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Abstract: Monitoring of bioprocesses is a challenge in designing modern systems for control. In
the biotechnology industry, the lack of reliable hardware sensors for key variables related to the
metabolism of microorganisms is a topical problem. This predetermines the progress of a scientific
field that relies on the development of software sensors for immeasurable variables. In this paper,
a new approach for the monitoring of class-controllable bioprocesses that evolve through various
physiological states (metabolic regimes) is proposed. At the core of the approach is the potential to
present total biomass as a sum of the biomass concentrations obtained during each of the metabolic
regimes. Algorithms for estimation of immeasurable variables and their kinetics are here derived and
applied using real experimental data. As a case-study, a fed-batch process for phytase production by
E. coli is considered. Effectiveness of the method is proven by using two sets of real experiments. One
is used to tune the software sensors and the other to verify the approach. The stability analyses are
provided, as well. The obtained results and successful verification confirm the adaptive properties of
the approach. The considered software sensors will be further built into an interactive system for
training specialists/students of biotechnology.

Keywords: adaptive monitoring; controllable bioprocesses; software sensors

MSC: 93D20

1. Introduction

The optimization of bioprocess production is related to accurate monitoring of all
states inherent to particular microorganism cultivation processes. One of the most effective
ways of process monitoring is by real-time data analysis derived from sensors, capable of
measuring the relevant process parameters [1]. Such observations create the possibility for
all stages of microorganism cultivation to be investigated. Moreover, this information can
be used in automated and supervised feedback control to maintain favorable conditions
for good product quality and quantity [2]. Unfortunately, access to sensors that meet the
requirements for on-line process monitoring is limited. A possible solution of the problem
is to utilize the information from hardware sensors as inputs to mathematical models that
are able to generate the values of critical variables and parameters from the modelled
biological phenomena.

Another solution is the combination of hardware sensors with algorithms for on-line
estimations of unmeasurable variables and parameters, known as software sensors (SS) [3].
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In the last decades, SSs have become established as promising tools for monitoring different
bioprocesses [4–13]. In [7,11] model-based and data-based SSs are reviewed. It should be
noted that the choice of SS method for a specific process and in particular biotechnological
processes is not an easy task and requires an analysis of the following information: (i)
complexity of the specific process; (ii) full/partial knowledge of the system’ dynamics;
(iii) available process information—quality and quantity of available off-line and on-line
measurements, the types of noises and uncertainties, etc.

Much research in the field of model-based SS is based on an extended Kalman filter,
which leads to development of complex nonlinear algorithms. Moreover, in most cases,
and despite some good results, there is no guarantee of the convergence and the stability of
these algorithms [7,12].

Other approaches for kinetic rates and state estimation are based on adaptive system
theory [4,12,14–19], high gain approach [20–22], sliding mode theory [23,24], interval
SS [25], probabilistic observers [26], etc. All of these methods are very dependent, to
different degrees, on the process kinetics knowledge.

One class of observers of unmeasured state variables are the asymptotic observers
that do not require knowledge of the process kinetics. A potential problem related to
asymptotic observers is the dependence of the estimation convergence rate on the opera-
tional conditions [4]. The software sensors from this class have the advantage for giving an
acceptable solution to one of the main challenges in bioprocess monitoring—the lack of
process reproducibility and uncertainty of parameter’s values.

Despite a large multiformity of monitoring methods and processes, only a few exam-
ples [27–29] concern the implementation of SS to processes that evolve different physiologi-
cal states (metabolic regimes) and are characterized by multiple specific growth rates. Such
processes, for example, include intermediate metabolites (acetate at high-cell density fer-
mentation of E. coli and phytase production by E. coli, ethanol at baker yeast production by
S. cerevisiae, gluconic acid at fermentation of A. niger, etc.) that are produced and could be
consumed during the cultivation. When the intermediate metabolite is the target product,
the last phase (oxidative growth on intermediate product) should be avoided.

The reaction scheme of considered processes could be presented as a set of the fol-
lowing three main reactions (metabolic pathways), which correspond to the process’s
physiological states:

• Oxidative growth on the main carbon source (S), with a specific growth rate µ1:

S
µ1→ X (1)

• Fermentative growth on the main carbon source, with a specific growth rate µ2:

S
µ2→ X + Pint (2)

• Oxidative growth on the intermediate product (Pint), with a specific growth rate µ3:

Pint
µ3→ X (3)

where X is the biomass concentration.
Each one of the physiological conditions is characterized by a different growth rate of

biomass. To track the dynamics of the whole process, it is necessary to propose algorithms
for estimation of the growth rates. In [27], Pomerleau and Perrier proposed and experimen-
tally validated an on-line estimation algorithm for multiple reaction rates. This procedure
was applied to baker’s yeast fermentation. The algorithm requires the on-line measurement
of two or three state variables. In [16], the presented approach for on-line monitoring
of three biomass growth rates and biomass concentration is based on adaptive observer
theory, on on-line measurements of dissolved oxygen and carbon dioxide concentrations,
as well as on laboratory measurements of biomass concentration. In spite of the adaptive
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properties of the proposed SS, which estimates the biomass growth rates as unknown
time-varying parameters, the resulting large number of tuning parameters does not favor
user-friendly synthesis of the estimation scheme. In [14], the relationships between tuning,
stability, and dynamics of convergence in observer-based kinetics estimators for stirred-
tank bioreactors, proposed in [4], is characterized in detail, both for continuous and for
discrete time formulations of the estimation algorithms. The results are illustrated with an
application to a baker’s yeast cultivation process, characterized by the physiological states
mentioned above.

On the basis of the reaction scheme (1)–(3), physiological states could be described by
combinations of sub-models, presenting the process dynamics. One challenge is finding
reliable information for switching from one metabolic state to another and switching the
sub-models.

In [18], the oxidative capacity presented by a model with constant parameters is
proposed as a key parameter (marker) for switching the sub models. In a result, inaccuracies
in the estimation are observed, since the values are in a close relationship with the type of
the strain and the cultivation conditions.

A new marker for recognizing the regimen bottlenecks is the kinetics of intermediate
metabolites, proposed in [28]. The process was monitored by a cascade scheme of the SS,
which changes its structure depending on the sign of the marker. At the scheme input are
the real-time measurements of the main substrate and the intermediate metabolite, and at
the output are the immeasurable variables and parameters. The operability of the scheme is
tested, and the results are compared with the experimental data of an E. coli fermentation.

All the proposed solutions mentioned above are based on models with constant
coefficients obtained by identification based on one set of experimental data. Due to the
non-linear and non-stationary nature of the considered processes, as well as the lack of
reproducibility of experimental (in case of verification with another dataset), the results are
unsatisfactory. This requires the search for solutions that are based on minimal modeling
of bioprocesses, i.e., inclusion of the smallest possible number of kinetic parameters and
yield coefficients with constant values while preserving model quality.

The aim of this study is to propose an approach for adaptive monitoring of the class of
processes described in scheme (1)–(3) and to derive a suitable SS, as well as the conditions
for its stability. Unlike the above cases, where the sum of the multiple specific growth rates
determines the whole biomass, here the biomass is considered as the sum of the biomasses
obtained during the each of the regimes.

As a case study, monitoring of a fed-batch process for phytase production is considered.
The main carbon source and the intermediate metabolite are measured on-line. This allows
the derivation of adaptive estimates of the specific growth rates, as well as of biomass
concentrations associated with them. Effectiveness of the method is proven by using
two real experimental datasets. One was used to tune the SS and the other to verify
the approach. The discussion includes analysis of the obtained results and direction for
future investigations.

2. A General Description of the SS Synthesis Methodology

The object of study is a class of controllable processes that evolve through different
physiological states [14–18,28] during cultivation. Each physiological state is characterized
by a different growth rate of biomass. In the considered processes, the target product is
functionally related to the biomass concentration.

As can be seen from reaction (3), the main source of carbon is depleted and biomass
increases at the expense of the intermediate. Its concentration is usually low, leading to
insignificant growth of biomass and low productivity of the target product. To avoid such
a result, the processes are controlled by feeding with a basic carbon source. Two modes of
control could be used—fed-batch or continuous modes of cultivation.
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The dynamic model of the process corresponding to scheme (1)–(2), widely used in
the literature [14,16,18,28], is presented as follows:

dX
dt

= (µ1 + µ2)X− F
V

X (4)

dS
dt

= −(k1µ1 + k2µ2)X− F
V
(S− Sin) (5)

dPint
dt

= k3µ2X− F
V

Pint (6)

where k1, k2, and k3 are yield coefficients. For fed-batch mode of cultivation, F is the sub-
strate feed rate and V is the reactor volume. In the case of continuous mode of cultivation,
D = F/V, where D is the dilution rate.

This model is used as an operational model for monitoring and control purposes.
As mentioned above, the aim is to propose a new monitoring approach involving a

minimum number of yield coefficients.
One possible solution is the application of the Z-transformation approach, proposed

in [4], which makes it possible to estimate the kinetics of processes without yield coefficients
when certain conditions are met (Appendix A.3). Unfortunately, this approach cannot be
applied directly to the considered class of processes described by model (4)–(6) as some of
the conditions cannot be satisfied.

For this reason, the dynamics of the process must be presented in such a way that the
application of the Z-transformation is possible.

The new idea is to present the biomass concentration as a sum of two parts (X1 + X2) .
The first one is connected to biomass concentration as related to the oxidative growth on
the main carbon source, the second is connected to biomass concentration as related to the
fermentative growth on main carbon source. Therefore, the total biomass concentration is:

X = X1 + X2 (7)

The reaction scheme for the considered case is rewritten as follows:

• Oxidative growth on the main carbon source, with a specific growth rate µ1:

S
µ1→ X1 (8)

• Fermentative growth on the main carbon source, with a specific growth rate µ2:

S
µ2→ X2 + Pint (9)

The dynamical model (4)–(6) is presented as follows:

dX1

dt
= µ1X1 −

F
V

X1 (10)

dX2

dt
= µ2X2 −

F
V

X2 (11)

dS
dt

= −k1µ1X1 − k2µ2X2 −
F
V
(S− Sin) (12)

dPint
dt

= k3µ2X2 −
F
V

Pint (13)

The transport dynamics, main carbon source, and intermediate product are measured on-line.
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Applying the Z-transformation method to the presented process model (10)–(13), the
vector Z is a linear combination of the vectors ξ1 and ξ2 of measured (ξ1) and unmeasured
(ξ2) variables [4] for the considered case, as follows:

Z = A1ξ1 + A2ξ2 (14)

where

Z =

[
Z1
Z2

]
, ξ2 =

[
X1
X2

]
, ξ1 =

[
S

Pint

]
, A2 =

[
k1 0
0 −k3

]
, A1 =

[
1 0
0 1

]
Using the Z-transformation (14), the dynamics of the measured variables ξ1 can be

presented as functions of Z and ξ1 as follows:

dS
dt

= (S− Z1)µ1 − k2µ2X2 −
F
V
(S− Sin) (15)

dPint
dt

= (Pint − Z2)µ2 −
F
V

Pint (16)

where the values of Z1 and Z2 are obtained by solving the following dynamic equations of
the components of the vector Z:

dZ1

dt
= − F

V
Z1 +

F
V

Sin − k2µ2X2 (17)

dZ2

dt
= − F

V
Z2 (18)

Equations (17) and (18) are obtained by differentiating Equation (14) and substituting
the time derivatives of the process variables with the right-hand sides of dynamic Equations
(10)–(13).

As can be seen, the dynamic equation of Z2 does not depend on yield coefficients,
while that of Z1 includes the term (−k2µ2X2). This leads to a modified representation of
the approach from [4] for the class of processes under consideration, which consists of
the following:

(1) Representation of the process model, Equations (4)–(6), for which Z-transformation
cannot be applied, in a new form, Equations (10)–(13) that enables a modified applica-
tion of the Z-transformation method by the model (15)–(18);

(2) Unlike the original system, Equations (4)–(6), including three yield coefficients, the
new system, Equations (15)–(18), includes only one yield coefficient. The two yield
coefficients, k1 and k3, are reduced using the Z-transformation. This makes adaptive
estimation of the kinetics and immeasurable variable possible, as will be shown below.

The estimation approach of both specific growth rates (µ1,µ2) and biomass concentra-
tion X is based on the derived system (15)–(18). Two estimators of specific biomass growth
rates are derived using on-line measurements of main carbon source (S) and intermediate
product (Pint). The outputs of these estimators are included in the dynamic equations of
X1 and X2 to obtain their estimates, as well as the sum X̂ = X̂1 + X̂2.

The software sensor (estimator) of the specific growth rate µ2 using on-line measure-
ments of the intermediate product Pint is described by the following system:

dZ2

dt
= − F

V
Z2 (19)

dP̂int
dt

= (Pint − Z2)µ̂2 −
F
V

Pint + γ1
(

Pint − P̂int
)

(20)

dµ̂2

dt
= γ2

(
Pint − P̂int

)
(Pint − Z2) (21)
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dV
dt

= F (22)

where γ1 and γ2 are estimator’s tuning parameters P̂int, µ̂2 —the estimates of the interme-
diate product and specific growth µ2, Z2—auxiliary variable.

The software sensor of the specific growth rate µ1 using on-line measurements of the
main carbon source S is described by the following system:

dZ1

dt
= − F

V
Z1 +

F
V

Sin − k2µ̂2X̂2 (23)

dŜ
dt

= (S− Z1)µ̂1 − k2µ̂2X̂2 −
F
V
(S− Sin) + w1(S− Ŝ) (24)

dµ̂1

dt
= w2(S− Z1)(S− Ŝ) (25)

dV
dt

= F (26)

where w1 and w2 are the estimator’s tuning parameters; k2 is the yield coefficient for
fermentative consumption of the main carbon source; Ŝ, µ̂1 contains the estimates of the
main carbon source and specific growth µ1; Z1 is the auxiliary variable, and µ̂2 contains the
estimates of the specific growth µ2, obtained by estimator (19)–(22).

Estimates of X1 and X2 are obtained based on the specific growth rates’ estimators
(19)–(22) and (23)–(26) using the following dynamic equations:

d
dt

[
X̂1
X̂2

]
=

[
µ̂1 0
0 µ̂2

][
X̂1
X̂2

]
− F

V

[
X̂1
X̂2

]
dV
dt

= F (27)

So, the total biomass estimate is as follows:

X̂ = X̂1 + X̂2 (28)

Below the stability analysis is given.
Stability analysis
Estimator of the specific growth rate µ2
The system of the estimation errors is as follows:

dx
dt

= Ax + v (29)

where x =

[
P̃int
µ̃2

]
is the vector of the estimation errors,

P̃int = Pint − P̂int; µ̃2 = µ2 − µ̂2;

A =

[
−γ1 (Pint − Z2)

−γ2(Pint − Z2) 0

]
v =

[
0

dµ2
dt

]
Suppose that γ1 and γ2 are constants with positive values and µ2 is a

differentiable function:
0 ≤ dµ2

dt
≤ M2

Then, according to the adaptive system theory, the error system is stable if the
(Pint − Z2) is persistently existing. The proof of this fact follows from Theorem A2.6
and Theorem A3.2 presented in [4].

Estimator of the specific growth rate µ1
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The system of the estimation errors is:

dx
dt

= Ax + v (30)

where x =

[
S̃
µ̃1

]
is the vector of the estimation errors,

S̃ = S− Ŝ; µ̃1 = µ1 − µ̂1; ε2 = Sm − S

A =

[
−ω1 (S− Z1)

−ω2(S− Z1) 0

]
v =

[
−k2µ̂2X̂2

dµ1
dt

]
Suppose that ω1 and ω2 are constants with positive values and µ1 is a

differentiable function:
0 ≤ dµ1

dt
≤ M1, 0 ≤ k2µ̂2X̂2 ≤ M3

Then, in similar manner, the error system is stable if the (S− Z1) is persistently
existing, which follows from Theorem A2.6 and Theorem A3.2 presented in [4].

3. Results and Discussion
3.1. Case Study: Fed-Batch Process of Phytase Production
3.1.1. Experimental Data of Fed-Batch Phytase Production

Two experiments of a fed-batch process for phytase production are used here [29,30].
The experimental data are shown in Figure 1 in four subfigures with black (dataset 1) and
red (dataset 2) dots. It is noteworthy that in dataset 2, after 11 h, there was a sharp change in
metabolism. It is expressed in the cessation in biomass growth (Figure 1a) and production of
the target product (Figure 1d). As the feeding continues, substrate concentration increases
(Figure 1b). In dataset 1, this effect is not observed. By hour 14 of the cultivation, the
biomass increases, as well as the synthesis of the target product, and the substrate stabilizes
at a low level. In the processes with the intermediate product of acetate, three metabolic
states are observed: oxidative growth of biomass on glucose, oxidative-fermentative growth
on glucose, and oxidative growth on glucose and acetate. The transition from the first to
the second metabolic state is initiated with the appearance of acetate (Ac) (Figure 1c). As
experimental data for the third metabolic state are not available in dataset 2, this gives
grounds to consider only the first two metabolic states. For the considered process, it is
important that the target product, phytase (Ph), be observed on-line. Its concentration
depends on biomass concentration, as will be shown below.
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Figure 1. Experimental data; black dots (Experiment 1), red dots (Experiment 2): (a)—biomass
concentration, (b)—glucose concentration, (c)—acetate concentration, (d)—phytase concentration.

In Figure 1, green dotted lines note the change of the metabolic state from oxidative
growth on glucose to oxidative–fermentative growth on glucose for both experiments.
Black dotted lines note the change of metabolic state from oxidative–fermentative growth
on glucose to oxidative on acetate for the experiment with black dots, and red dotted
lines note the change of metabolic state from oxidative–fermentative growth on glucose to
oxidative on acetate for the experiment with red dots.

3.1.2. Simulation Results

The approach described by Equations (23)–(28) is applied for estimation of µ1, µ2, X1
and X2 and observation of biomass concentration as a sum of concentrations of X1 and
X2 (Equation (28)). The unmeasured variables are biomass (X) and target product (Ph).
Glucose (S) and acetate (Ac) concentrations are measured on-line.

The simulation investigations are done only for fed-batch mode, i.e., the initial time of
simulation is t0 = 4.5 h. The SSs (19)–(22) and (23)–(26) were initially tuned based on dataset
1. The initial values of S and Ac are S(t0) = 0.35 g/L and Ac(t0) = 0.0476 g/L. The initial
value of µ1(t0) was calculated using the time-derivative of S from experimental data and
Equation (12b), taking into account that at this time, the term F/V is equal to zero and the
term µ̂2X̂2 accepts negligible value. The calculated value is µ1(t0) = 0.35 1/h. The values of
X1(t0), Z2(t0), µ2(t0), and k2 are obtained by optimization together with tuning parameters
ω1, ω2, γ1, and γ2. The values of ω1 and γ1 are accepted to be zero and the X2(t0) = Xexp(t0)
– X1(t0). The optimization procedures are based on an evolutionary algorithm [29]. The
following criteria is used:

J =
n

∑
i=1

(Xexp(i)− (X̂1(i) + X̂2(i))
2
+ (Sexp(i)− Ŝ(i))2

+ (Aexp(i)− Â(i))2

where n is the number of data points for each process variable (X, S, A); Xexp, Sexp, and Aexp

are the biomass, substrate, and acetate experimental data; X̂1, X̂2, Ŝ, Âc are the biomasses
X1, X2, glucose S, and acetate Ac estimates.
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The obtained values of tuning parameters are ω1 = 201, ω2 = 1, γ1 = 40, γ2 = 5.
The optimized values of X1(t0) = 2.7 g/L, Z2(t0) = 0.4 1/h, µ2(t0) = 0.3 1/h and k2 = 52.3.
The value of X2(t0) is obtained by X2(t0) = Xexp(t0) − X1(t0) = 0.1 g/L.

The same values of tuning parameters are applied at verification of the algorithms.
The phytase production depends functionally on biomass growth as follows:

dP̂h
dt

= kph1 µ̂1X̂1 + kph2µ̂2X̂2 −
F
V

Ph (31)

where the values of parameters were obtained by optimization procedure, as follows:

kph1 = 0.4 and kph2 = 1.7.

In Figure 2, the results after tuning the µ1 estimator (Equation (25)) based on the
substrate S observer (Equation (24)) are shows in subfigures (Figure 2b) and (Figure 2c),
respectively. In subfigures (Figure 2a) and (Figure 2d) the estimates of Z1 (Equation (23))
and X1 (Equation (27)), respectively, are shown.

Figure 2. Estimation results from tuning of estimator (system (23)–(26)) (with dashed lines, estimates;
with circles, experimental data): (a)—auxiliary variable, Z1; (b)—specific growth rate, µ1; (c)—
substrate concentration, S; (d)—biomass concentration, X1.

In Figure 3, the verification of the obtained variables and parameters based on dataset
1 is performed using dataset 2 (with the same tuning parameters).

In Figure 4, the results after tuning the µ2 estimator (Equation (21)) based on the
intermediate metabolite, Ac, observer (Equation (20)) are shows in subfigures (Figure 4c)
and (Figure 4b), respectively. In subfigures (Figure 4a) and (Figure 4d) the estimates of Z2
(Equation (19) and X2 (Equation (27)), are shown, respectively.

In Figure 5, the verification of the variables and parameters from Figure 4 was per-
formed on the basis of the data from Experiment 2 (red dots) with the same tuning parame-
ters.
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Figure 3. Verification results from estimator (system (23)–(26)) (with dashed lines, estimates; with
circles, experimental data); (a)—auxiliary variable, Z1; (b)—specific growth rate, µ1; (c)—substrate
concentration, S; (d)—biomass concentration, X1.

Figure 4. Estimation results from tuning of estimator (system (19)–(22)) (with dashed lines, estimates;
with circles, experimental data): (a)—auxiliary variable, Z2; (b)—acetate concentration, Ac; (c)—
specific growth rate, µ2; (d)—biomass concentration, X2.
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Figure 5. Verification results from estimator (system (19)–(22)) (with dashed lines, estimates; with
circles, experimental data): (a)—auxiliary variable, Z2; (b)—acetate concentration, Ac; (c)—specific
growth rate, µ2; (d)—biomass concentration, X2.

In Figure 6, the estimate of the total biomass, X̂, obtained after summing the estimates
X̂1 and X̂2 (28), is compared with the data from the experiments in subfigure Figure 6a,
with Experiment 1, and subfigure Figure 6b, with Experiment 2.

Figure 6. Estimation (a) and verification (b) of full biomass concentration: with dashed lines, esti-
mates; with circles, experimental data.

In Figure 7, the estimate of the phytase concentration, P̂h, obtained by



Mathematics 2022, 10, 2665 12 of 15

Figure 7. Estimation (a) and verification (b) of phytase concentration: with dashed lines, estimates;
with circles, experimental data.

Equation (31) was compared with the data from the experiments in subfigure (Figure 7a)
with dataset 1 and in subfigure (Figure 7b) with dataset 2.

The objects of research are bioprocesses, which during cultivation pass through phys-
iological states, presented by dynamic Equation (8). There are different biomass growth
rates at each physiological state. This fact gives grounds to present the total biomass as
a sum of the biomass concentrations obtained during each of the regimes. During the
fermentative growth of biomass, the production of acetate begins. As X and Ac grow on
the basis of the main carbon source (glucose) and there is a functional relationship between
them, an estimator of µ2 based on measurements of acetate can be derived. Since the
kinetics of acetate are unknown, Z-transformation is used. In this way, the estimator of µ2
is presented with the system (Equations (19)–(22)). The estimator of µ1 is derived following
the algorithm described above (Equations (23)–(26)), with glucose concentration as the
measured variable. The glucose is used as a substrate for both oxidative and fermentative
growth of biomass. For this reason, the obtained estimates of µ2 and X2 are included in the
structure of the estimator of µ1 system (Equations (23)–(26)). The kinetics of glucose are
represented by the first two terms of Equation (24). Here, a yield coefficient k2 is introduced,
which describes the consumption of glucose for the fermentative growth of biomass X2.
In subfigures (Figure 2c) and (Figure 3c), the estimates of the measured variable (glucose)
with the experimental data for both fermentations are compared.

It is noteworthy that the estimates are in complete agreement with the experimental
data. This guarantees that the results obtained for µ1, both in the tuning (Figure 2b) and
in the verification (Figure 3b) adequately estimate the specific growth rate µ1. The same
conclusion can be drawn from the estimator presented by system (19)–(22), based on the
measured intermediate metabolite acetate (see Figures 4b and 5b), as well as concerning
specific growth rate µ2 (see Figures 4c and 5c). Regarding the estimates of total biomass
(Figure 6a) and the target product of phytase (Figure 7a), it can be noted that the estimates of
dataset 1 coincide with the real experimental data of these variables. During the verification,
some deviations from the measurements are observed, but the tendency is preserved. This
may be due to inaccuracies in laboratory measurements of these variables.

To highlight the advantages of the proposed method, the results present here are
compared to another method applied to the same set of experimental data [29], where a
process model is derived and 26 parameters are identified. The results of the verification
in [29] are similar to those obtained by the proposed method whereby only one yield
coefficient and four estimator tuning parameters are included in the SS structure.

4. Conclusions

A new method for monitoring of class-controllable bioprocesses characterized by
multiple specific growth rates has been proposed. In this method, it is assumed that
biomass can be considered as a sum of the biomass concentrations, obtained during different
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metabolic regimes. This allows each of the components of biomass to be estimated through
asymptotic observers on the basis of one of the measured variables. According to the
classification [7,11], this approach can be considered as a hybrid method between model-
based and data-based software sensors. The model-based part includes the dynamic
equation of the measured variables. The data-based part is related to the tuning procedure
based on the experimental data. In this way, the number of the kinetics parameters is
reduced significantly. There are only three coefficients—one for total biomass observation
and two for target product observation. The effectiveness of the method is proven by
tuning the estimators from data of one experiment and by verification from data of another
experiment at the same tuning parameters. The results obtained are very good, although
the two experiments have strongly different dynamics.

Further, the method can be used to predict the dynamics of subsequent experiments,
as well as for the synthesis of adaptive control of this class of processes.
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Appendix A

Appendix A.1. General Reaction Scheme of Bioprocesses Realized in Stirred Tank Reactors

The scheme of reactions (1)–(3) is considered as a special case of the general scheme of
reactions of biotechnological processes, proposed in [27]:

∑ ξi
ϕ→∑ ξ j (A1)

where ξi are the reactants, ξ j are the products, and φ is the reaction rate, i.e., the rate of
consumption of the reactants, which is equal to the formation rate of the products.

The reaction scheme does not represent the stoichiometric relationships between the
components, in contrast to the common practice in chemical kinetics. It simply represents a
qualitative relation and is a tool for deriving an operational dynamical model of the process
and for solving engineering problems.

Appendix A.2. General Dynamical Model of Bioprocesses

The general dynamical model of a biotechnological process is as follows:

dξ

dt
= Kϕ(ξ, t)− Dξ −Q(ξ) + F (A2)

where

ξ—the vector of state variables with dim = n
K—the matrix of yield coefficients with dim = n × m
ϕ—the vector of reaction rates with dim = m
D—dilution rate
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Q—the vector of rates of mass outflow of the components ξ i from the reactor in gaseous
form with dim = n
F—the vector of mass feed rate in the reactor of the components ξ i if it is an external
substrate.

Appendix A.3. Conditions for Estimating the Kinetics Independently of the Unknown Yield
Coefficients

Assume that the vector Z can be expressed as a linear combination of the vectors ξ1
and ξ2 of measured and non-measured variables:

Z = A1ξ1 + A2ξ2 (A3)

The dynamics of the measured variables ξ1 are equal to:

dξ1

dt
= K1H(ξ1, ξ2)ρ(ξ1, ξ2)− Dξ1 −Q1 + F1 (A4)

The kinetic term H(ξ1, ξ2) ρ(ξ1, ξ2) is, in general, a function of some of the unknown
components of ξ2.

Assume that these components can be expressed from (A3) as functions of Z and ξ1
only. This means that then A2 must be left invertible. Then the kinetic term H(ξ1, ξ2)ρ(ξ1, ξ2)
can be rewritten in terms of the measured state ξ1 and of the auxiliary states Z:

H(ξ1, ξ2 )ρ(ξ1, ξ2 ) = Φ(ξ1, Z)ρ (A5)

where Φ(ξ1, Z) is a q ×M matrix which is a function of Z and ξ1.
The parameter ρ can be estimated independently of the unknown yield coefficients

under the following conditions:
C1. There exists a state transformation Z (A3), whose dynamics (A4) are independent

of the unknown yield coefficients.
C2. The reformulation (A8) of the kinetic term H(ξ1, Z)ρ( ξ1, Z) is such that the matrix

Φ(ξ1, Z) is independent of the unknown yield coefficients.
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25. Petre, E.; Selişteanu, D.; Roman, M. Nonlinear robust adaptive control strategies for a lactic fermentation process. J. Chem. Technol.
Biotechnol. 2018, 93, 518–526. [CrossRef]

26. Chachuat, B.; Bernard, O. Probabilistic observers for a class of uncertain biological processes. Int. J. Robust Nonlinear Control 2006,
16, 157–171. [CrossRef]

27. Pomerleau, Y.; Perrier, M. Estimation of multiple specific growth rates in bioprocesses. AIChE J. 1990, 36, 207–215. [CrossRef]
28. Zlatkova, A.; Lyubenova, V.; Dudin, S.; Ignatova, M. Marker for switching of multiple models describing E. coli cultivation.

Comptes Rendus L'académie Bulg. Sci. 2017, 70, 263–273.
29. Roeva, O.; Pencheva, T.; Tzonkov, S.; Arndt, M.; Hitzmann, B.; Kleist, S.; Miksch, G.; Friehs, K.; Flaschel, E. Multiple model

approach to modelling of Escherichia coli fed-batch cultivation extracellular production of bacterial phytase. Electron. J. Biotechnol.
2007, 10, 592–603. [CrossRef]

30. Kleist, S.; Miksch, G.; Hitzmann, B.; Arndt, M.; Friehs, K.; Flaschel, E. Optimization of the extracellular production of a bacterial
phytase with Escherichia coli by using different fed-batch fermentation strategies. Appl. Microbiol. Biotechnol. 2003, 61, 456–462.
[CrossRef]

http://doi.org/10.1109/JSEN.2020.3033153
http://doi.org/10.1016/S0959-1524(01)00031-2
http://doi.org/10.3934/bioeng.2017.1.93
http://doi.org/10.1007/s00449-003-0325-1
http://doi.org/10.1016/S0967-0661(99)00164-1
http://doi.org/10.1016/j.cej.2012.11.129
http://doi.org/10.14736/kyb-2018-1-0155
http://doi.org/10.1016/j.cherd.2015.10.030
http://doi.org/10.1007/s00449-012-0752-y
http://doi.org/10.1002/jctb.5383
http://doi.org/10.1002/rnc.1044
http://doi.org/10.1002/aic.690360206
http://doi.org/10.2225/vol10-issue4-fulltext-5
http://doi.org/10.1007/s00253-003-1229-3

	Introduction 
	A General Description of the SS Synthesis Methodology 
	Results and Discussion 
	Case Study: Fed-Batch Process of Phytase Production 
	Experimental Data of Fed-Batch Phytase Production 
	Simulation Results 


	Conclusions 
	Appendix A
	General Reaction Scheme of Bioprocesses Realized in Stirred Tank Reactors 
	General Dynamical Model of Bioprocesses 
	Conditions for Estimating the Kinetics Independently of the Unknown Yield Coefficients 

	References

