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Abstract: For analyzing recurrent event data, we consider a generalization of the classical accelerated
failure time model. In the proposed approach, the general function is no longer assumed to be a
singleton but allowed to be time-varying. This is in the same spirit as in quantile regression and
the counting process techniques can be utilized. Theoretical properties such as consistency and
asymptotic normality are obtained. The illustration of the methodology using simulation studies and
then the application to the bladder cancer data is also given.
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1. Introduction

Recurrence event data refer to the situation in which events of interest occur repeatedly
over time, and these are wildly used in science and technology, especially in medical re-
search, e.g., epileptic seizures, tumor recurrences, or asthma attack. When the investigators
studied the recurrent events, they are often interested in the estimation of covariates on
recurrent event times, which can help them perform further predictions. The establish-
ment of models can be approached in many ways; meanwhile, the concept of intensity
functions and the counting process are also useful. The nonparametric method used to
generalize the intensity estimator for the censored failure time data, independently started
by [1,2], also denoted the Nelson–Aalen estimator, is one of the methods widely used by
investigators. Refs. [3,4], among others, also studied multiplicative models for the rate
and mean functions, an approach which can be used with more general models, including
regression. Ref. [5] proposed a generalization of the accelerated failure time model, the
so-called accelerated recurrence time model, which resembles quantile regression as well
as allows for the evolution of covariate effects.

In this paper, we also extend the quantile regression approach and utilize the counting
process techniques. For a time-to-event response T, Ref. [6] proposed that a form may
assume QT(τ|Z) = exp

{
XT β0

}
for τ ∈ (0, 1), where QT(τ|Z) = inf{t : Pr(T ≤ t|Z) ≥ τ},

so QT(τ|Z) can also be seen as the τ-th quantile of T given that the covariates Z and
X = (1, ZT)T . Here, T, τ and t denote the time to event, the quantile level, and a non-
negative real number, respectively. Since its introduction, quantile regression has been
widely used and researched, mainly in survival analysis. Ref. [7] extended the LAD
estimation method to more general quantiles, and can also improve efficiency when the
error terms are identically distributed. Ref. [5] developed a new quantile regression
approach to the counting process, and Ref. [8] adopted a constant general function in
quantile regression which it applied to recurrence event data. In the application and
algorithm estimation of quantile regression, efforts have also been made by many people.
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Ref. [9] proposed a locally weighted censored quantile regression approach that can solve
covariate-dependent censoring. Ref. [10] proposed a semi-parametric approach using
empirical likelihood to a random effects quantile regression model.

Overall, this work considers a situation wherein the general function of the accelerated
failure time model is affected by time, sharing the same spirit of the parametric estimation
method, while we will use the nonparametric method to estimate the effect. Then, we
developed a new counting process model extended from the quantile regression models
of this general function. This method provides some ideas for the development of more
diverse estimation methods for the counting process.

2. Model
2.1. Accelerated Recurrent Events Time Model

Defining the R(·) = ∑∞
j=1 I(T(j) ≤ ·), where I(·) is the indicator function. The ob-

served counting process N(·) = R(· ∧ L) shows that the observation is limited to follow-
up time L and ∧ is the minimization operator, meanwhile, the at-risk process Y(·) and
Y(t) = I(L ≥ t). We also have µZ = E{R(t)|Z}, and Z is a p-vector as the covariates of
interest. The original accelerated recurrence time models considered covariates’ effects as
time scale changes, which also share the same spirit as quantile regression, and the inverse
function is

τZ(u) = inf{t : µZ(t) > G(u)},

in a general setting, and G(u) = u denotes the time to expected frequency u. However,
using a constant to estimate the expected frequency has some limitations. For example,
the effect of the intervention of interest factors affecting the occurrence of an event may
change over time. In this case, the model which combines a constant and variable coefficient
may be more effective. As such, we proposed a new accelerated recurrence time model,
and the right side of the inequality in the inverse function is G(u) = u ·m(t) instead of
G(u) = u, where m(t) is the function of time t. Regardless of the form of inverse function,
it can be written in the following form:

logτZ(u) = XT β0(u) (1)

As can be seen from the above formula, logτZ(u) should be linear. Compared to the
original accelerated recurrence model and the improved model, when the recurrent event T
follows a homogeneous Poisson distribution, as shown in Figure 1, the estimated logτZ(u)
by both models is approximately linear when the recurrent event is a non-homogeneous
Poisson process, which has an intensity function λ0(t) related to time t. In Figure 2, we
compare three different situations, namely when λ0(t) = b × t and b = 1, 5, 10. As b
increases, the estimation of the original accelerated recurrence model tends to be more
and more nonlinear, while the proposed improved model still shows a strong linear re-
lationship. In that way, the proposed recurrent event time model can be used in a more
general situation.

In this paper, we consider the situation that G(u) = ut, then model 2 can be rewritten as

E(X
[

R
{

exp(XT β)
}
− exp(XT β)u

]
) = 0 (2)

if and only if β = β0(u), and the left-hand side should be monotone, then the above
equation can be transformed into

β0(u) = argmin
β

E

{
∞

∑
j=1

(XT β− logT(j))+ − exp(XT β)u

}
.

where a+ = a ∨ 0 and ∨ denotes the maximization operator. Then, we can come up with
the following theorem:
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Theorem 1. For G(u) = exp(XT β(u))u, if (1) hold and R{τZ(u)} ⊥ L | Z, define v
⊗

2 = vvT

for vector v, µ̇Z(·) is the derivative of µZ, let FZ(x) = E{Y(x) | Z}, and assume

(C1) E
[
X
⊗

2 I{L > τZ(u)}
]

is non-singular;
(C2) µ̇Z(eXT β0(u))FZ(eXT β0(u)) > U for all u ∈ (0, U].

Then,
β0(u) = argmin

β
ψ(β; u), (3)

where

ψ(β; u) = E

{
M

∑
j=1

(XT β ∧ logL− logT(j))+ − exp(XT β ∧ logL)u

}
.

Figure 1. Estimation results of homogeneous Poisson process.

Figure 2. Estimation results of non-homogeneous Poisson process.

The proof of this result, as well as the proofs for Theorems 2 and 3 below, are given
in Appendix A. Powell extended these results for censored quantile regression when the
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censoring time is observed [7]. We will then combine the counting process model and apply
this method to the recurrence events data.

2.2. The Recurrent Events Model

For the counting process model, we begin with a review of Gill and Andersen’s
study [11], which extended the Cox proportional hazards model [12] to a multivariate
counting process. The intimate connection of the study on the multivariate counting
process and the use of martingale methods can allow us to derive more properties of the
statistical estimation and testing procedures. As each component Ni(·) of a multivariate
counting process has a cumulative hazard function ΛT(·), there exist local martingales
Mi defined by Mi(t) = Ni(t)−ΛT(t). Since the cumulative hazard function ΛT(·) is the
integral of the hazard function, then according to [11], the counting process formation of
the Cox model can be given by

E{N(t) | Z} = E
{∫ u

0
Y(s)λ0(s)eXTbds | Z

}
, t > 0, (4)

where λ0(s) denotes the baseline hazard function, and this model can accommodate re-
current events data well. Peng and Huang conducted a re-examination work [5], which
combined the quantile regression method for survival data with the above counting pro-
cess model.

E
{

N(eXT β0(u)) | Z
}
= E

{∫ u

0
Y(eXT β0(s))

1
1− s

ds | Z
}

, u ∈ (0, 1), (5)

which has a nice monotonicity property. In model 6, the estimated cumulative hazard
function Λ̂T(x) = −log(1− x). Huang also showed that a singleton model, where an
estimated cumulative hazard function is a constant u, can also be applied in the counting
process model [13]. When the singleton model is combined with quantile regression, this
extended the following model to a more general situation of recurrent events [8], and the
estimation formula is given by

E
{

N(eXT β0(u)) | Z
}
= E

{∫ u

0
Y(eXT β0(s))g(s)ds | Z

}
, u ∈ (0, 1), (6)

where g(s) ≡ 1. In fact, in model 7, the estimated cumulative hazard function G(u) = u,
which is a constant. According to Theorem 1 and the above models, we can propose a new
counting process model that takes the form

E
{

N(eXT β0(u)) | Z
}
= E

{∫ u

0
Y(eXT β0(s))dG(s) | Z

}
, u ∈ (0, U], (7)

where in our model, we can also show that

µZ(eXT β0(u)) = G(u) = ut =
∫ u

0
g(s)ds.

Therefore, we also have an alternative representation of the model that

τZ(G(u)) = exp
{

XT β0(u)
}

, u ∈ (0, U], (8)

The proof of this recurrence events setting is also shown in the Appendix A. In the
simulation part, we will show that our estimation method performs better when the
recurrent event time follows the non-homogeneous Poisson distribution.
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2.3. The Proposed Estimation Procedure

From Theorem 1, we can define the objective function

Ψ(β; u) = n−1
n

∑
i=1

{
Mi

∑
j=1

(XT
i β ∧ logLi − logT(j)

i )+ − exp(XT
i β ∧ logLi)u)

}
. (9)

Theorem 1 leads to the estimation of β0(u), that is β̂(u) = argmin
β

Ψ(β; u).

It can be seen that the objective function is not convex. An algorithm was developed
to find the local minimizer that is asymptotically equivalent to the global minimizer [13].
Since we proposed the counting process-based model (model 7), then we can propose an
equation to estimate β0(u):

n1/2Sn(β, u), (10)

where

Sn(β, u) = n−1
n

∑
i=1

Xi

{
Ni(exp

{
XT

i β(u)
}
)−

∫ u

0
I(Li ≥ exp

{
XT

i β(s)
}
)dG(s)

}
.

As the results proposed in [11], although Mh is a local square integrable martin-
gale, it has the same asymptotic property as a global martingale, and if we let S(β, u) =
E{Sn(β, u)}, then follows the martingale property of M(·) given that S(β0, u) = 0.

Equation (8) boils down to the estimation of censored quantile regression in [5]. A com-
mon method used to predict β0(u) is the grid-based estimation procedure by denoting β0(u)
as a right-continuous piecewise-constant function that jumps on a grid. More specifically,
we define SL(n) =

{
0 = u0 < u1 < · · · < uL(n) = U

}
, and for our recurrence setting, the U

in the grid can be greater than 1. The size of SL(n), denoted by
∥∥∥SL(n)

∥∥∥, is the maximum

value of uj − uj−1 where j = 1, · · · , L(n). It is also noteworthy that exp
{

XT β̂(0)
}
= 0.

Thus, based on model 9, we can estimate β̂(uj) by sequentially solving the estimating
equation

n−1/2
n

∑
i=1

Xi

{
Ri(exp

{
XT

i β(uj)
}
)−

j−1

∑
k=0

I(Li ≥ exp
{

XT
i β̂(uk)

}
)
∫ uk+1

uk

g(s)ds

}
= 0, (11)

Since Equation (10) is not continuous, the exact root may not exist. Fygenson and
Ritov proposed a generalization solution of β̂(uj) for monotone estimating equations [14].
To find the generalization solution of Equation (10), we need to perform some simple
algebraic manipulations, and then the solution-finding problem is equivalent to locating
the minimizer of the following L1-type convex function:

lj(h) =
n

∑
i=1

∞

∑
j=1

I(T(j)
i ≤ Li)

∣∣∣logT(j)
i − XT

i h
∣∣∣+ ∣∣∣∣∣R∗ −

{
n

∑
i=1

∞

∑
j=1

I(T(j)
i ≤ Li)(−Xi)

Th

}∣∣∣∣∣
+

∣∣∣∣∣R∗ −
{

n

∑
i=1

2XT
i h

j−1

∑
k=0

I(Li ≥ exp
{

XT
i β̂(uk)

}
)exp

{
XT

i β̂(uk)
}
(uk+1 − uk)

}∣∣∣∣∣.
where R∗ is a very large number and j = 1, · · · , L(n). One can also solve the lj(h) by using
statistical software, such as the rq() function in R package quantreg or the l1fit() function
in S-PLUS.

2.4. Asymptotic Properties

In this section, we establish the uniform consistency and weak convergence of the
proposed estimator β̂(u). Firstly, some regularity conditions should be stated.
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Define µ(b) = E
{

XN(exp(XTb))
}

, µ̃(b) = E
{

XI(exp(XTb) ≤ L)
}

, µ̃Z(x) = E
(N(x)|Z), gZ(x) = dµ̃Z(x)/dx, F(t|Z) = Pr(x ≤ t|Z), f̄ (x|Z) = − f (x|Z) = −dF(x|Z)/dx.
By using simple algebra, we also define B(b) = dµ(b)/dbT = E

{
X
⊗

2eXTbgZ(eXTb)
}

,

J(b) = dµ̃(b)/dbT = E
{

X
⊗

2eXTb f̄ (eXTb|Z)
}

. Suppose the assumptions in Theorem 1 hold

and β̂(u) is strongly consistent for β0(u). Assume the following conditions:

(C1’) Z and N(L) are bounded;
(C2’) (a) µ̇Z(·) is bounded and continuous at t = τZ(u), as well as uniform in Z, and (b)

µ(β0(u)) is a Lipschitz function of u;
(C3’) (a) each component of J(b)B(b)−1 is uniformly bound on b ∈ B(d), where B(d) is a

neighborhood containing β0(u), (b) gZ(x) > 0 and E(Z
⊗

2) is positive definite;
(C4’) infu∈[v,U]eigminB(β0(u)) > 0 for any v ∈ (0, U], where eigmin(·) denotes the mini-

mum eigenvalue of a matrix.

Condition (C1’) implies the boundedness of covariates and the number of observed
events, and (C2’) gives the smoothness of β0(u), condition (C3’) sets additional mild
assumptions such as the positive definite. Noted that (C4’) is a key condition that ensures
the consistency of the proposed estimator. Then, we have the following theorems.

Theorem 2. Under conditions C1’–C4’, when limn→∞

∥∥∥SL(n)

∥∥∥ = 0, then

sup
u∈(v,U]

∥∥β̂(u)− β0(u)
∥∥ P→ 0,

where 0 < v < U.

Theorem 3. Under condition C1’–C4’, when limn→∞ n1/2
∥∥∥SL(n)

∥∥∥ = 0, then

n1/2{β̂(u)− β0(u)
}

converge weakly to a Gaussian process for u ∈ [v, U], where v ∈ (0, U).

The proofs are also in the Appendix A.

3. Simulation Studies

In this part, we conducted the Monte Carlo simulations to test our model. Combining
the methods of Huang and Peng [13], recurrent events were generated from both homoge-
neous Poisson and non-homogeneous Poisson processes. We also generated two covariates,
X1 and X2, following the distribution Bernoulli(0.5) and Uni f (−0.5, 0.5) separately. The re-
current event time was generated by:

T(j) = exp

{
min(1,

T∗(j)

1.5γ
)X1 + X2

}
T∗(j)/γ, j = 1, 2, ...,

where in one case,
{

T∗(j), j = 1, 2, ...
}

was a recurrent event time from the standard homoge-

neous Poisson process, in other words, the gap times of T∗(j)− T∗(j−1) are independent and
identically exponetial(1) variables; in other cases,

{
T∗(j), j = 1, 2, ...

}
is a recurrent event

time from the non-homogeneous Poisson process with the intensity function λ0(t) = t.
Furthermore, the frailty γ followed the Gamma distribution for the homogeneous Poisson
process, we considered two situations, that is the variance of γ was chosen to be 0 and 0.5,
for the non-homogeneous Poisson process, and we only consider the variance of γ to be 0.
Under our simulation setup, we have

τZ(G(u)) = exp{log(u) + min(1, u/1.5)X1 + X2}.
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For censoring time L, we generated it from Uni f (0, 12). For each selection of the
variance of γ, we generated 500 datasets of sample size n = 100. Since we adopted the
grid-based method to estimate the β, an equally spaced grid on u ∈ (0, 3] with step size
0.02 was conducted in our simulation.

Figures 3 and 4 are the simulation results for the homogeneous Poisson process from
the set-up with a Gamma frailty of variance 0 and 0.5. In the first row, we plot the empirical
bias of the proposed estimator β̂(u) (solid lines) and the empirical bias of the Sun’s estimator
(dashed lines) [8]. Sun considered the double censored situation while we only consider
the right-censored event time to suit a more general situation. In the second row of the
plots, we depicted the empirical mean squared error (MSE) versus the expected frequency
u. The third row presents the coverage probabilities of 95% confidence intervals obtained
from the proposed estimator (solid lines) and Sun’s estimator (dashed lines). We can see
that both methods have a slight bias which converges to 0, and the empirical MSE also
tends to be stable as u increases. In the homogeneous Poisson process, when the variance of
gamma frailty equals 0, the empirical MSE shows less fluctuation compared to the variance
that is equal to 0.5.

Figure 5 depicts the same parameters as Figures 3 and 4, while the difference is that
the results are from the non-homogeneous Poisson process. We can see that, in the first
and second rows of Figure 5, both methods performed quite similarly in terms of the bias
and SD. However, from the third row, in terms of the coverage probability, the proposed
estimator (solid lines) performed slightly better than the Sun’s estimator (dashed lines),
than for the simulation of the non-homogeneous Poisson process.

Figure 3. Simulation results with sample size n = 100 and the set-up with Gamma frailty of variance 0.
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Figure 4. Simulation results with sample size n = 100 and the set-up with Gamma frailty of vari-
ance 0.5.

Figure 5. Simulation results of non-homogeneous Poisson process with sample size n = 100 and the
set-up with Gamma frailty of variance 0.
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4. Application to the Bladder Tumor Studies

We applied our proposed estimated method to a well-known bladder tumor study [15].
This dataset was conducted to analyze the effect of two treatments, pyridoxine and thiotepa,
based on the recurrence of bladder tumors. A total of 118 subjects were recorded, 48 were
treated with placebo, 32 were pyridoxine, and 38 with thiotepa. The covariates also
contained the initial number of tumors, the size of the largest initial tumor and others.
The maximum observed number of recurrences is 9.

We selected four covariates and the intercept: the two treatment methods and the
initial tumor size and number. In Figure 6, we displayed our estimation result of the
proposed method (solid lines) and Sun’s method (gray line) [8], surrounded by point-wise
Wald 95% confidence intervals (dashed lines). The grid-based estimation method estimated
the regression coefficients over [0, 1.6]. The intercept coefficient estimates represent the
log time to the expected frequency of the bladder tumor recurrence, consisting of patients
who had no pyridoxine and thiotepa treatment. The intercept term indicates that as time
increases, the bladder tumor recurrence also increases, which is in line with expectations.
The negative non-intercept coefficient estimates pyridoxine and thiotepa show that these
two treatments can inhibit tumor recurrence. In contrast, the initial tumor size and number
of covariates are positive, suggesting a negative effect on tumor recurrence. From Figure 6,
we can see that our method and Sun’s method do not have much difference, and the overall
trend is the same.

Figure 6. Bladder data example: coefficient estimates and 95% pointwise confidence.

5. Discussion

In this article, we introduced the accelerated recurrence time model for recurrence
events, and then considered a new situation when the expected frequency of the accelerated
recurrence time model was affected by the time-varying and combined this model with the
counting process model. This new counting process model with a non-singleton general
function is similar to Cox’s regression model but can be transformed into quantile regression.
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This method can also estimate more general situations, such as the non-homogeneous
Poisson process.

We can generalize our estimation procedure from double-censored to right-censored
situations. In the recurrence events setting, the most popular choice of G(·), which may
be G(u) = u, as well as G(u) = −ln(1− u), we introduce our new estimation method
with G(u) = ut. The assumption is that a constant hazard is rarely tenable in practical
problems. Therefore, in the parametric estimation process, a more general distribution of
the hazard function is the Weibull distribution, which is g(t) = λγtγ−1 for 0 < t < ∞, so
we have G(u) = utγ. When γ = 0, the Weibull distribution function becomes a constant,
but resembles the accelerated recurrence time model. When γ = 1, the model became our
proposed method. Thus, after combining the parametric and nonparametric methods, we
can make the estimation method more diverse and adapt to different types of datasets.

Author Contributions: Conceptualization, J.X.; Data curation, X.W.; Formal analysis, X.W.; Investiga-
tion, X.W. and J.X.; Methodology, J.X. All authors have read and agreed to the published version of
the manuscript.
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Appendix A

Proof of Theorem 1. If we want to estimate the β0, the left-hand side of the following
equation should be monotone,

E(X
[

R
{

exp(XT β)
}
− exp(XT β)u

]
) = 0 (A1)

taking derivative with respect to β on both sides of equation that

µ̇Z(eXT β(u))FZ(eXT β0(u))eXT β(u)XTdβ− ueXT β(u)XTdβ,

then, under condition (2), the equation A1 can be monotone. Meanwhile, straightforward
algebra gives

φ(β; Z, L) = E

{
M

∑
j=1

(XT β ∧ logL− logT(j))+ − exp(XT β ∧ logL)u | Z, L

}

=
∫ XT β∧logL

−∞
µZ{exp(s)}ds− exp(XT β ∧ logL)u

and for any β 6= β0(u),

E[φ(β0(u); Z, L)] = ψ(β0(u); u) < ψ(β; u) = E[φ(β(u); Z, L)],

in order to eliminate the minimization operator, we consider the following situations:

• when logL ≤ XT β and logL ≤ XT β0,

φ(β0(u); Z, L) = φ(β; Z, L).
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• when logL > XT β and logL ≤ XT β0,

φ(β0(u); Z, L)− φ(β; Z, L) =
∫ logL

XT β
µZ{exp(s)}ds− u

[
exp(logL)− exp(XT β)

]
=
∫ logL

XT β
[µZ{exp(s)} − u{exp(s)}]ds ≤ 0.

• when logL > XT β0, since exp(β0(u)) is the unique value that minimizes∫ x

−∞
µZ{exp(s)}ds− exu,

considering the monotonicity of µZ(·), therefore φ(β0(u); Z, L) ≤ φ(β; Z, L). By the
non-singularity of E

[
X
⊗

2 I{L > τZ(u)}
]
,

E
[
φ(β0(u); Z, L)I

{
logL > XT β0(u)

}]
≤ E

[
φ(β; Z, L)I

{
logL > XT β0(u)

}]
.

Thus, the proof is completed.

Proof of Theorem 2. Define α0(u) = µ(β0(u)), α̂(u) = µ(β̂(u)), and

B(d) =
{

b ∈ Rp+1 : inf
u∈(0,U]

‖µ(b)− µ(β0(u))‖ ≤ d
}

,A(d) = {µ(b) : b ∈ B(d)}.

Noted that for any b1,b2 ∈ B(d),

(b1 − b2){µ(b1)− µ(b2)} = E
[
(XTb1 − XTb2)

{
N(exp(XTb1))− N(exp(XTb2))

}]
= 0,

which only occurs when b1 = b2 by condition (C3’). Then, there exists a one-to-one map
from B(d) to A(d) that we denoted by κ(·) and κ{µ(b)} = b for any b ∈ B(d).

Furthermore, by the properties of the martingale stochastic process

M(u) = N(exp(XT β0(u))−
∫ u

0
Y(eXT β0(s))g(s)ds,

we have

n−1
n

∑
i=1

Xi Ni(exp
{

XT
i β̂(u)

}
) = n−1

n

∑
i=1

∫ u

0
Xi I
[
exp

{
XT

i β̂(s)
}
≤ Li

]
g(s)ds + ξn,k

where ξn,k = Op(n−1).
Then, the following notations are defined:

vn(b) = n−1
n

∑
i=1

Xi Ni(exp
{

XT
i b
}
)− µ(b),

ṽn(b) = n−1
n

∑
i=1

Xi I(exp
{

XT
i b
}
≤ Li)− µ̃(b).

By the Glivenko–Cantelli theorem, we have

supb‖vn(b)‖
a.s.→ 0,

supb‖ṽn(b)‖
a.s.→ 0.
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Since E(XN(exp
{

XT β0(u)
}
)) = E(X

∫ u
0 I(L ≥ exp

{
XT β0(s)

}
)dG(u)). Then, α̂(u) −

α0(u) is equivalent to

−vn(β̂(u)) +
∫ u

0
ṽn
{

β̂(s)
}

dG(s) +
j

∑
k=1

∫ uk

uk−1

[
µ̃(β̂(s))− µ̃(β0(s))

]
dG(s) + ξn,k.

By the arguments as [5], the supu∈[uk−1,uk)
‖α̂(u)− α0(u)‖ can be bounded almost surely by

εk = (1 + C4bn)
k−1(C1 + ε0C4bn + C2n−1 + C3an), where ε0 = C3an. Given limn→∞ an = 0

and L(n) = U/an, we have

lim
n→∞

(1 + C4bn)
L(n)−1 = exp{C4U/(1−U)},

where C1, C2, C3, and C4 are some positive constant. Since Ci are arbitrarily and limn→∞ an =

0, then we can know that supu∈(0,U]‖α̂(u)− α0(u)‖
P→ 0. By the application of the Tay-

lor expansion of κ{α̂(u)} around α0(u), the conclusion sup
u∈(v,U]

∥∥β̂(u)− β0(u)
∥∥ P→ 0 can

be reached.

Proof of Theorem 3. From the arguments made by [13], we have the following lemma:

sup
u∈(0,U]

∥∥∥∥∥n−1/2
n

∑
i=1

Xi

{
Ni(eXT

i β̂(u))− Ni(eXT
i β0(u))

}
− n−1/2{µ(β̂(u))− µ(β0(u))

}∥∥∥∥∥ P→ 0,

sup
u∈(0,U]

∥∥∥∥∥n−1/2
n

∑
i=1

Xi

{
I(Li ≥ eXT

i β̂(u))− I(Li ≥ eXT
i β0(u))

}
− n−1/2{µ̃(β̂(u))− µ̃(β0(u))

}∥∥∥∥∥ P→ 0.

(A2)

and the above lemma implies that

−n1/2Sn(β0, u) = n1/2[µ(β̂(u))− µ(β0(u))
]
−
∫ u

0
n1/2[µ̃(β̂(s))− µ̃(β0(s))

]
dG(s) + o(0,U](1)

= n1/2[µ(β̂(u))− µ(β0(u))
]

−
∫ u

0

[
J(β0(u))B(β0(u))−1 + o(0,U](1)

]
n1/2[µ(β̂(u))− µ(β0(u))

]
dG(s) + o(0,U](1)

since limn→∞ n1/2
∥∥∥SL(n)

∥∥∥ = 0, then n1/2Sn(β̂, u) = o(0,U](1). Then, we can use the product
integration theory to obtain the following equation:

n1/2[µ(β̂(u))− µ(β0(u))
]
= ϕ

{
−n1/2Sn(β0, u)

}
+ o(0,U](1),

where ϕ(g)(u) =
∫ u

0 I(s, u)dg(s), which is a one-to-one map from F to F . By our def-
inition, F =

{
g : [0, U]→ Rp+1} and g is left-continuous with a right limit, g(0) = 0.

Meanwhile,

I(s, t) = πu∈(s,t]

[
Ip+1 + J(β0(u))B(β0(u))−1dG(u)

]
.

Since the definition given by [16] is followed, {Xi Ni(exp{Xiβ0(s)}), s ∈ (0, U]} is a VC-
class. For

∫ u
0 I
(

Li ≥ exp
{

XT
i β0(s)

})
dG(s), let h(x) =

∫ x
0 I
(

Li ≥ exp
{

XT
i β0(s)

})
dG(s),

suppose that x1 ≤ x2, then

|h(u1)− h(u2)| =
∣∣∣∣∫ u1

u2

I
(

Li ≥ exp
{

XT
i β0(s)

})
dG(s)

∣∣∣∣ ≤ K|u1 − u2|,
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where K = max(exp
{

XT
i β0(s)

}
, s ∈ [u1, u2]), this implies that h(x) is a Lipschitz in x.

The above arguments show that{
Xi Ni(exp{Xiβ0(s)})−

∫ u

0
I
(

Li ≥ exp
{

XT
i β0(s)

})
dG(s), u ∈ (0, U]

}
is a Donsker class. By the Donsker theorem, we can know that −n1/2Sn converge weakly
to a Gaussian process, then ϕ

{
−n1/2Sn(β0, u)

}
is also a Gaussian process for ϕ(·) is a

linear operator. By the continuous mapping theory and Taylor expansion of κ
[
µ
{

β̂(u)
}]

around κ[µ{β0(u)}], we can know that n1/2{β̂(u)− β0(u)
}

converge weakly to a Gaussian
process with a mean of zero and a covariance matrix Σ(s, t) = E[ζ1(s)ζ1(t)], where ζi(u) =
B(β0(u))−1 ϕ(si), and si(u) = Ni(exp

{
XT

i β(u)
}
)−

∫ u
0 I(Li ≥ exp

{
XT

i β(s)
}
)dG(s).

Recurrent Event Setting

Suppose model 6 holds, then according to the following definition:

E
{

N(eXT β0(u))|Z
}
= µZ(eXT β0(u) ∧ L),

and the inequality eXT β0(u) ≤ L can also be written as G(u) ≤ µZ(L) following the defini-
tion of τZ(u). Then

E
{∫ u

0
Y(eXT β0(s))g(s)ds|Z

}
= E

{∫ ∞

0
I(G(s) ≤ µZ(L))dG(s)|L, Z

}
.

In model 6, G(u) = µZ
{

XT β0(u)
}

, so it follows from the above equation that for u ∈ (0, U],

E
{∫ u

0
Y(eXT β0(s))g(s)ds | Z

}
= µZ(L ∧ eXT β0(u)).

Therefore, the model 5 is satisfied.
Suppose that model 5 holds, then taking the derivative with respect to u on both sides

of equation in model 5, we have

µ̇Z(eXT β(u))FZ(eXT β0(u))eXT β(u)XTdβ = FZ(eXT β0(u))g(u)du,

that is, dµZ(eXT β(u)) = g(u)du, then µZ(eXT β(u)) = G(u) and model 6 are satisfied.
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