 2 6, 2 7, 2 8, 2 9, 2 10, 2

RMSETraining 0.5244 0.5320 0.5258 0.5184 0.5331 0.5238 0.5132 0.5226 0.5286

RMSEValidation 0.8277 0.8296 0.8597 0.8298 0.8509 0.8377 0.8361 0.8452 0.8384

RBF the RBF layer

J1 = 2, . . . ,10 2 3 4 5 6 7 8 9 10

RMSETraining 0.6355 0.6117 0.5509 0.6084 0.5930 0.5886 0.5853 0.5750 0.5619

RMSEValidation 0.9333 1.0004 0.8776 1.1139 1.0761 1.0641 1.0545 0.8856 0.8569

Note: Ji represents the number of units in the ith hidden layer (i = 1,2).

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 24 
 

 

RMSETraining 0.6355 0.6117 0.5509 0.6084 0.5930 0.5886 0.5853 0.5750 0.5619 
RMSEValidation 0.9333 1.0004 0.8776 1.1139 1.0761 1.0641 1.0545 0.8856 0.8569 

Note: Ji represents the number of units in the ith hidden layer (i = 1,2). 

 
Figure 4. The MLP(4,1) network. 

Since we employed a relatively small sample of respondents, k-fold cross-validation 
was conducted to further avoid overfitting of the adopted MLP(4,1) network. Considering 
the initial splitting of data samples, the dataset was divided by 80% and 20% of samples 
as the training and test sets for the five-fold cross-validation. Table 11 presents the RMSE 
value and the predictor importance for each fold of the cross-validation process. The 
importance of each predictor was computed using the variance-based method for sensi-
tivity analysis implemented in IBM SPSS Modeler [74]. The RMSE values of the MLP 
network were relatively small and similar to those in determining the network topology 
for both the training and test sets, which indicate a robust model. Table 11 also shows 
that KM was the most significant predictor of the OiP target variable, which is in line 
with the findings from the PLS-SEM analysis based on the strength of influence in Table 
9. Thus, after capturing the complex relationships among the variables of the model 
through the ANN approach, KM resulted as the most significant orchestration dimen-
sion. 

Table 11. The five-fold cross-validation and sensitivity analysis. 

RMSE Statistics of the 5-Fold Cross Validation Predictor Importance 

Fold 
MLP(4,1) 

Fold 
KM SR 

Training Testing Training Testing 
1 0.5738 0.5754 1 0.77 0.23 
2 0.6048 0.4432 2 0.80 0.20 
3 0.5365 0.7313 3 0.70 0.30 
4 0.5691 0.4842 4 0.83 0.17 
5 0.5603 0.9781 5 0.66 0.34 

Mean 0.5689 0.6425 Mean 0.752 0.248 
Standard 
deviation 

0.0220 0.1948 
Normalized 
importance 

1 0.3298 

Figure 4. The MLP(4,1) network.



Mathematics 2022, 10, 2672 16 of 23

Since we employed a relatively small sample of respondents, k-fold cross-validation
was conducted to further avoid overfitting of the adopted MLP(4,1) network. Considering
the initial splitting of data samples, the dataset was divided by 80% and 20% of samples as
the training and test sets for the five-fold cross-validation. Table 11 presents the RMSE value
and the predictor importance for each fold of the cross-validation process. The importance
of each predictor was computed using the variance-based method for sensitivity analysis
implemented in IBM SPSS Modeler [74]. The RMSE values of the MLP network were
relatively small and similar to those in determining the network topology for both the
training and test sets, which indicate a robust model. Table 11 also shows that KM was the
most significant predictor of the OiP target variable, which is in line with the findings from
the PLS-SEM analysis based on the strength of influence in Table 9. Thus, after capturing
the complex relationships among the variables of the model through the ANN approach,
KM resulted as the most significant orchestration dimension.

Table 11. The five-fold cross-validation and sensitivity analysis.

RMSE Statistics of the 5-Fold cross
Validation Predictor Importance

Fold
MLP(4,1)

Fold
KM SR

Training Testing Training Testing

1 0.5738 0.5754 1 0.77 0.23

2 0.6048 0.4432 2 0.80 0.20

3 0.5365 0.7313 3 0.70 0.30

4 0.5691 0.4842 4 0.83 0.17

5 0.5603 0.9781 5 0.66 0.34

Mean 0.5689 0.6425 Mean 0.752 0.248

Standard
deviation 0.0220 0.1948 Normalized

importance 1 0.3298

5. Discussion and Implications

Drawing on the work initiated by Dhanaraj and Parkhe [36] and extended by other
studies [24,42,84], we identified knowledge mobility, innovation appropriability, and stabil-
ity of relationships as the main dimensions of innovation orchestration. At the same time,
with the exception of the study [24], these dimensions have been separately analyzed in
prior research. Moreover, evidence on how these orchestration dimensions contribute the
success of open innovation between industry and universities is still missing. Therefore,
this study aimed to find out how these central orchestration components jointly impact the
performance of collaboration between these two organizations in an open innovation con-
text, considering the firms’ point of view. Such investigation is particularly relevant because
each dimension is seen to be important for the success of R&D and innovation networks [24].
As a result, we built a research framing the influence of open innovation orchestration
between industry–university based on three main dimensions: supporting knowledge
mobility, promoting innovation appropriability, and enhancing network stability.

Since knowledge mobility is recognized as a promotor of value creation [36], clear
associations between the mobility of knowledge and collaboration performance should be
expected [62]. This dimension emphasizes those processes through which the partners can
share their knowledge and cocreate new ones [34]. Thereby, industry has to be able to access
and transfer knowledge with universities within the environment in which they operate to
generate new valuable innovation. We found that knowledge mobility has a significant pos-
itive impact on collaboration performance. At the same time, knowledge mobility was, by
far, identified as the strongest predictor of collaboration performance in both PLS-SEM and
ANN analyses. This result is in line with the findings of Hurmelinna-Laukkanen et al. [24],
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which also reported knowledge mobility (in the form of absorptive capacity) as the most
important predictor of firms’ innovation performance.

Concerning the impact of innovation appropriability, the relationship between this
dimension and collaboration performance did not receive support in the empirical data.
We believe that this finding may be related to the paradox of openness, which has been
pointed out by Laursen and Salter [56] as an inherent natural tension between openness
and appropriability. This potential paradox manifests because the creation of innovation
often requires openness, while capturing the returns of innovation may require protection.
Consequently, mixed effects may result [1,85,86], since industry may not be so sure that
it can secure innovation against imitation and increased collaboration performance due
to the tense relationship between openness and appropriability. Regarding the third
hypothesis of our study, we found a significant positive impact of the relationships’ stability
on the collaboration performance. We believe that stable relationships may build trust
and conduct to an environment that supports knowledge exchange and collaboration for
innovation development. However, the link between the stability of relationships and
collaboration performance was identified to be less strong in both PLS-SEM and ANN
analyses. This result may be related to the concern of firms to not become captive in these
relationships as this may diminish their knowledge pool variety in a changing and dynamic
environment [24].

As we already pointed out, the study of Hurmelinna-Laukkanen et al. [24] is one
notable exception that also investigates the influences of innovation appropriability and
network stability on innovation performance in the context of firms engaged in R&D
activities. The results of our hypotheses regarding these two orchestration dimensions are
not similar to the findings of this study, which found appropriability as highly relevant
and stability as not having a significant influence on the innovative performance at the
firm level. We agree with Hurmelinna-Laukkanen et al. [24] that the findings concerning
these orchestration dimensions may be at least partly attributed to the paradox of openness
related to the appropriability and contradictory effects of stability. Therefore, we also
consider that much additional research is required to reveal the true nature of these two
orchestration dimensions.

5.1. Theoretical Implications

An orchestration insight on open innovation between industry–university is still
missing in the literature, which results in a limited understanding of the impact of the
orchestration dimensions on the collaboration performance among the two organization
actors. On the whole, our study aims to fill this knowledge gap and its results expand the
existing literature as follows. First, the present study develops a research model based on a
hierarchical component structure to investigate the impact of orchestrating the industry–
university relationships in open innovation on their collaboration performance. Drawing
on the orchestration framework developed by Dhanaraj and Parkhe [36] and integrating the
existing bodies of literature, the developed research model relates the main orchestration
dimensions to the collaboration performance of open innovation between industry and
universities. Our study provides a new perspective for research in that we hypothesized
the influence of these dimensions on the performance of their collaboration in an open
innovation context. As a result, we offer an understanding of which dimensions have a
significant impact on the performance of such collaboration. In this way, the proposed
research model shows a more articulated picture of the collaboration performance of in-
dustry in its open innovation activities with universities. Second, a dual-stage predictive
analysis was conducted to investigate the relationships among the hierarchical components
of our research model. Considering the context of our study, PLS-SEM was first used to test
the hypotheses of the developed model. Taking into account the complexity of the orches-
tration process in open innovation, these relationships may potentially follow a nonlinear
path, which PLS-SEM is not able to capture. In spite of the fact that ANN is capable to
address complex phenomena and can detect both linear and nonlinear relationships, is not
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appropriate for theory testing because it cannot extract them from data [83]. Thus, ANN
was employed in the second stage to complement the PLS-SEM analysis and overcome its
disadvantages. Since the inclusion of multiple hidden layers and units in the ANN archi-
tecture allows for more complexity capturing, deep neural network architectures were also
included among our ANN models. Although a hybrid PLS-SEM and ANN approach has
been conducted in diverse sectors [72], only a few recent studies address the employment
of deep learning dual-stage PLS-SEM and ANN analysis e.g., [81,87]. However, to the best
of our knowledge, the existing studies do not compare the results of shallow ANNs with
those of deep neural networks to decide the best architecture in their research setting. Our
findings show that a two-hidden-layer MLP network provides better results than other
shallow ANN architectures. Therefore, we may conclude that our deep learning dual-stage
PLS-SEM and ANN approach is a more effective way of predicting the complexity of the
orchestration process in the context of open innovation between industry–university.

5.2. Practical Implications

In providing practical implications for industry, we draw on the empirical results
obtained through the importance–performance map analysis (IPMA) at the indicator level.
The IPMA at this level is essentially a xy-map, in which the total effect of each indicator on
the target construct serves as ‘attribute importance’ on the x-axis and the mean value of the
rescaled indicator data serves as ‘attribute performance’ on the y-axis [78,88]. We focus on
this level because it could provide a detailed understanding and guide industry on which
components of the three orchestration dimensions in Figure 3 are more important based on
their effects on collaboration performance. This approach enables the classification of these
components into four different quadrants, thus allowing industry to understand norm
strategies that should be typically followed, particularly which components have to be
prioritized [89]. From a practical perspective, analyzing the degree of importance of such
components is needed because it could help industry in making a strategic decision for
resource allocation to those components that increase the performance of its collaboration
with universities in open innovation. In this way, industry could be guided to a more precise
improvement of these components. Figure 5 illustrates the IPMA map at the components’
level, which was created based on the computation performed by SmartPLS 3 software.
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The IPMA map was further divided into four quadrants using the means of attribute
importance and performance [78]. Both components of the KM dimension were located
in the first quadrant (both high attribute performance and importance). Therefore, the
KA and KT components should be maintained in this quadrant, as their decrease would
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have a significant negative impact on collaboration performance. In a range from 0 to 100,
the KA component received the highest attribute performance at relatively high attribute
importance. This result suggests that industry is aware of the importance of this component
and performs well in accessing knowledge from universities. Although obtaining specific
knowledge, finding new ideas, and accessing the results of the research are important
for industry, there is less potential for improvement of the performance of KA (≈29%)
than for the KT component (≈37%). Moreover, the highest attribute importance was
established for the KT component, and thus its improvement would have the highest
positive impact. Consequently, industry should concentrate first on improving the transfer
of knowledge and then should focus on accessing knowledge. The components of the SR
dimension were both included in the third quadrant as each of them received relatively
low attribute importance, while their attribute performance was above the mean value.
Although firms perform relatively well on these attributes, they are not considered as
having critical importance on the collaboration performance. Nevertheless, through an
active and persuasive education about the importance of SR1 and SR2 components, they
can be turned into competitive advantages for firms that can manage them well. Finally,
the component of IA resulted in the least positive effect on the collaboration performance
as it was located in the fourth quadrant (both low attribute performance and importance).
Since its improvement would have the least positive effect, industry should especially
concentrate on the other two orchestration dimensions.

Following the recommendations of the literature [78], we employed the mean value
of each axis in determining the demarcation lines of the four quadrants of the IPMA map.
However, there are multiple other possibilities to specify these values that allow managers
to strategically establish the size of each quadrant considering the objectives and resources
of their firms [78,90]. For example, if a firm needs to stress the most competitive components
in sustaining the collaboration performance, the focus should be on shrinking the size of
the first quadrant by setting high values for both attribute importance and performance. In
this way, the IPMA map can be used as a strategic management map [90].

6. Concluding Remarks: Summary, Limitations, and Future Research
6.1. Summary of Findings

Open innovation between industry–university is a highly complex and sophisticated
phenomenon, and its orchestration may be of great support for better collaboration be-
tween these organizations. However, there is a lack of evidence on how an orchestration
framework impacts their collaboration performance within the open innovation setting.
Aiming to fill this gap, our study advances a research model to investigate the influence
of the main orchestration dimensions on the performance of collaboration between the
industry and university actors.

We empirically assessed this research model using a deep learning dual-stage PLS-
SEM and ANN analysis. In the first stage, the hypotheses of our research model were tested
based on a disjoint two-stage approach of PLS-SEM as we developed a hierarchical model
that comprises higher constructs. In the next stage, an ANN approach that includes both
shallow and deep learning networks was successfully conducted to capture the complex
relationships among the significant orchestration dimensions identified through the PLS-
SEM analysis. The results of our analysis show that a deep learning dual-stage PLS-SEM
and ANN approach is a more effective way of predicting the impact of the analyzed
orchestration dimensions on the collaboration performance. Finally, we carried out an
IPMA analysis at the indicator level that produced a strategic management map for the
determination of the relative importance of the components of the orchestration dimensions
based on their effects on the collaboration performance.

6.2. Limitations and Future Research Suggestions

Considering its exploratory nature, our study is not without limitations that have to
be acknowledged, which also points out a tentative outline for future research. First, within
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the research setting of this study, the influence of industry and firm type is not taken into
account. In addition, the differences between the industrial areas may lead to some limited
homogeneity. Therefore, this study requires replications conducted in the nationwide
context of different industries based on larger sample sizes before its results can be fully
generalized. Since national differences in economic development, cultural context, and
structural environments may influence open innovation between industry–university [66],
additional study should also address how such national realities affect the orchestration
processes of their collaboration in open innovation. As a result, future research is expected
to provide more in-depth insights on the impact of the orchestration process in different
national environments that will confirm, modify or even reject our findings. Second,
the innovation appropriability dimension was based in our study on formal intellectual
property protection mechanisms. Thus, future studies on the influence of appropriability
on collaboration performance in open innovation should be extended to other mechanisms,
such as semiformal and informal appropriability mechanisms [86]. Moreover, our findings
regarding the innovation appropriability and stability of relationships were different from
other research [24]. Therefore, further research work is also required to examine the
true nature of these two orchestration dimensions as Hurmelinna-Laukkanen et al. [24]
indicated. Third, a deep ANN approach was found more efficient than a shallow ANN
one in the context of our study. However, we used only an MLP architecture as a deep
neural network in our research. Although MLP is considered the foundation architecture
of deep learning, other deep neural networks are also available in the literature [91], and
their employment may conduct to better results.

Apart from the specific issues discussed above, our study also points toward some
other topics that require further investigation. We assumed that the orchestration of open
innovation between industry–university is participant-governed. Thus, it can be achieved
either formally (e.g., through regular meetings), or more informally (e.g., through progress
updates) [37]. Nevertheless, other governance forms were recently presented in literature,
e.g., [92,93], and their employment in the context of the orchestration of open innovation
should be explored in future studies. Moreover, since our research was focused on industry–
university collaboration in open innovation, the impact of other entities other than these
two organizations was not taken into account. Future studies should also consider the
influence of other actors on innovation, e.g., those of the quadruple/quintuple helix model.
Finally, our study has an exploratory nature and thus new components may be added to the
developed model based on the advancement of research in the analyzed field. Therefore, it
can be employed as a foundation for future research that is expected to provide a deeper
understanding of the orchestration process in open innovation.
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