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Abstract: Nonlinearities, exponential trends, and Euler equations are three key features of standard
dynamic volatility models of speculation, economic growth, or macroeconomic fluctuations with
occasionally binding constraints and endogenous state-dependent volatility. A natural way to
estimate a model with all such three features could be to use the observed nonstationary data
in a single step without preliminary linearization, log-linearization, or preliminary detrending.
Adoption of this natural strategy confronts a serious challenge that has been neither articulated
nor solved: a dichotomy in the empirical model implied by the Euler equation. This leads to a
discontinuity in the regression in the limit, rendering the approaches employed in available proofs
of consistency inapplicable. We characterize the problem and develop a novel method of proof of
consistency and asymptotic normality. Our methodological contribution establishes a foundation for
consistent estimation and hypothesis testing of nonstationary models without resorting to preliminary
detrending, an a priori assumption that any trend is exactly zero, linearization, or other restrictions
on the model.

Keywords: asymptotic normality; commodity prices; dichotomy; dynamic nonlinear models;
least squares; exponential trend; least squares; strong consistency; trend; asymptotic normality;
endogenous volatility

MSC: 62P20

1. Introduction

Dynamic stochastic problems of asset accumulation and allocation subject to random
shocks and occasionally binding constraints (for example, non-negativity constraints or
limits on asset decumulation or aggregate borrowing) are important in numerical studies of
commodity price volatility, macroeconomic fluctuations, and economic growth. Empirical
analysis of such problems encounters significant challenges. We illustrate these in a simple
model of price volatility in a market for a storable commodity such as grain that is our main
focus here. The market includes an exponential positive trend in productivity, a random
harvest shock, a non-negativity constraint on stocks, and Euler equations for deriving
profit-maximizing storage decisions. These features are shared by many dynamic stochastic
models of speculation, economic growth, or macroeconomic fluctuations with occasionally
binding constraints and endogenous state-dependent volatility (see for example [1–5], and
references therein).

A natural way to estimate models with such features could be to implement the
estimation of nonlinear Euler equations using the nonstationary observed data and letting
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the data reveal estimates of trends and other parameters relevant to the volatility of prices
or other measures of value.

Even in our simple commodity market model, the exponential trend in the dependent
variable (for example, price of a storable commodity) poses a challenge to identification
first discussed in the context of a simple first-order decay model [6].

Standard representation of the Euler equation normalized by the current (unknown)
estimated value of the exponential trend solves this identification problem. However, if the
aim is to estimate the value of at least one other parameter besides the trend, use of this
normalization introduces a serious obstacle: a dichotomy in the empirical model implied
by the Euler equation when the estimated trend parameter is in the neighborhood of its true
value. This implies a discontinuity in the regression in the limit, rendering the approaches
employed in available proofs of consistency inapplicable.

Studies that estimate parameters of models involving similar challenges generally take
one of four currently prevalent approaches. The first is to ignore any trend as negligible
(see for example [7–13]), another is the common practice of resorting to linearization or
log-linearization of Euler equations implied by inter-temporal arbitrage (which might well
mis-specify the incentives implied by the model) (see [14–16] for discussions of the serious
implications of such mis-specifications), a third is de-trending of the data prior to estimation
using the mean value of an exponential trend estimated on the data in a preliminary step
(see [2,17,18]), and a fourth is de-trending the data simultaneously with the estimation of
all other unknown parameters but ignoring the endogenous interaction of the trend and
economic incentives in the Euler equation (see for example [1,3,19]).

Each of these approaches restricts the information that can be revealed in empirical
analysis. How important are these restrictions? It has been difficult to address this question
in the absence of a less restrictive approach that can be used for comparison.

We offer such a less restrictive approach—a one-step procedure to estimate all param-
eters simultaneously—to minimize the sum of squared residuals of the estimated nonlinear
Euler equations, recognizing the interaction of an exponential trend in price with the
endogenous economic incentives implied by the model.

We use nonlinear least squares which, as Wu [20] notes in his classic paper, has a
central role in inference of parameters in nonlinear regression models. Wu [20] further
notes that such inference is necessarily asymptotic but that much of the work prior to his
paper focuses on problems such as asymptotic normality, avoiding the “harder problem”
of consistency by assuming that it holds.

We address the key problem of consistency of our estimator in line with the suggestion
of [21] (p. 1050) to focus on extending asymptotic analysis to cases where the forcing
variables are not necessarily stationary but have a time invariant representation.

Although exponential trends are commonly used in nonstationary dynamic models,
the regressions implied by the Euler equations of the models we consider do not satisfy the
sufficient conditions for consistency of estimators available in the literature. In particular,
the uniform convergence condition in [22], the Lipschitz condition of [20], the Lipschitz
conditions of [23], the continuity-type smoothness conditions of [24,25], the differentiability
conditions of [26], and the stochastic Lipschitz conditions in [27] do not hold.

Article [28] established consistency and central limit theorems for models where the
unobserved errors are independent, as assumed in [20,29]. In contrast, and in line with
most of the empirical literature on nonlinear dynamic economic models, we consider cases
where the residuals are Markovian and not independent.

To the best of our knowledge, in the four decades since [21] there has been no study
that provides asymptotic theory for the estimation of nonstationary nonlinear dynamic
stochastic models of intertemporal arbitrage of the type we consider here. These models
include an unknown exponential trend in the structure of the predictor that interacts with
at least one other parameter and do not have independent errors.

In what follows, we address estimation of key parameters of economic models with
endogenous volatility. The ability to test the assumption that any secular trend in the
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endogenous variable of interest is exactly zero is potentially important for tests of other
parameters affecting dynamic stochastic behavior. Our main focus is on a dynamic stochas-
tic model of commodity price behavior of a storable commodity such as wheat described
in detail in [2]. This model is a nonstationary extension of the classic stationary model of
speculative arbitrage with occasionally binding non-negativity constraints on inventories
in the tradition of [30–32]. This model is highly relevant to current concerns with price
prediction in markets with high and volatile commodity prices.

We develop a novel method of proof of consistency and asymptotic normality for such
models. Thus, we establish a foundation for estimation and hypothesis testing, without

(i) Ignoring the possibility of a secular trend,
(ii) Using prior detrending,
(iii) Assuming linear or log-linear Euler equations,
(iv) Ignoring the possible interaction of a trend and other parameters in the Euler equation,
(v) Assuming independent errors.

In Section 2, we present a background for the problem we solve. Then, in Section 3, we
present our main example, the commodity storage model. In Sections 4 and 5, we present
our proofs of identification, consistency, and asymptotic normality for this nonstationary
model of speculative arbitrage of consumable commodity inventories with occasionally
binding non-negativity constraints in the tradition of [30–32].

We then, in Section 6, show how our proofs can be applied to two empirical models of
economic growth. The presentation of our results for such models is brief, since we discuss
the same methodological challenge and use the same techniques as for the commodity
storage model. The model in Section 6.1 is a non-stationary version of the growth model
of [33], which, like many DSGE models, presents the additional challenge that the predictor
in the regression is unbounded. In Section 6.2, we address estimation of a two-sector
empirical growth model with occasionally binding constraints in capital.

In Section 7, we present numerical simulations of our results for the storage model in
Section 3; in Section 8, we offer concluding remarks.

2. Preliminaries

In this section, we discuss the estimation problem and a general presentation of our
approach to solving it.

The types of models we address include intertemporal Euler equations that imply
regressions of the form:

Yt+1 = f (t, xt, θ0) + εt+1 (1)

where t ∈ N is time, θ0 ∈ Θ is the vector of the unknown true values of at least two
parameters, one of which is the exponential trend parameter, Θ is a compact set in Rq, xt is
a regressor, and {εt+1}t∈N is a martingale difference sequence.

We present our results in the familiar setting of nonlinear least squares estimation
although our approach can be more broadly applied. In the standard case [22], the average
of squared residuals 1

T ∑T
t=1(Yt+1 − f (t, xt, θ))2 is uniformly convergent in θ ∈ Θ.

In the models we consider, this average is pointwise convergent for θ ∈ Θ. However,
the presence of a quite standard exponential trend in the driving process implies that such
convergence is not uniform.

Our proof of strong consistency of the least squares estimator of θ0 is based on the
proof of the following uniform strong law of large numbers:

limT→∞
1

AT
sup

θ∈B(µ)

∣∣∣∣∣ T

∑
t=1

εt+1{ f (t, xt, θ)− f (t, xt, θ0)}
∣∣∣∣∣ = 0, almost surely (2)
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where µ 6= θ0, B(µ) is a ball centered at µ with θ0 /∈ B(µ), and

AT ≡ infθ∈B(µ)

T

∑
t=1
{ f (t, xt, θ)− f (t, xt, θ0)}2.

(For papers that prove similar uniform laws of large numbers for other regression models,
see for example [20] Lemma 1, p. 504, [26] p. 1927, and [27] pp. 878–879).

The regression models considered in this paper imply a new challenge for the proof of
(2). Specifically, for the commodity storage model we present in Section 3, the predictor f
in (1) is a function of (λ/λ0)

t where t is time, λ > 0 is a value of the trend parameter in the
ball B(µ), and λ0 > 0 is the true (unknown) value of the trend parameter.

More precisely, for the storage model,

Yt+1 = f (t, pt, θ) + εt+1 = γ min

{(
λ

λ0

)t p∗

pt
, 1

}
+ εt+1.

where pt is a regressor, and θ = (λ, p∗, γ) is a vector of strictly positive estimated pa-
rameter values. The term (λ/λ0)

t has a dichotomy when λ passes through λ0. Indeed,
if (λ/λ0) < 1, then (λ/λ0)

t decreases exponentially with t. In contrast, if (λ/λ0) > 1,
then (λ/λ0)

t increases exponentially with t. This dichotomy induces a discontinuity in
limt→∞ f (t, pt, θ).

If λ0 and at least one other parameter are unknown, the proof of (2) is not necessarily
immediate. In the nontrivial case, the ball B(µ) in (2) includes λ0 and values of λ that are
strictly less than λ0, and other values for λ that are strictly greater than λ0. This implies
that the discontinuity in limt→∞ f (t, pt, θ) can occur in the interior of the ball B(µ) in (2).
For simplicity, such a ball is illustrated in two dimensions by the square ball in Figure 1,
where we denote the other parameter as p∗, and p∗0 is its unknown true value.

Were λ0 the only unknown, the ball B(µ) would not include λ0, simplifying the proof
of (2). Indeed, the ball B(µ) would be an open interval strictly to the left or to the right of
λ0, as illustrated by the alternate open intervals on the horizontal axis of Figure 1. We shall
refer to the dots in Figure 1 when discussing the proof of Theorem 2 below, which makes
use of sequences of arrays of discrete points such as the array for the square ball illustrated
in Figure 1.

Figure 1. A square ball in the parameter space.
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The function f is such that small deviations in λ from λ0 can induce large deviations
in the estimates of the other parameters. The presence of (λ/λ0)

t in the predictor f
implies that the trend parameter estimator must be superconsistent if the estimators of the
other unknown parameters are to be consistent.

In our proof of (2), we use Azuma’s Lemma for martingale difference sequences [34],
to show that the predictor f and its slope have a bound of polynomial order which we
prove is killed by a negative exponential bound, uniformly on θ ∈ Θ.

In what follows, we address estimation of key parameters of three types of economic
models with endogenous volatility in which the ability to test the assumption that any
secular trend in the endogenous variable of interest is exactly zero is potentially important
for tests of other parameters affecting dynamic stochastic behavior. Our main focus is
on estimation of a dynamic stochastic model of commodity price behavior, addressed in
Section 3. This model is most relevant to the current concern with high and volatile prices
of storable commodities.

3. Speculative Commodity Storage
3.1. Overview

We consider a model of the market for a storable commodity with nonstationary
supply described in [2]. For our paper to be self-contained, we present in this subsection a
brief description of the simple market model described in greater detail in [2].

The model includes a stationary consumer demand with negative response to price
and no response to changes in income. Production is a random harvest with a secular
increasing trend. If the harvest is large and price is low, a portion of the output can be
stored by speculators who maximize expected profit, selling some or all of their inventories
when the price is higher subject to the constraint that stocks cannot be negative.

The dynamic behavior of this model alternates between two regimes. In one, the
current price is sufficiently high that stocks are zero. In this “stockout” regime, we assume
that the functional form of the latent consumption demand and the nature of the production
process are such that their interaction implies a price target that follows a deterministic
log-linear trend λ > 0. This target is an attractor; it is the conditional price expectation
when current stocks are zero and arbitrage is not active. In this regime, price is volatile;
the effects of harvest shocks on price are not buffered by currently available stocks. The
expected price change is a “jump” to the trending attractor.

In the alternate regime, the current price is sufficiently low that stocks are positive.
Intertemporal storage arbitrage ensures that the expected price exceeds the current observed
price by the interest cost accrued on a one period investment in one unit of the commodity,
which is the sole cost of storage. In this regime, price is less volatile and follows a stochastic
trend; the attractor following the deterministic secular trend is latent until stocks revert to
zero.

3.2. The Model

There is a representative consumer with stationary inverse consumption demand
for the commodity F, with Pt = F(Ct), where Pt and Ct denote the observed price and
consumption at time t, which we denote as “trending price” and “trending consumption,”
respectively, where “trending” means “in the model with an exogenous production trend”.
We assume the inverse demand function F to be stationary and strictly decreasing.

Rather than following the literature and specifying a particular functional form for F,
we assume that it is in a general class of demand functions for a consumer whose utility
function is in the Homothetic Absolute Risk Aversion (HARA) class (see [35] for details
about the HARA utility functions). Such demand functions are characterized by:

F′′F
(F′)2 = κ, (3)
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where κ is a constant. This specification is not very restrictive: it includes, for example,
the popular linear, log-linear, and iso-elastic consumption demand functions as particular
cases.

Like previous models of storage with positive probability of stockouts (periods with
no stocks) in the tradition of [30], we assume no convenience yield. (That is, we rule out
storage at apparently negative net expected return.) Indeed, there is no storage cost apart
from a constant interest rate r > 0.

Total available supply at time t is Zt. Competitive storers choose non-negative aggre-
gate stocks Xt ≡ Zt − Ct ≥ 0, to maximize expected profits[

1
1 + r

EtPt+1 − Pt

]
Xt,

where Et denotes expectation conditional on information at time t. If current stocks Xt are
positive:

EtPt+1 = (1 + r)Pt.

Note that in this regime with positive stocks the short-run “spread” rPt between the
expected price in the next period and the current price is independent of the secular trends
in production and price.

If the expected price is bounded, positive stocks Xt go to zero in finite time, inducing
a switch in the price regime. Hence the price is determined by the following nonlinear
condition:

F(Ct) = max
[

F(Zt),
1

1 + r
EtF(Ct+1)

]
, (4)

subject to

Zt+1 ≡ Zt − Ct + Ht+1, ∀ t ∈ N, (5)

conditional on initial Z > 0, where Ht+1 and Zt+1 denote production and total available
supply at time t + 1, respectively.

We assume that production Ht is given implicitly by F(Ht) = λtF(ht), where “nor-
malized production” ht is i.i.d., with compact support [h, h], 0 ≤ h < h < ∞, satisfying
F
(

h
)
> 0, and that the distribution of ht is absolutely continuous, with a continuous and

strictly positive derivative on the interior of its support. To rule out bubble models, we
assume EF(h) < ∞, where E denotes the expectation with respect to h. (For discussions
of bubble models of storage arbitrage, see for example [36–38]).

Normalized available supply zt and normalized consumption ct are defined implicitly
in terms of their trending counterparts by the equations λtF(zt) = F(Zt), λtF(ct) = F(Ct).
Then, the stationary counterparts of Equations (4) and (5) are:

F(ct) = max
[

F(zt),
λ

1 + r
EtF(ct+1)

]
, (6)

subject to

zt+1 ≡ λκ−1(zt − ct) + ht+1. (7)

We define pt ≡ F(ct). We denote pt the “detrended” price, with some abuse of
terminology. In general, pt is not the price process if λ ≡ 1 ; indeed the trend parameter
affects the storage incentive in the normalized model and thus affects the amount of stocks,
the timing of regimes, and the detrended prices. Note that λ appears in the normalized
model described by Equations (6) and (7).
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Given λ < 1 + r, a standard argument (see for example the proof of Theorem 1 in [7])
implies the existence of a Stationary Rational Expectations Equilibrium (SREE) function
p : [h, ∞)→ R for the detrended price:

pt = p(zt) = max
[

F(zt),
λ

1 + r
Et p(zt+1)

]
. (8)

Moreover, p is non-negative, continuous, and strictly decreasing if strictly positive.
The following complementary inequalities hold:

p(z) = F(z), for z ≤ F−1(p∗),
p(z) > F(z), for z > F−1(p∗),

where p∗ ≡ λ

1 + r
Ep(h) ∈ R.

Equation (8) implies the autoregression for detrended prices:

Et pt+1 =

(
1 + r

λ

)
min[p∗, pt]. (9)

In terms of observed “trending” prices, the equivalent autoregression is:

EtPt+1 = (1 + r)min[λt p∗, Pt]. (10)

The trend in the price target (1 + r)λt p∗ in Equation (10) is induced by the interaction
of the latent production trend and the latent consumer demand of the HARA class.

Since Pt = F(Ct) = λtF(ct) and the detrended price is given by pt = F(ct), we have
Pt = λt pt. Note that in the regime with positive stocks, the Euler equation implies that
the expected trending price increases at the interest rate, EtPt+1 − Pt = rPt, regardless of
the trend. In this regime, detrended price increases in expectation at a rate higher than r to
compensate for the trend, as indicated in Equation (9).

The asymptotic theory for estimation presented in Sections 4 and 5 below exploits the
ergodic properties of the detrended price pt, which we now address.

The process for normalized available supply Φ ≡ {zt}t≥0 is Markov, as proved in [2].
Indeed, since p is strictly decreasing (and therefore injective) whenever it is strictly positive
and our assumption F

(
h
)
> 0 implies that the minimum detrended price in the state

space, p = p(z), is strictly positive, we conclude that the detrended price process is an
injective mapping of a Markov process. This implies that detrended prices and {pt}t≥0,
pt = p(zt), form a Markov process. (See [2] for more details.)

Given that the Markov process Φ ≡ {zt}t≥0 is aperiodic on a compact state space
and a geometric drift condition towards a petite set holds, [2] (Theorem 2) proves that the
Markov process of normalized available supply Φ ≡ {zt}t≥0 is uniformly ergodic. Thus,
it has a unique invariant probability measure ν∞ that is a global attractor, and there exist
constants k > 1 and R < ∞ such that for any initial normalized available supply z0, we
have:

||νt − ν∞|| ≤ Rk−t,

where || · || denotes the total variation norm, and νt is the distribution on zt conditional
on initial detrended available supply.

4. Strong Consistency of Estimators

For the storage model discussed in the previous section, the estimation procedure in [2]
involves two steps. In a preliminary step, the exponential trend on the observed prices and
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time is estimated and the point estimate of the trend is used to “de-trend” the prices. In the
second step, conditional on the point estimate of the trend parameter, estimate behavioral
parameters related to short run arbitrage. In contrast, here we propose estimation of all key
parameters of the model in a single step.

Given data on prices and time only, in this section we prove strong consistency
of nonlinear least squares estimation of three key parameters of the model: the trend
parameter, λ, the detrended price threshold, p∗, and the interest rate, r. For clarity of
exposition, in the remainder of this section and in the following section we write a subscript
“0” to denote the true parameter values. θ0 ≡ (λ0, p∗0 , γ0), where γ0 ≡ 1 + r0.

Our empirical model is based in the threshold nonlinear price autoregression (10). The
presence of an exponential trend in the threshold affects the regression predictor; in fact
our empirical model violates key assumptions of continuous threshold models (see [39] for
a survey), including continuity of the regression in the limit.

Price changes have two distinct volatility regimes that are recurrent, a feature which is
useful for the implementation of our estimation approach. In one regime, intertemporal
arbitrage is not active, stocks are zero, and the predictor in regression (1) is a function of
calendar time and of the trend parameter. In the other regime, intertemporal arbitrage is
active, the expected relative price change equals the interest rate, and the predictor in (1) is
independent of the trend parameter. This second regime allows us to bound the predictor
in the regression and its slope with a bound of polynomial order which, using Azuma’s
Lemma [34], we prove is killed by a negative exponential bound.

For our asymptotic theory, we assume that the invariant distribution for the detrended
price process has support [p, p], with 0 < p < p∗ < p < ∞. (For linear consumption
demand, [40] derives a finite upper bound h to guarantee pt ≥ p > 0, for all t).

Equation (10) implies:

Pt+1 = γ0 min
{

λt
0 p∗0 , Pt

}
+ et+1, where Et(et+1) = 0. (11)

We assume that the parameter space Θ is compact.
Our objective is to estimate θ0 using least squares. Note that if 0 < λ0 < 1, then we

cannot identify θ0 in (11). Indeed, for µ 6= θ0, then there exists a ball B(µ) centered at µ
such that:

inf
θ∈B(µ)

T

∑
t=1
{γ min{λt p∗, Pt} − γ0 min{λt

0 p∗0 , Pt}}2 ≤
+∞

∑
t=1

λt
0 $ < ∞, where $ < ∞.

Therefore, the model in (11) does not satisfy Wu’s ([20] Theorem 1) necessary identification
condition.

To avoid this problem, we divide the regression model (11) by Pt:

Pt+1

Pt
= γ0 min

{
λt

0 p∗0
Pt

, 1
}

+ εt+1, (12)

where εt+1 ≡
et+1

Pt
.

To simplify the notation, we redefine the predictor f (t, pt, θ) as ft(θ), that is,

ft(θ) ≡ γ min
{

λt p∗

Pt
, 1
}

= γ min

{(
λ

λ0

)t p∗

pt
, 1

}
.

The normalized regression model is:

Yt+1 = ft(θ0) + εt+1, where Yt+1 =
Pt+1

Pt
(13)
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Remark 1. The predictors ft(θ) do not satisfy the Lipschitz condition for consistency in [20]
(condition (3.6), p. 506), the Lipschitz condition of [23] (Assumption A 4, p. 1467), the continuity-
type smoothness conditions of [24,25], or the Lipschitz L1−conditions (3.10)–(3.11) of [27] (p. 874).
Furthermore, the errors {εt+1}t∈N are not assumed to be independent, unlike the cases of [20]
(lemma 2, p. 504), [28] (p. 551), and [29] (Lemma 3.1, p. 912).

Remark 2. The predictor is non-differentiable at the 2-dimensional set{
(λ, p∗, γ) : (λ/λ0)

t(p∗/pt) = 1
}

, therefore, it does not satisfy the conditions for consistency
in [26]. Even if we change the predictor using a smooth perturbation, the predictor does not satisfy
condition (2.3) in [26] (p. 1921).

Our next remark explains why estimation of a log-linearized regression implied by the
Euler equation (which is a natural alternative to our approach in this paper) has a problem
of lack of identification.

Remark 3. Instead of Equation (12), we could write:

Pt+1 = γ0 min
{

λt
0 p∗0 , Pt

}
ut+1, (14)

where

ut+1 =
Pt+1

γ0 min
{

λt
0 p∗0 , Pt

} =
λ0 pt+1

γ0 min
{

p∗0 , pt

} > 0,

and Et(ut+1) = 1. Taking natural logarithms,

ln Pt+1 = ln γ0 + min{t ln λ0 + ln p∗0 , ln Pt}+ ln ut+1. (15)

Let α0 ≡ E∞ ln u, where E∞ denotes the expectation with respect to the invariant distribution of
the ergodic process {ut+1}. Note that α0 < 0. Indeed, since ln is strictly concave and the invariant
distribution is not deterministic, then E∞(ln u) < ln(E∞(u)) = ln 1 = 0. (E0(ut+1) =
E0(Et(ut+1)) = E0(1) = 1, implying that E∞(u) = 1, by the ergodicity of the detrended price
process.

Define υ0 ≡ ln γ0 + α0, and et+1 ≡ ln ut+1 − α0. Then, we can write (15) as:

ln Pt+1 = υ0 + min{t ln λ0 + ln p∗0 , ln Pt}+ et+1, (16)

where E∞et+1 = 0. We could now use Equation (16) to estimate λ0, p∗0 , and υ0. This is an arguably
simpler regression than (13), since t enters linearly inside the min operator. However, the parameter
γ0 is clearly not identified from the estimate of υ0 in Equation (16), implying that we cannot use
(16) for one-step estimation of λ0, p∗0 , and γ0.

We now turn to the proof of identification of θ0 in regression (13). Given µ 6= θ0, and

a ball B(µ) centered at µ, which does not contain θ0, let AT ≡ inf
θ∈B(µ)

T

∑
t=1
{ ft(θ)− ft(θ0)}2.

Using the fact that the price process has a unique invariant distribution which is a global
attractor, our next result establishes that AT diverges to infinity at rate at least T, thus
identifying θ0:

Theorem 1. Given µ 6= θ0, there exists an open ball B(µ) centered at µ, and a constant b > 0,
such that with probability one there is T1 ∈ N, T1 = T1({pt}t∈N), such that:

AT ≡ inf
θ∈B(µ)

T

∑
t=1
{ ft(θ)− ft(θ0)}2 ≥ bT, for all T ≥ T1.
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Proof of Theorem 1. Let µ ≡ (λµ, p∗µ, γµ) 6= θ0. Consider the nontrivial case where
(λµ, γµ) = (λ0, γ0). Then, p∗µ 6= p∗0 . Without loss of generality, we assume p∗µ > p∗0 . For
p∗ close enough to p∗µ, for appropriately chosen values of pt on its ergodic support such
that (p∗/pt) > 1 > (p∗0/pt), and for γ close enough to γµ = γ0, we have:

| ft(θ)− ft(θ0)| =
∣∣∣∣∣γ min

{(
λ

λ0

)t p∗

pt
, 1

}
− γ0 min

{
p∗0
pt

, 1
}∣∣∣∣∣

=

∣∣∣∣∣γ min

{(
λ

λ0

)t p∗

pt
, 1

}
− γ0

p∗0
pt

∣∣∣∣∣ ≥ γ0

2

∣∣∣∣∣min

{(
λ

λ0

)t p∗

pt
, 1

}
−

p∗0
pt

∣∣∣∣∣.
If λ ≥ λ0, then:

| ft(θ)− ft(θ0)| ≥
γ0

2

∣∣∣∣1− p∗0
pt

∣∣∣∣ ≥ a1 > 0, where a1 is a constant.

If λ < λ0, then we have two possible cases. Either | ft(θ)− ft(θ0)| ≥ a1, or

| ft(θ)− ft(θ0)| ≥
γ0

2

∣∣∣∣∣
(

λ

λ0

)t p∗

pt
−

p∗0
pt

∣∣∣∣∣ ≥ γ0

2p

∣∣∣∣∣
(

λ

λ0

)t
p∗ − p∗0

∣∣∣∣∣.
A straightforward calculation shows for arbitrary constant 0 < $ < 1, we have that for all
t ∈ N, except for a finite number of t :∣∣∣∣∣

(
λ

λ0

)t
p∗ − p∗0

∣∣∣∣∣ ≥ $p∗0 .

In fact:

(
λ

λ0

)t
p∗ − p∗0 ≥ $p∗0 ⇐⇒ t ≤

ln
(
($ + 1) p∗0

p∗

)
ln
(

λ
λ0

) ,

and (
λ

λ0

)t
p∗ − p∗0 ≤ −$p∗0 ⇐⇒ t ≥

ln
(
(−$ + 1) p∗0

p∗

)
ln
(

λ
λ0

) .

Choosing small enough $ ∈ (0, 1) and small enough radius of the ball B(µ), by the
ergodicity of the price process {pt}t∈N, we conclude that there exists a constant b > 0, and
a T1 ∈ N, T1 = T1({pt}t∈N), with:

T ≥ T1 ⇒
1
T

inf
θ∈B(µ)

T

∑
t=1
{ ft(θ)− ft(θ0)}2 ≥ b > 0.

Define θ̂T to be the least squares estimator of θ0, that is,

θ̂T ≡ Arg min
θ∈Θ

1
T

T

∑
t=1

(Yt+1 − ft(θ))
2.

Note that the term (λ/λ0)
t in the predictor implies that the objective function in the

least squares minimization does not converge uniformly in the parameter space. Hence,
our objective function does not satisfy the uniform convergence condition of [22].
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Next, we establish that the least squares estimator for θ0 is strongly consistent. Our
proof of strong consistency follows the approach of [41]. We prove the uniform convergence
of 1

T

∣∣∣∑T
t=1 εt+1 ft(θ)

∣∣∣ to zero. Since {εt+1 ft(θ)}t∈N is a bounded martingale difference
sequence,

lim
T→∞

1
T

∣∣∣∣∣ T

∑
t=1

εt+1 ft(θ)

∣∣∣∣∣ = 0, (17)

pointwise θ ∈ Θ. Using Azuma’s Lemma [34], we prove that for a sequence of arrays of
points B(T)(µ) ⊆ B(µ) with cardinality at most a polynomial of T:

lim
T→∞

max
θ∈B(T)(µ)

1
T

∣∣∣∣∣ T

∑
t=1

εt+1 ft(θ)

∣∣∣∣∣ = 0, almost surely (18)

(Figure 1 illustrates an example of square ball B(T)(µ), with base of length 2, for T = 2).

The following theorem extends the uniform convergence result from the array B(T)(µ)
to the entire ball B(µ). In the proof, we use the structure of the predictor, which implies
that:

∂ ft

∂λ
(θ) ≤ t

(
λ

λ0

)t−1 p∗

ptλ0
≤ tM,

where M > 0 is a finite constant.

Theorem 2. θ̂T is strongly consistent, that is,

lim
T→∞

||θ̂T − θ0|| = 0, almost surely.

Proof of Theorem 2. Let µ ≡ (λµ, p∗µ, γµ) 6= θ0, and B(µ) a ball centered at µ. The
strong consistency of θ̂T follows from the following uniform strong law of large numbers.
See for example [20] (Lemma 1, p. 504), [26] (p. 1927), and [27] (pp. 878–879):

lim
T→∞

1
AT

sup
θ∈B(µ)

∣∣∣∣∣ T

∑
t=1

εt+1{ ft(θ)− ft(θ0)}
∣∣∣∣∣ = 0, almost surely. (19)

Considering the facts that γ is in a bounded set, that AT ≥ bT (Theorem 1), and that
{εt+1}t∈N is a martingale difference sequence, it suffices to prove:

lim
T→∞

1
T

sup
(p∗ ,λ)∈B(p∗µ ,λµ)

∣∣∣∣∣ T

∑
t=1

εt+1 min

{(
λ

λ0

)t p∗

pt
, 1

} ∣∣∣∣∣ = 0, almost surely (20)

where B(p∗µ, λµ) ≡ (p∗µ − ζ, p∗µ + ζ) × (λµ − ζ, λµ + ζ).
For the proof of (20), we consider two Lemmata. For any given T ∈ N, consider a grid

of d(2T2 + 1)2 ζe dots in the square ball B(p∗µ, λµ), defined by:

B(T)(p∗µ, λµ) ≡
{(

p∗µ +
i

T2 , λµ +
j

T2

)
: i, j ∈ {0,±1,±2, · · · ,±dζT2e}

}
(for x ∈ R, we denote by dxe the integer part of x, that is, the greatest integer ≤ x).

An example of such a grid of dots is presented in Figure 1, for T = 2 and ζ = 1.
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Lemma 1 presents the proof of (20) for (p∗, λ) ∈ B(T)(p∗µ, λµ). This partition tech-
nique is presented in [42] for a trigonometric regression model with Gaussian innovations.
Lemma 2 extends the result to (p∗, λ) ∈ B(p∗µ, λµ).

Lemma 1.

lim
T→∞

sup
(p∗ ,λ)∈B(T)(p∗µ ,λµ)

1
T

∣∣∣∣∣ T

∑
t=1

εt+1 min

{(
λ

λ0

)t p∗

pt
, 1

}∣∣∣∣∣ = 0, almost surely. (21)

Proof of Lemma 1. Since {εt+1}t∈N is a martingale difference sequence, we conclude that
for any given (p∗, λ) : {

εt+1 min

{(
λ

λ0

)t p∗

pt
, 1

}}
t∈N

is a martingale difference sequence. Observing that this martingale sequence is bounded
by a finite constant ε > 0, using Azuma’s inequality [34] we conclude that for any (p∗, λ),
for any ρ > 0, and for all T ∈ N :

Prob

[
1
T

∣∣∣∣∣ T

∑
t=1

εt+1 min

{(
λ

λ0

)t p∗

pt
, 1

}∣∣∣∣∣ ≥ ρ

]
≤ 2 exp

[
−ρ2T
2 ε2

]
(22)

where the upper bound in (22) is independent of (p∗, λ). Since there are d(2T2 + 1)2 ζe
points in B(T)(p∗µ, λµ), (22) implies that for any ρ > 0, and for all T ∈ N :

Prob

[
max

(p∗ ,λ)∈B(T)(p∗µ ,λµ)

1
T

∣∣∣∣∣ T

∑
t=1

εt+1 min

{(
λ

λ0

)t p∗

pt
, 1

}∣∣∣∣∣ ≥ ρ

]
≤ 2(2T2 + 1)2 ζ e−

ρ2T
2 ε2

From the last inequality and the Borel–Cantelli Lemma, we conclude that with probability
one:

sup
(p∗ , λ)∈B(T)(p∗µ , λµ)

1
T

∣∣∣∣∣ T

∑
t=1

εt+1 min

{(
λ

λ0

)t p∗

pt
, 1

}∣∣∣∣∣ → 0

Lemma 2.

sup
(p∗ , λ)∈B(p∗µ , λµ)

1
T

∣∣∣∣∣ T

∑
t=1

εt+1 min

{(
λ

λ0

)t p∗

pt
, 1

}∣∣∣∣∣ → 0, almost surely (as T → ∞).

Proof of Lemma 2. Let:

Φt(λ, p∗) ≡ min

{(
λ

λ0

)t p∗

pt
, 1

}
.

First, note that there exist finite positive constants α1, α2, such that for any (λ1, p∗1), (λ2, p∗2) :

|Φt(λ1, p∗1)−Φt(λ2, p∗2)| ≤ t α1|λ1 − λ2| + α2 |p∗1 − p∗2 |. (23)

Indeed,
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(i) If Φt(λ1, p∗1) = (λ1/λ0)
t(p∗1/pt) and Φt(λ2, p∗2) = ((λ2/λ0)

t(p∗2/pt), then applying
the mean value theorem to (λ, p∗) 7→ (λ/λ0)

t(p∗/pt), we conclude:

|Φt(λ1, p∗1)−Φt(λ2, p∗2)| ≤
(

t
λ

) (
p∗

p∗

)∣∣∣λ1 − λ2

∣∣∣ + (
1
p∗

)∣∣∣p∗1 − p∗2
∣∣∣,

where λ, p∗, p∗ denote the minimum and the maximum values for the corresponding
parameters.

(ii) If Φt(λ1, p∗1) = (λ1/λ0)
t p∗1

pt
and Φt(λ2, p∗2) = 1, by continuity of

φt(σ) ≡
(

λ1 + σ(λ2 − λ1)

λ0

)t( p∗1 + σ(p∗2 − p∗1)
pt

)
,

and the fact that φt(0) ≤ 1 ≤ φt(1), there exists (λ̃, p̃∗) between (λ1, p∗1) and (λ2, p∗2),

with 1 =

(
λ̃

λ0

)t p̃∗

pt
.

We now repeat the argument in i) to show (23).

For any given (λ, p∗) ∈ B(p∗µ, λµ), and any given T ∈ N, choose a point (λ(T), p∗(T))
in the grid B(T)(p∗µ, λµ) such that:

|p∗ − p∗(T)| ≤ 1
T2 , |λ− λ(T)| ≤ 1

T2 (24)

Then:

1
T

∣∣∣∣∣ T

∑
t=1

εt+1 Φt(λ, p∗)

∣∣∣∣∣ = 1
T

∣∣∣∣∣ T

∑
t=1

εt+1

(
Φt(λ, p∗)−Φt(λ

(T), p∗(T)) + Φt(λ
(T), p∗(T))

)∣∣∣∣∣
≤ 1

T

T

∑
t=1

ε |Φt(λ, p∗)−Φt(λ
(T), p∗(T))| + 1

T

∣∣∣∣∣ T

∑
t=1

εt+1 Φt(λ
(T), p∗(T))

∣∣∣∣∣
By (23) and (24), the first term goes to zero uniformly in (λ, p∗) ∈ B(p∗µ, λµ), and by
Lemma 1, the second term goes to zero uniformly in B(T)(p∗µ, λµ).

This concludes the proof of Theorem 2.

5. Asymptotic Normality of Estimators

Our proof of asymptotic normality requires superconsistency of the estimator for the
trend parameter. Precisely, we prove:

Proposition 1. (
λ̂T
λ0

)T

→ 1, as T → ∞, almost surely.
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Proof of Proposition 1. If not, then with positive probability there exists ε > 0 and a
subsequence of natural numbers {Tk}k∈N satisfying :∣∣∣∣∣

(
λ̂Tk

λ0

)Tk

− 1

∣∣∣∣∣ ≥ ε, ∀ Tk,

which is a contradiction to the fact that with probability one we have:

lim
T→∞

1
T

T

∑
t=1

∣∣∣ ft

(
λ0, p∗0 , γ0

)
− ft

(
λ̂T , p̂∗T , γ̂T

)∣∣∣ = 0.

Next, we establish asymptotic normality for the least squares estimator of the vector θ0.
Since the predictors ft are non-differentiable, the least squares estimator of this model does
not satisfy the smoothness conditions in the literature. Our proof of asymptotic normality
uses smooth perturbations of the objective function.

Theorem 3.
{

T3/2(λ̂T − λ0), T1/2( p̂∗T − p∗0), T1/2(γ̂T − γ0)

}
T∈N

converges in distribution

to a normal random vector with mean zero and covariance matrix given by Σ−1
1 Λ1Σ−1

1 , where Λ1
and Σ1 are the following positive definite matrices:

Λ1 ≡ 2



2Ap∗0
2γ2

0
3λ2

0

Ap∗0 γ2
0

λ0

Ap∗0
2γ0

λ0

Ap∗0 γ2
0

λ0
2Aγ2

0 2Ap∗0γ0

Ap∗0
2γ0

λ0
2Ap∗0γ0 2(B + Ap∗0

2)


, Σ1 ≡



2Cp∗0
2γ2

0
3λ2

0

Cp∗0 γ2
0

λ0

Cp∗0
2γ0

λ0

Cp∗0 γ2
0

λ0
2Cγ2

0 2Cp∗0γ0

Cp∗0
2γ0

λ0
2Cp∗0γ0 2D


,

with A ≡ lim
t→∞

E
(

εt+1

pt
1{pt>p∗0}

)2
, B ≡ lim

t→∞
E
(

εt+11{pt≤p∗0}

)2
,

C ≡ limt→∞ E
(

1
pt
1{pt>p∗0}

)2
, and D ≡ lim

t→∞
E
(

min
{

p∗0
pt

, 1
})2

.

Proof of Theorem 3. By definition:

θ̂T ≡ Arg min
θ∈Θ

QT(θ),

where QT(θ) ≡
T

∑
t=1

(Yt+1 − ft(θ))
2.

We apply the mean value theorem to the gradient ∇QT(θ). Note that ft(θ) is not
necessarily differentiable everywhere. To address this problem, we work with a smooth
perturbation of ft(θ).

We say that a pair (λ, p∗) is a critical point of ft(θ) ≡ γ min
{
(λ/λ0)

t(p∗/pt), 1
}

when (λ/λ0)
t(p∗/pt) = 1. That is, the critical pairs are those where ft(θ) is not differ-

entiable. Define CT as the set of t ∈ {1, . . . , T} for which there is a critical pair in the
segment joining (λ̂T , p̂∗T) with (λ0, p∗0).
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Consider the following perturbation of QT(θ) :

ST(θ) ≡ ∑
t/∈CT

(Yt+1 − ft(θ))
2 + ∑

t∈CT

(Yt+1 − ψt(θ))
2,

where ψt(θ) is a smooth perturbation of ft(θ). More precisely, ψt(θ) is a function which
is twice differentiable, ψt(θ) = ft(θ) for any θ in a neighborhood of θ̂T or of θ0, and
satisfies for all θ ∈ Θ :∣∣∣∣∂ψt

∂λ
(θ)

∣∣∣∣ ≤ υ t,
∣∣∣∣∂2ψt

∂λ2 (θ)

∣∣∣∣ ≤ υ t2,
∣∣∣∣ ∂2ψt

∂λ ∂p∗
(θ)

∣∣∣∣ ≤ υ t,

∣∣∣∣ ∂2ψt

∂λ ∂γ
(θ)

∣∣∣∣ ≤ υ t,
∣∣∣∣∂ψt

∂γ
(θ)

∣∣∣∣ ≤ υ,
∣∣∣∣∂2ψt

∂γ2 (θ)

∣∣∣∣ ≤ υ,

∣∣∣∣ ∂2ψt

∂γ ∂p∗
(θ)

∣∣∣∣ ≤ υ,
∣∣∣∣ ∂2ψt

∂p∗2 (θ)

∣∣∣∣ ≤ υ,
∣∣∣∣ ∂ψt

∂p∗
(θ)

∣∣∣∣ ≤ υ,

for some positive finite constant υ.

By the mean value theorem applied to ∇ST(θ), we have:

∇ST(θ̂T) − ∇ST(θ0) =

[
∂2ST
∂θ ∂θ′

(θ̃T)

]
(θ̂T − θ0),

for some θ̃T in the segment joining θ̂T with θ0.

Define YT ≡

 T3/2 0 0
0 T1/2 0
0 0 T1/2

. Since ∇ST(θ̂T) = 0, then

[
T3/2(λ̂T − λ0), T1/2( p̂∗T − p∗0), T1/2(γ̂T − γ0)

]
= YT (θ̂T − θ0) =

−
{

Y−1
T

[
∂2ST
∂θ ∂θ′

(θ̃T)

]
Y−1

T

}−1{
Y−1

T ∇ST(θ0)

}
.

To conclude the proof, it suffices to show that Y−1
T ∇ST(θ0) converges weakly to a multi-

variate normal distribution and that:

Y−1
T

[
∂2ST
∂θ ∂θ′

(θ̃T)

]
Y−1

T

converges in probability to a positive definite matrix (as T → ∞).
First note that any linear combination of the components of Y−1

T ∇ST(θ0) is explicitly
of the form α′ Y−1

T ∇ST(θ0) =

−2α1

T3/2

T

∑
t=1

εt+1
tp∗0γ0

ptλ0
1{pt>p∗0} −

2α2

T1/2

T

∑
t=1

εt+1
γ0

pt
1{pt>p∗0} −

2α3

T1/2

T

∑
t=1

εt+1 min
{

p∗0
pt

, 1
}

,

which is a martingale difference array satisfying the conditions in Theorem (2.3) in [43]
(p. 621). Therefore, any linear combination of the components of Y−1

T ∇ST(θ0) converges
in distribution to a normal distribution. By the Cramér–Wold Theorem [44], Y−1

T ∇ST(θ0)
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converges weakly to a normal multivariate distribution with zero mean and a variance–
covariance matrix given by:

Λ1 ≡ 2



2Ap∗0
2γ2

0
3λ2

0

Ap∗0 γ2
0

λ0

Ap∗0
2γ0

λ0

Ap∗0 γ2
0

λ0
2Aγ2

0 2Ap∗0γ0

Ap∗0
2γ0

λ0
2Ap∗0γ0 2(B + Ap∗0

2)


,

where A ≡ lim
t→∞

E
(

εt+1

pt
1{pt>p∗0}

)2
, and B ≡ lim

t→∞
E
(

εt+11{pt≤p∗0}

)2
. Clearly, Λ1 is a

positive definite matrix.

Finally, using the superconsistency of λ̂T (Proposition 1), we conclude that:

lim
T→∞

Y−1
T

[
∂2ST
∂θ ∂θ′

(θ̃T)

]
Y−1

T = lim
T→∞

Y−1
T

[
∂2ST
∂θ ∂θ′

(θ0)

]
Y−1

T ,

which converges in probability to the matrix:

Σ1 ≡



2Cp∗0
2γ2

0
3λ2

0

Cp∗0 γ2
0

λ0

Cp∗0
2γ0

λ0

Cp∗0 γ2
0

λ0
2Cγ2

0 2Cp∗0γ0

Cp∗0
2γ0

λ0
2Cp∗0γ0 2D


,

where C ≡ lim
t→∞

E
(

1
pt
1{pt>p∗0}

)2
, and D ≡ lim

t→∞
E
(

min
{

p∗0
pt

, 1
})2

. Clearly, Σ1 is also a

positive definite matrix.

Therefore, YT (θ̂T − θ0) converges in distribution to the multivariate normal distribu-
tion:

N(0, Σ−1
1 Λ1Σ−1

1 )

6. Models of Optimal Economic Growth

In this section, we present two models of economic growth. They share the same
estimation challenge as for the estimation of the storage model of Section 3; thus our
discussion for these models is brief.

6.1. One Sector Stochastic Growth with a Trend in Effective Labor Supply

In this subsection, we use the results presented in Sections 4 and 5 to develop asymp-
totic theory for estimation of a neoclassical one-sector model of economic growth.

To present our example of a growth model in a familiar setting, we use the model
of [33], with the standard modification to include technological change that increases the
supply of effective labor at time t, Lt, by a constant factor ν ≥ 1. We normalize initial labor
to be equal to one; thus Lt = νt. The production function is F(Kt, Lt, ht+1) = Kα

t L1−α
t ht+1,

where 0 < α < 1, Kt is capital at time t, and ht+1 is an independently and identically
distributed (i.i.d.) shock with compact support 0 < h < h < +∞.
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Our results in this section can be extended to incorporate risky labor supply and
unbounded productivity shocks, using the convergence results of [45–47].

Preferences are of the constant relative risk aversion type, U(Ct) = (1− ρ)−1C1−ρ
t ,

where Ct is consumption at time t, and ρ > 0 is a known constant. Logarithmic utility is
the limiting case as ρ→ 1.

Conditional on a given level of initial resources Z0 > 0, the maximization problem is:

max E0

∞

∑
t=0

βtU(Ct) subject to

Ct+1 + Kt+1 = Kα
t (ν

t)1−αht+1, t = 0, 1, 2, 3, ...

C0 + K0 = Z0,

where E0 denotes expectation conditional on information at time 0 and 0 < β < 1.

Define kt ≡ ν−tKt, ct ≡ ν−tCt. Then the maximization problem has a stationary
representation:

max E0

∞

∑
t=0

(ν1−ρβ)tU(ct) subject to

ct+1 + kt+1 = 1
ν kα

t ht+1, t = 0, 1, 2, 3, ...

c0 + k0 = z0, with z0 ≡ Z0.

Let ν1−ρβ < 1. Assume that Prob[ht = h] > 0. Then [33] (Lemma 3.2), implies that
there are strictly positive real numbers c < c and k < k such that c ≤ ct ≤ c and k ≤ kt ≤ k,
for all t ∈ N in the ergodic set.

The Euler equation for this problem is:

c−ρ
t = αβ ν−ρ Et

{
c−ρ

t+1 kα−1
t ht+1

}
(25)

In terms of trending consumption and trending capital, Equation (25) implies:(
Ct+1

Ct

)−ρ

ht+1 =
1

αβ

K1−α
t

(ν1−α)t + εt+1, (26)

where Et(εt+1) = 0.

For clarity of exposition, in the remainder of this subsection we write a subscript “0”
to denote the true parameter values. Given data on Ct, Ct+1, Kt, and ht+1, our objective is
to estimate θ0 ≡ (ν0, α0, β0) . We assume that the parameter space is compact.

Define:

gt(θ) ≡
1

αβ

K1−α
t

(ν1−α)t .

Clearly, there exists a finite M such that gt(θ0) ≤ M, ∀ t ∈ N. This bound allows us to
define the predictor ft(θ) as:

ft(θ) ≡ min

{
1

αβ

K1−α
t

(ν1−α)t , M

}
= min

{
1

αβ

[(ν0

ν

)1−α
]t

k1−α
t , M

}
. (27)
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Equations (19) and (20) imply the following regression model:

Yt+1 = ft(θ0) + εt+1, where Yt+1 =

(
Ct+1

Ct

)−ρ0

ht+1. (28)

The predictor ft has variations that are of order t, more specifically,

| ft(θ1)− ft(θ2)| ≤ t||θ1 − θ2||.

We define the least squares estimator as:

θ̂T ≡ Arg min
θ∈Θ

1
T

T

∑
t=1

(Yt+1 − ft(θ))
2. (29)

The proofs of the results in this section are similar to the corresponding proofs for the
storage model; thus, we only offer further notes for their proofs.

We now present the identification theorem for θ0. For a given µ 6= θ0, and a ball B(µ)

centered at µ, which does not contain θ0, let AT ≡ inf
θ∈B(µ)

T

∑
t=1
{ ft(θ)− ft(θ0)}2.

As in the storage model, AT diverges to infinity a rate of at least T. More precisely:

Theorem 4. Given µ 6= θ0, there exists an open ball B(µ) centered at µ, and a constant b > 0,
such that with probability one there is T1 ∈ N, T1 = T1({pt}t∈N), such that:

AT ≡ inf
θ∈B(µ)

T

∑
t=1
{ ft(θ)− ft(θ0)}2 ≥ bT, for all T ≥ T1.

Proof of Theorem 4. Let µ ≡ (νµ, αµ, βµ) 6= θ0. Consider the nontrivial case where
(νµ, αµ) = (ν0, α0). Without loss of generality, we assume βµ > β0. Using the same proof of
Theorem 1, it suffices to note that:

| ft(θ)− ft(θ0)| ≥
k1−α0

t
α0β0

∣∣∣∣∣α0β0

αβ
kα0−α

t

[(ν0

ν

)1−α
]t
− 1

∣∣∣∣∣,
where kα0−α

t is near 1, and
α0β0

αβ
< 1− δ, for some δ > 0.

Our next results are similar to the results in Theorem 2 and Proposition 1 of Sections 4
and 5.

Theorem 5.
lim

T→∞
||θ̂T − θ0|| = 0, almost surely.

The proof of Theorem 5. There exist finite positive constants σ1, σ2, σ3 such that for all
(ν1, p∗1 , β1), (ν2, p∗2 , β2) :

| ft(ν1, α1, β1)− ft(ν2, α2, β2)| ≤ t σ1|ν1 − ν2| + t σ2 |α1 − α2| + σ3|β1 − β2|

Proposition 2. With probability one:[(
ν0

ν̂T

)T
]1−α̂T

→ 1, as T → ∞.
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The proof of Proposition 2. We now summarize the proof of superconsistency for the
estimator of ν0. The proof proceeds by contradiction. If the result does not hold, with
positive probability there exists ε > 0 and a subsequence of natural numbers {Tk}k∈IN
satisfying : ∣∣∣∣∣∣

[(
ν0

ν̂Tk

)1−α̂Tk

]Tk

− 1

∣∣∣∣∣∣ ≥ ε, ∀ Tk,

which is a contradiction of the fact that with probability one:

lim
T→∞

1
T

T

∑
t=1

∣∣∣ ft

(
ν0, α0, β0

)
− ft

(
ν̂T , α̂T , β̂T

)∣∣∣ = 0.

Next, we present our asymptotic normality result for this model.

Theorem 6.
{

T3/2(ν̂T − ν0), T1/2(α̂T − α0), T1/2(β̂T − β0)

}
T∈N

converges in distribution

to a normal random vector with mean zero and covariance matrix Σ−1
2 Λ2Σ−1

2 , where Λ2 and
Σ2 are the following positive definite matrices:

Λ2 ≡ 2



2 F (1−α0)
2

3ν2
0 α2

0β2
0

F(α0−1)
ν0α3

0β2
0
+ G(α0−1)

ν0α2
0β2

0

F(1−α0)

α2
0ν0β3

0

F(α0−1)
ν0α3

0β2
0
+ G(α0−1)

ν0α2
0β2

0

2F
α4

0β2
0
+ 4G

α3
0β2

0
+ 2H

α2
0β2

0

2F
α3

0β3
0

F(1−α0)

α2
0ν0β3

0

2F
α3

0β3
0

2F
α2

0β4
0


,

and

Σ2 ≡ 2



2 I (1−α0)
2

3ν2
0 α2

0β2
0

I(1−α0)

ν0α3
0β2

0
+ J(1−α0)

ν0α2
0β2

0

I(1−α0)

α2
0ν0β3

0

I(1−α0)

ν0α3
0β2

0
+ J(1−α0)

ν0α2
0β2

0

2I
α4

0β2
0
+ 4J

α3
0β2

0
+ 2K

α2
0β2

0

2I
α3

0β3
0
+ 2J

α2
0β3

0

I(1−α0)

α2
0ν0β3

0

2I
α3

0β3
0
+ 2J

α2
0β3

0

2I
α2

0β4
0


,

with F ≡ lim
t→∞

E
(

ε2
t+1k2(1−α0)

t

)
, G ≡ lim

t→∞
E
(

ε2
t+1k2(1−α0)

t ln kt

)
,

H ≡ lim
t→∞

E
(

ε2
t+1k2(1−α0)

t (ln kt)
2
)

, I ≡ lim
t→∞

E
(

k2(1−α0)
t

)
, J ≡ lim

t→∞
E
(

k2(1−α0)
t ln kt

)
,

and K ≡ lim
t→∞

E
(

k2(1−α0)
t (ln kt)

2
)

.

6.2. Two-Sector Growth Model with an Occasionally Binding Constraint on Capital

In this subsection, we present a two-sector model of economic growth. In the model,
as in the storage model in Section 3 above, the consumption process alternates between two
endogenous regimes separated by a consumption threshold. In one regime, consumption
follows a downward stochastic trend, and in the other regime, consumption in expectation
exhibits jumps towards a trending attractor. Realized marginal utility can be highly volatile
in this regime in which labor productivity grows at a fixed exogenous rate ν ≥ 1, and labor
is distributed among two sectors in fixed proportions a and 1− a, with 0 < a < 1.

In one sector, production is exogenous, proportional to labor and to the realization of an
i.i.d. shock h. The production function of the second sector is Cobb–Douglas, using capital
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as well as labor. Total capital in this sector is the sum of human capital proportional to
effective labor, δL, and the discretionary capital stock K, which is endogenous and bounded
below by zero. For example, consider a peasant economy with a non-irrigated sector subject
to weather uncertainty and a capital-intensive irrigated sector with deterministic output.

The production function is given by:

F(K, L; h) ≡ (K + δL)α(aL)1−α + h(1− a)L (30)

where 0 < α < 1, 0 < a < 1, δ > 0, are known constants.

Suppose that preferences over consumption Ct are U(Ct) = ln Ct. Each period, after
observation of total production, the consumer chooses the amount of consumption and of
the discretionary capital stock. Conditional on a given level of initial resources Z0 > 0, the
maximization problem is:

max E0

∞

∑
t=0

βtU(Ct), subject to

Ct+1 + Kt+1 = F(Kt, Lt; ht+1), t = 0, 1, 2, · · ·
C0 + K0 = Z0

Effective labor at time t is given by Lt = νtL0. Let L0 ≡ 1. The problem can then be
stated in units of effective labor:

max E0

∞

∑
t=0

βtU(ct), subject to

ct+1 + kt+1 = zt+1 = 1
ν

[
(kt + δ)αa1−α + ht+1(1− a)

]
ct + kt = zt, z0 > 0, given.

where ct+1 ≡
Ct+1

νt+1 , kt+1 ≡
Kt+1

νt+1 .

The value function satisfies the Bellman equation:

V(zt) = max
0≤kt≤zt

{
U(zt − kt) + βEV

(
1
ν

[
(kt + δ)αa1−α + ht+1(1− a)

])}
(31)

The value function V is strictly concave (the strict concavity of V is a nontrivial
implication of the strict concavity of U, see [48]), implying that the consumption function
c(zt) is strictly increasing in zt.

In particular, c(zt) > 0, ∀zt > 0, and then zt − c(zt) ≡ k(zt) < zt, ∀zt > 0. Further-
more, V′(zt) = U′(c(zt)), with first order necessary conditions implying:

pt = p(zt) = max
{

1
zt

,
αβa1−α

ν(kt + δ)1−α
Et p(zt+1)

}
, (32)

where p(zt) ≡ U′(c(zt)).

From (32), we conclude:

1
ct+1

=
ν(kt + δ)1−α

αβa1−α
min

{
p∗,

1
ct

}
+ et+1 (33)

where p∗ ≡ αβa1−α

νδ1−α
E
[

p
(

1
ν

[
δαa1−α + ht+1(1− a)

)]
, and Et[et+1] = 0.
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Equivalently:

Ct

Ct+1
=

(
Kt
νt + δ

)1−α

αβa1−α
min

{
Ct

νt p∗, 1
}

+ εt+1 (34)

where Et[εt+1] = 0. Write a subscript “0” to denote the true parameter values. Assuming
that a0, δ0, α0 are known, θ0 ≡ (ν0, p∗0 , β0) is the parameter vector to estimate. The vector
θ0 belongs to a compact set Θ.

Define:

gt(θ) ≡

(
Kt
νt + δ0

)1−α0

αβ0a1−α0
0

min
{

Ct

νt p∗, 1
}

=

(( ν0
ν

)tkt + δ0

)1−α0

αβ0a1−α0
0

min
{(ν0

ν

)t p∗

pt
, 1
}

.

There exists a finite M such that gt(θ0) ≤ M, ∀ t ∈ N. This bound allows us to define
the predictor ft(θ) as:

ft(θ) ≡ min{gt(θ), M}, (35)

Equations (33) and (34) imply the following regression model:

Yt+1 = ft(θ0) + εt+1, where Yt+1 =
Ct

Ct+1
. (36)

Define the least squares estimator as:

θ̂T ≡ Arg min
θ∈Θ

T

∑
t=1

(Yt+1 − ft(θ))
2. (37)

We assume that the distribution of the shocks is absolutely continuous with a strictly
positive derivative on the interior of its support, assumed compact. Similar to the com-
modity storage model of Section 4, the ergodicity properties of the model can then be used
to show that the detrended consumption process {ct}t∈N is aperiodic and positive Harris
recurrent, implying that it has a unique invariant distribution which is a global attractor.
We assume that the threshold p∗ lies in the interior of the invariant distribution for the
detrended marginal value process.

We merely state our results here and do not offer proofs of consistency and asymptotic
normality for this model because they use the same tools as those used in the proofs
presented for the models in the previous two sections.

Results:{
T3/2(ν̂T − ν0), T1/2( p̂∗T − p∗0), T1/2(β̂T − β0)

}
T∈N
−→ N(0, Σ−1

3 Λ3Σ−1
3 ),

where Λ3 and Σ3 are the following positive definite matrices:

Λ3 ≡ 2



2 L p∗0
2δ

2(1−α0)
0

3ν2
0 a2

0α2
0β2

0
+ 2 M (1−α0)

2

3ν2
0 a2

0α2
0β2

0

Lδ
2(1−α0)
0 p∗0

ν0a2
0α2

0β2
0

Lδ
2(1−α0)
0 p∗0

2

ν0a2
0α2

0β2
0

+ (1−α0)O
ν0a2

0α2
0β2

0

Lδ
2(1−α0)
0 p∗0

ν0a2
0α2

0β2
0

2Lδ
2(1−α0)
0

a2
0α2

0β2
0

Lδ
2(1−α0)
0 p∗0
a2

0α2
0β2

0

Lδ
2(1−α0)
0 p∗0

2

ν0a2
0α2

0β2
0

+ (1−α0)O
ν0a2

0α2
0β2

0

Lδ
2(1−α0)
0 p∗0
a2

0α2
0β2

0

2Lp∗0
2δ

2(1−α0)
0

a2
0

+ N
a2

0


,

and
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Σ3 ≡



2 P p∗0
2δ

2(1−α0)
0

3ν2
0 a2

0α2
0β2

0
+ 2 Q (1−α0)

2

3ν2
0 a2

0α2
0β2

0
− Pδ

2(1−α0)
0 p∗0

ν0a2
0α2

0β2
0

Pδ
2(1−α0)
0 p∗0

2

ν0a2
0α2

0β3
0

+ (1−α0)R
ν0a2

0α2
0β3

0

− Pδ
2(1−α0)
0 p∗0

ν0a2
0α2

0β2
0

2Pδ
2(1−α0)
0

a2
0α2

0β2
0

Pδ
2(1−α0)
0 p∗0
a2

0α2
0β3

0

Pδ
2(1−α0)
0 p∗0

2

ν0a2
0α2

0β3
0

+ (1−α0)R
ν0a2

0α2
0β3

0

Pδ
2(1−α0)
0 p∗0
a2

0α2
0β3

0

2
β0

4α2
0

{
2Pp∗0

2δ
2(1−α0)
0

a2
0

+ S
a2

0

}


,

where:

L ≡ lim
t→∞

E
(

εt+1

pt
1{pt>p∗0}

)2
, M ≡ lim

t→∞
E
(

εt+1(kt + δ0)
−α0 kt1{pt≤p∗0}

)2
,

N ≡ lim
t→∞

E
(

εt+1(kt + δ0)
1−α0 kt1{pt≤p∗0}

)2
, O ≡ lim

t→∞
E
(

ε2
t+1(kt + δ0)

1−2α0 kt1{pt≤p∗0}

)2
,

P ≡ lim
t→∞

E
(

1
pt
1{pt>p∗0}

)2
, Q ≡ lim

t→∞
E
(
(kt + δ0)

−α0 kt1{pt≤p∗0}

)2
,

R ≡ lim
t→∞

E
(
(kt + δ0)

1−2α0 kt1{pt≤p∗0}

)
, S ≡ lim

t→∞
E
(
(kt + δ0)

2(1−α0)kt1{pt≤p∗0}

)2
.

7. Finite Sample Properties of Our Estimator

In this section, we provide results of Monte Carlo experiments to illustrate the perfor-
mance of our estimator for finite samples. We simulate the nonstationary storage model
discussed in Section 3.

For our first specification of parameter values and functions, we take a widely used
parametrization of the storage model (see for example [2,7,11,49,50]). We include a trend
in supply shocks that implies a trend in price of −2% per period, the same price trend
used in the heuristic storage model simulated in [2]. Inverse consumption demand is
F(c) = 600− 5c. The interest rate is r = 0.05.

The shocks have a Gaussian distribution with expectation equal to 100 and standard
deviation equal to 10. Following [2,8,9], we approximate the normal distribution of the
shocks with 10 nodes each of probability 0.1, using the procedure of [51]. The nodes are
82.45, 89.55, 93.23, 96.14, 98.74, 101.26, 103.86, 106.77, 110.45, and 117.55.

To solve the model, we iterate on the SREE price function p on a grid of 3000 equally
spaced nodes on detrended available supply z. For values of z not on those grid points, we
interpolate p using cubic splines. We then generate independent draws from the normal
discretized distribution of the supply shocks, and simulate 300,000 consecutive prices. This
large sample allows us to generate 300,000 − (T− 1) successive samples of size T, the first
starting from period t = 1, thesecond from period t = 2, etc.

We summarize our Monte Carlo experiments for this case in Table 1. For all parameter
estimates at sample sizes of 500, the medians (50th percentile) of the distribution of estimates
are already quite close to the true parameter values. As predicted by our theory, the
convergence is particularly fast for trend parameter λ.

The column ASE in Table 1 corresponds to the average of the evaluation of the ex-
pression for the asymptotic standard error using the corresponding element in the main
diagonal of the asymptotic covariance matrix reported in Theorem 3. Particularly for
samples of sizes 500 or higher, this lower bound for the standard error of the parameter
estimates is quite close to the standard error and to the root mean squared error (RMSE) of
the estimates.

As checks on the robustness of our results, Tables 2 and 3 show two other cases. These
are taken from the stationary commodity storage models simulated in [7] (see Table 2 in [7])
but assuming no depreciation of inventories. (For simplicity, the set of commodity storage
models considered in this paper assume zero depreciation, although it is straightforward to
generalize our results for cases with positive depreciation.) The case in Table 2 corresponds
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to an inverse consumption demand F(C) = 200− C, the interest rate is r = 0.056, and the
distribution of the shocks is the same as in the model in Table 1. The case in Table 3 has
F(C) = C−1, r = 0.056, and shocks have a lognormal distribution such that the log of the
shocks are normally distributed with mean zero and standard deviation 0.5. We discretize
the lognormal distribution using the same procedure as for the other two cases, with 10
nodes of probability 0.1 each.

Tables 2 and 3 confirm the convergence of our estimators and the relevance of the
expressions for asymptotic standard errors for the small sample sizes considered.

All these experiments have been executed on Microsoft Windows 11 Home x64 PC sys-
tem with an Intel Core i7-1165G7 @2.80Ghz processor and 12 GB of RAM, using MATLAB
R2022a.

Table 1. Inverse consumption demand F(C) = 600−5C. True parameter values are λ0 = 0.98,
p∗0 = 109.46, γ0 = 1.05.

λ0 = 0.98

Sample
Size Q 25% Q 50% Q 75% St. dev. ASE RMSE

T = 100 0.9787 0.9800 0.9814 0.0024 0.0018 0.0024
T = 500 0.9799 0.9800 0.9801 0.0002 0.0002 0.0002

T = 1000 0.9800 0.9800 0.9800 0.0001 0.0001 0.0001
T = 3000 0.9800 0.9800 0.9800 1.39 × 10−5 1.27 × 10−5 1.39 × 10−5

p∗0 = 109.46

Sample
Size Q 25% Q 50% Q 75% St. dev. ASE RMSE

T = 100 99.1042 107.3639 114.5460 13.1091 11.5616 13.2915
T = 500 105.0113 109.0574 113.0216 6.4131 5.8821 6.4218

T = 1000 106.4293 109.2172 112.0908 4.5516 4.2540 4.5548
T = 3000 107.7052 109.3636 111.0997 2.6791 2.4987 2.6798

γ0 = 1.05

Sample
Size Q 25% Q 50% Q 75% St. dev. ASE RMSE

T = 100 1.0407 1.0567 1.0748 0.0268 0.0246 0.0284
T = 500 1.0453 1.0523 1.0596 0.0111 0.0106 0.0115

T = 1000 1.0468 1.0517 1.0572 0.0079 0.0075 0.0083
T = 3000 1.0486 1.0516 1.0548 0.0047 0.0043 0.0050

∗ For 0.127% of the samples of size T = 100, our estimates for λ and p∗ were such that all prices in the sample are
below the estimated threshold price; in those cases, we discarded the estimates for λ and p∗.
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Table 2. Inverse consumption demand F(C) = 200−C. True parameter values are λ0 = 0.98, p∗0 = 93.64,
γ0 = 1.056.

λ0 = 0.98

Sample
Size Q 25% Q 50% Q 75% St. dev. ASE RMSE

T = 100 0.9798 0.9800 0.9802 0.0004 0.0003 0.0004
T = 500 0.9800 0.9800 0.9800 3.26× 10−5 3.10× 10−5 3.26× 10−5

T = 1000 0.9800 0.9800 0.9800 1.17× 10−5 1.10× 10−5 1.17× 10−5

T = 3000 0.9800 0.9800 0.9800 2.33× 10−6 2.13× 10−6 2.33× 10−6

p∗0 = 93.64

Sample
Size Q 25% Q 50% Q 75% St. dev. ASE RMSE

T = 100 91.6489 93.3304 94.8663 2.7388 2.4686 2.7775
T = 500 92.7922 93.5340 94.2377 1.1141 1.0643 1.1206

T = 1000 93.0318 93.5535 94.0733 0.7830 0.7498 0.7878
T = 3000 93.2720 93.6139 93.9065 0.4673 0.4320 0.4703

γ0 = 1.056

Sample
Size Q 25% Q 50% Q 75% St. dev. ASE RMSE

T = 100 1.0478 1.0581 1.0709 0.0221 0.0176 0.0228
T = 500 1.0525 1.0570 1.0617 0.0075 0.0071 0.0077

T = 1000 1.0537 1.0567 1.0602 0.0050 0.0050 0.0051
T = 3000 1.0548 1.0566 1.0586 0.0028 0.0028 0.0029

∗ No samples were discarded in this case.

Table 3. Inverse consumption demand F(C) = C−1. True parameter values are λ0 = 0.98, p∗0 = 1.14,
γ0 = 1.056.

λ0 = 0.98

Sample
Size Q 25% Q 50% Q 75% St. dev. ASE RMSE

T = 100 0.9782 0.9802 0.9824 0.0043 0.0029 0.0043
T = 500 0.9798 0.9800 0.9802 0.0004 0.0003 0.0004

T = 1000 0.9799 0.9800 0.9801 0.0001 0.0001 0.0001
T = 3000 0.9800 0.9800 0.9800 2.38× 10−5 2.22× 10−5 2.38× 10−5

p∗0 = 1.14

Sample
Size Q 25% Q 50% Q 75% St. dev. ASE RMSE

T = 100 0.9745 1.0980 1.2067 0.2058 0.1947 0.2074
T = 500 1.0609 1.1282 1.1909 0.1129 0.1043 0.1129

T = 1000 1.0824 1.1321 1.1794 0.0824 0.0761 0.0824
T = 3000 1.1049 1.1340 1.1650 0.0466 0.0448 0.0466

γ0 = 1.056

Sample
Size Q 25% Q 50% Q 75% St. dev. ASE RMSE

T = 100 1.0471 1.0641 1.0830 0.0271 0.0260 0.0290
T = 500 1.0509 1.0585 1.0668 0.0120 0.0114 0.0124

T = 1000 1.0522 1.0577 1.0639 0.0086 0.0080 0.0089
T = 3000 1.0544 1.0575 1.0608 0.0049 0.0046 0.0052

∗ For 0.248% of the samples of size T = 100, our estimates for λ and p∗ were such that all prices in the sample are
below the estimated threshold price; in those cases, we discarded the estimates for λ and p∗.
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Our codes for solving, simulating and estimating the model are available online as
Supplementary Materials.

8. Conclusions, Limitations, and Future Research

This paper addresses estimation of key parameters of a wide class of nonstationary
dynamic stochastic models, including models of volatility of commodity prices or other
measures of value or welfare, without imposing any of the restrictions associated with
current empirical approaches. It follows the lead of [20] in focusing on consistency of
nonlinear least squares estimators. We exploit the quite common assumption that the
forcing variables are not stationary but have a time invariant representation.

The estimation methodology we present in this paper was implemented using samples
of real annual prices in [52]. Nominal prices correspond to Cotton (Outlook “CotlookA
index”), middling 1-3/32 inch, traded in Far East, C/F beginning 2006; previously Northern
Europe, c.i.f.; Maize (US), no. 2, yellow, f.o.b. US Gulf ports. Both samples of nominal
prices are deflated by the Manufactures Unit Value Index. Estimation results using these
series of real prices imply especially precise estimated price changes when the current price
is locally high, comparing favorably to the results of estimation of the Euler equation using
preliminary detrending.

Although we present our approach for nonlinear least squares, the logic of our proof of
consistency could be considered for the study of asymptotic properties of other estimation
methodologies, including Generalized Method of Moments estimation of DSGE models or
stochastic growth models with trends in the forcing variables.

Supplementary Materials: Our codes for solving, simulating and estimating the model are available
online as supplementary materials at https://www.mdpi.com/article/10.3390/math10152647/s1.
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