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Abstract: In this paper, we consider the poroelasticity problem in heterogeneous media. The mathe-
matical model is described by a coupled system of equations for displacement and pressure in the
coupled dual continuum porous media. We propose a new method based on hybrid explicit–implicit
(HEI) learning to solve the poroelasticity problem in dual continuum heterogeneous media. We
use a finite element method with standard linear basis functions for spatial approximation. We
apply the explicit–implicit time scheme, where the explicit scheme is used for the low-conductive
continuum and the implicit scheme for the high-conductive. The fixed-strain splitting scheme is
used to accelerate the computation and decouple the flow and mechanics problems. The main idea
of the proposed method is partial learning of particular degrees of freedom of the high-conductive
continuum’s pressure (implicit part of the flow). First, we train a deep neural network (DNN) to
obtain values of the implicit part of the flow at some spatial points at some time moments. Then, we
apply the Discrete Empirical Interpolation Method (DEIM) combined with Proper Orthogonal De-
composition (POD) to restore the complete implicit parts and perform linear interpolation over time.
Consequently, we treat the high-conductive continuum’s pressure as a known function and use it to
find the other continuum’s pressure and displacements. Numerical results for the two-dimensional
model problem are presented. The results demonstrate that the proposed method provides fast and
accurate predictions.

Keywords: poroelasticity; machine learning; explicit–implicit scheme; discrete empirical interpolation
method; proper orthogonal decomposition

MSC: 65M60

1. Introduction

Accurately describing the stress–strain state of poroelastic bodies is an urgent and
essential problem for deformable solid mechanics [1–3]. The mathematical model consists
of equations for pressure and displacements. The most important feature of the model is
that the equations are coupled. Modern computational technology allows us to solve such
problems using various numerical methods. Among them, it is necessary to highlight the
finite element and finite difference methods. The finite element method is best suited for
spatial approximation of a problem given in a complex domain. At the same time, the finite
difference method is commonly used for time approximation.
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The most important classification of the finite difference schemes for time approxima-
tion is related to their assignment as explicit or implicit ones [4–6]. Implicit schemes are
popular in numerical simulation due to their excellent stability, which does not depend on
spatial mesh size, time step size, and conductivity. However, these schemes are computa-
tionally expensive. In addition, they do not always correctly describe the behavior of the
solution. When using implicit schemes, in a sense, we remove high frequencies. On the
other hand, explicit schemes are computationally efficient and can capture the solution’s
dynamics. However, they have conditional stability depending on the grid size, time step
size, and conductivity. Therefore, it makes sense in multicontinuum problems to use a
combination of explicit and implicit schemes, often called an explicit–implicit or partially
explicit scheme. In this combination, we use an implicit scheme for a high-conductivity
continuum and an explicit scheme for a low-conductivity continuum.

Another important detail related to time approximation is the use of splitting schemes.
When solving systems of partial differential equations numerically, we can use either a
coupled scheme or splitting schemes. In the coupled scheme, we solve all the equations at
the same time. In splitting schemes, the transition to a new temporal layer is carried out by
sequential solution of separate equations. The splitting schemes simplify the construction
of difference schemes and reduce required computational resources. For poroelasticity
problems, one can note drained, undrained, fixed-strain, fixed-stress, and weighted splitting
schemes [7–10].

The above schemes help solve poroelasticity problems in the most computationally
efficient way. They all refer in one way or another to temporal approximation. However,
there are other ways to speed up computations. For example, one can use numerical
homogenization and multiscale methods [11–14]. These methods allow us to solve problems
in heterogeneous media using coarse grids, thereby significantly reducing the size of the
discrete problem. It is worth noting that one can combine these methods with machine
learning to accelerate some steps [14].

Note that one can encounter an issue related to a limited number of possible observa-
tion points in applied poroelasticity problems. For example, it can be some measurement
devices. The problem of reconstructing the overall picture from the limited observation
arises in such situations. Unfortunately, classical spatial interpolation methods cannot
give an accurate approximation. For such cases, it is better to use the Discrete Empirical
Interpolation Method (DEIM) [15] with Proper Orthogonal Decomposition (POD) [16,17].
POD is a global model reduction method. The method’s main idea is to find the most
energetic modes and use them as basis functions. These basis functions form the projection
basis matrix. The DEIM provides an algorithm for finding interpolation indices (points)
and the POD’s solution degrees of freedom. One can restore the required function by using
the function’s values at these interpolation indices and the projection basis matrix.

This paper proposes a new method based on hybrid explicit–implicit (HEI) learn-
ing [18] to solve the poroelasticity problem in dual continuum heterogeneous media. In this
model, we introduce a pressure field for each continuum, and the effective stress contains
each continuum’s part in the equation for mechanical deformations [19–22]. We use a
finite element method with standard linear basis functions for spatial approximation. We
apply the explicit–implicit time scheme, where the explicit scheme is used for the low-
conductive continuum and the implicit scheme for the high-conductive one. Furthermore,
the fixed-strain splitting scheme is used to accelerate computation. The main idea of the
proposed method is partial learning of particular degrees of freedom of the high-conductive
continuum’s pressure (implicit part of the flow). First, we train a deep neural network
(DNN) to obtain values of the implicit part of the flow at some spatial points at some
time moments. Then, we apply the DEIM with POD to restore the complete implicit parts
and perform linear interpolation over time. Consequently, we treat the high-conductive
continuum’s pressure as a known function and use it to find the other continuum’s pressure
and displacements. Our method consists of two stages: offline and online. First, in the
offline stage, we generate the POD basis projection matrix, define interpolation indices,
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and train DNN. Then, we solve the poroelasticity problem by treating the implicit part of
the flow as a known function in the online stage.

Offline stage

1 Construct the POD projection basis matrix and define the interpolation points using
DEIM.

2 Generate the training dataset.

• Generate the input data.
• Solve the poroelasticity problem with the partially explicit discretization at each

time step.

3 Train the Deep Neural Network to obtain values of the implicit flow part at the
interpolation points at some time steps.

Online stage

1 The Deep Neural Network obtains the implicit part of the pressure at the interpolation
points at some time moments.

2 The POD projection basis matrix restores the complete implicit parts of the flow at
some time moments.

3 Linear interpolation over time.
4 For each time step,

• Compute the explicit flow part using the learned and interpolated implicit one.
• Solve the displacement using the implicit and explicit parts of the flow.

The work has the following structure. First, we present the mathematical model in
Section 2 and its approximation in Section 3. Then, Section 3 describes the Discrete Em-
pirical Interpolation Method with Proper Orthogonal Decomposition. Section 4 presents
our partial learning partially explicit discretization approach. Next, we present numer-
ical results for two-dimensional model poroelasticity problems in the dual continuum
heterogeneous medium in Section 5. Finally, Section 6 summarizes the work.

2. Problem Formulation

Let Ω ⊂ Rd be a computational domain, where d denotes a geometrical dimension of
the problem and equals 2 for a two-dimensional case. We consider a dual continuum model,
where the first continuum is high-conductive, and the second continuum is low-conductive.
The mathematical model is described by a coupled system of equations for pressures p1, p2
and displacements u [23,24]

α1
∂ div u

∂t
+

1
M1

∂p1

∂t
− div(k1 grad p1) + r12(p1 − p2) = 0, x ∈ Ω,

α2
∂ div u

∂t
+

1
M2

∂p2

∂t
− div(k2 grad p2)− r21(p1 − p2) = g, x ∈ Ω,

− div σ(u) + α1 grad p1 + α2 grad p2 = 0, x ∈ Ω,

(1)

where kα = κα/µ, κ1 and κ2 are the permeabilities, g is the source term, α1 and α2 are the
Biot coefficients, M1 and M2 are the Biot moduli, rm f is the transfer term between continua,
µ is the fluid viscosity, u is the displacement, and σ is the stress tensor.

The relation between the stress and strain tensors is given as

σ(u) = 2µ ε(u) + λ div u I , ε(u) =
1
2
(grad u + grad uT),

where ε is the strain tensor, and λ and µ are the Lamé coefficients.
We consider a system of Equation (1) with the following initial conditions

p1(0) = p2(0) = p0, x ∈ Ω,

u(0) = u0, x ∈ Ω,
(2)
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and boundary conditions

− k1
∂p1

∂n
= 0, x ∈ ∂Ω, −k2

∂p2

∂n
= 0, x ∈ ∂Ω,

u1 = 0, (σn)2 = 0, x ∈ ΓL ∪ ΓR, u2 = 0, (σn)1 = 0, x ∈ ΓT ∪ ΓB

(3)

where boundaries ΓL ∪ ΓR ∪ ΓT ∪ ΓB = ∂Ω; ΓL, ΓR, ΓB, ΓT denote the left, right, bottom,
and top boundaries, respectively.

3. Approximation

Variational formulation. For spatial approximation of the system of Equation (1)
with boundary conditions (3), we use a finite element method. We define the following
functional spaces

W1 = W2 = H1(Ω),

V = {v ∈ [H1(Ω)]d : v1 = 0 on ΓL ∪ ΓR and v2 = 0 on ΓT ∪ ΓB}.

The variational formulation of the poroelasticity problem can be written as follows.
Find (p1, p2, u) ∈W1 ×W2 ×V such that

d1

(
∂u
∂t

, w1

)
+ c1

(
∂p1

∂t
, w1

)
+ b1(p1, w1) + q12(p1 − p2, w1) = 0, ∀w1 ∈W1,

d2

(
∂u
∂t

, w2

)
+ c2

(
∂p2

∂t
, w2

)
+ b2(p2, w2)− q21(p1 − p2, w2) = l(w2), ∀w2 ∈W2,

a(u, v) + g1(p1, v) + g2(p2, v) = 0, ∀v ∈ V,

(4)

where the bilinear and linear forms are the following

b1(p1, w1) =
∫

Ω
k1 grad p1 · grad w1 dx, b2(p2, w2) =

∫
Ω

k2 grad p2 · grad w2 dx

c1(p1, w1) =
∫

Ω

1
M1

p1w1 dx, c2(p2, w2) =
∫

Ω

1
M2

p2w2 dx, l(w2) =
∫

Ω
gw2dx,

q12(p1 − p2, w1) =
∫

Ω
r12(p1 −Π21 p2)w1 dx, q21(p1 − p2, w2) =

∫
Ω

r21(Π12 p1 − p2)w2 dx,

d1(u, w1) =
∫

Ω
α1 div u w1 dx, d2(u, w2) =

∫
Ω

α2 div u w2 ds, a(u, v) =
∫

Ω
σ(u) : ε(v) dx,

g1(p1, v) =
∫

Ω
α1 grad p1 · v dx, g2(p2, v) =

∫
Ω

α2 grad p2 · v dx,

where Π12 is the projection operator from W1 to W2 defined as∫
γ
(Π12 p1 − p1)w2 ds = 0, ∀w2 ∈W2.

and Π21 = Π∗12 (see [25] for details).
Discretization in time. We use an explicit–implicit scheme for the time approximation,

where the explicit scheme is used for the low-conductive continuum and the implicit
scheme for the high-conductive one. Let un = u(x, tn), pn

1 = p1(x, tn), pn
2 = p2(x, tn), and

tn = nτ, where τ = T/Nt is the time step size, T is the final time, and Nt is the count of
time steps. Then, the problem can be formulated as follows. For n = 0, . . . , Nt − 1, find
(pn+1

1 , pn+1
2 , un+1) ∈ (W1 ×W2 ×V) such that
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d1

(
un+1 − un

τ
, w1

)
+ c1

(
pn+1

1 − pn
1

τ
, w1

)
+ b1(pn+1

1 , w1) + q12(pn+1
1 − pn+1

2 , w1) = 0,

d2

(
un+1 − un

τ
, w2

)
+ c2

(
pn+1

2 − pn
2

τ
, w2

)
+ b2(pn

2 , w2)− q21(pn+1
1 − pn+1

2 , w2) = l(w2),

a(un+1, v) + g1(pn+1
1 , v) + g2(pn+1

2 , v) = 0, ∀vs. ∈ V,

(5)

where ∀(w1, w2, v) ∈ (W1, W2, V).
Splitting scheme. We can solve the poroelasticity problem using the fixed-strain

splitting scheme. The fixed-strain splitting scheme decouples the flow and mechanics
system solving them sequentially at each time step. Then, we have the following problem
formulation. For n = 1, . . . Nt − 1, find

• Pressures (pn+1
1 , pn+1

2 ) ∈ (W1 ×W2) such that

d1

(
un − un−1

τ
, w1

)
+ c1

(
pn+1

1 − pn
1

τ
, w1

)
+ b1(pn+1

1 , w1) + q12(pn+1
1 − pn+1

2 , w1) = 0,

d2

(
un − un−1

τ
, w2

)
+ c2

(
pn+1

2 − pn
2

τ
, w2

)
+ b2(pn

2 , w2)− q21(pn+1
1 − pn+1

2 , w2) = l(w2),

(6)

where ∀(w1, w2) ∈ (W1, W2).
• Displacements un+1 such that

a(un+1, v) + g1(pn+1
1 , v) + g2(pn+1

2 , v) = 0, (7)

where ∀vs. ∈ V.

Discrete formulation. Let T h be a grid partition of the computational domain Ω into
finite elements and W1,h ⊂W1, W2,h ⊂W2 and Vh ⊂ V be the finite element subspaces on
T h.

u = ∑ uiΦi, p1 = ∑ p1,iφ1,i p2 = ∑ p2,iφ2,i (8)

where Φ, φ1, and φ2 are the linear basis functions defined on T h.
The discrete formulation of the poroelasticity problem using the explicit–implicit time

scheme will have the following form for coupled and splitting schemes.
Coupled scheme. For n = 0, . . . , Nt − 1, find (pn+1

1 , pn+1
2 , un+1) such that

B1 pn+1
1 + C1

pn+1
1 − pn

1
τ

+ D1
un+1 − un

τ
+ Q12(pn+1

1 − pn+1
2 ) = 0,

B2 pn
2 + C2

pn+1
2 − pn

2
τ

+ D2
un+1 − un

τ
−Q21(pn+1

1 − pn+1
2 ) = L,

Aun+1 + G1 pn+1
1 + G2 pn+1

2 = 0.

(9)

where

B1 = [b1, ij], b1,ij = b1(φ1,j, φ1,i), B2 = [b2, ij], b2,ij = b1(φ2,j, φ2,i),

C1 = [c1, ij], c1,ij = c1(φ1,j, φ1,i), C2 = [c2, ij], c2,ij = c2(φ2,j, φ2,i),

D1 = [d1, ij], d1,ij = d1(Φj, φ1,i), D2 = [d2, ij], d2,ij = d2(Φj, φ2,i),

Q12 = [q12, ij], q12,ij = q12(φ1,j, φ1,i), Q21 = [q21, ij], q21,ij = q21(φ2,j, φ2,i),

G1 = [g1, ij], g1,ij = g1(φj, Φ1,i), G2 = [g2, ij], g2,ij = g2(φj, Φ2,i),



Mathematics 2022, 10, 2629 6 of 17

L = [l, i], li = l(φ2,i), Au = [au, ij], au,ij = au(Φj, Φi).

For n = 1, . . . , Nt − 1, find

• Pressures (pn+1
1 , pn+1

2 ) such that

B1 pn+1
1 + C1

pn+1
1 − pn

1
τ

+ D1
un − un−1

τ
+ Q12(pn+1

1 − pn+1
2 ) = 0,

B2 pn
2 + C2

pn+1
2 − pn

2
τ

+ D2
un − un−1

τ
−Q21(pn+1

1 − pn+1
2 ) = L.

(10)

• Displacements un+1 such that

Aun+1 + G1 pn+1
1 + G2 pn+1

2 = 0. (11)

In the next section, we will consider the Discrete Empirical Interpolation Method we
will use for our partial learning approach.

4. Discrete Empirical Interpolation Method with Proper Orthogonal Decomposition

When we need to reconstruct the solution in a heterogeneous medium as accurately
as possible using only several points, we cannot apply the classical spatial interpolation
methods. The Discrete Empirical Interpolation Method (DEIM) is better suited for such
situations. The procedure of such spatial interpolation consists of the following steps:

1. Computing the Proper Orthogonal Decomposition (POD) basis functions;
2. Determining the interpolation nodes using the DEIM algorithm.

In our work, we want to use the DEIM to spatially interpolate the pressure of the
high-conductive continuum. In this case, after we train the neural network to acquire
values at several points, we can reconstruct the pressure in the whole area.

Computing the Proper Orthogonal Decomposition (POD) basis functions. To compute
snapshot functions, we save the first continuum’s pressure data into matrix B with every
second time step in each row saved, solving the problem five times with different parametric
functions. Thus, we obtain a matrix B with Ns by M elements:

B =


a1,1 a1,2 · · · a1,Ns

a2,1 a2,2 · · · a2,Ns
...

...
. . .

...
aM,1 aM,2 · · · aM,Ns

,

where Ns is the number of snapshots, and M is the number of degrees of freedom (mesh
nodes in our case).

Next, we assemble a symmetric positive covariance matrix of dimension M×M.

R = BBT

Then, we determine eigenvalues λk and eigenvectors ψk in matrix R. We sort the
eigenvalues in descending order λ1 > λ2 > · · · > λm > . . . .

Finally, we choose m eigenvectors ψk corresponding to the first m eigenvalues λk
(m� M). These eigenvectors will be our basis functions.

Determining the interpolation nodes using the DEIM algorithm. After calculating the
basis functions, we can represent the desired function (in our case, p1) in the following
form.

p1 ≈ Ψc, (12)

where p1 = (p1,1, . . . , p1,M)T , Ψ = (ψ1, . . . , ψm), c = (c1, . . . , cm)T .
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To determine p1, we need to know c. Note that we can find c using m rows. Suppose
we can know the values of p1 in any m nodes (rows). In this case, our task is to determine
m optimal nodes (rows). We achieve this using the DEIM algorithm [15].

The DEIM finds m distinct interpolation nodes (v1, . . . , vm) and assembles the DEIM
interpolation nodes matrix P = (en1 , . . . , enm), where eni is the ni-th column of the identity
matrix IM. After that, we can restore p1 as follows.

p1 ≈ Ψ(PTΨ)−1PT p1, (13)

where PT p1 samples p1 at m components only.
Figure 1 presents an example of selected interpolation nodes. We will use this interpo-

lation method for our machine learning approach presented in the next section.

Figure 1. Selected vertices from the computational mesh.

5. Machine Learning Approach

Training neural networks to solve the poroelasticity problem is complex and time-
consuming. As a result, it makes more sense to make training the computationally ex-
pensive part of the solution—the implicit flow part. Due to the inefficiency of training
all degrees of freedom, we propose training only a portion of the solution. We train the
neural network to obtain the high-conductive continuum’s pressure at multiple mesh
nodes at some time steps. Then, we apply the DEIM spatial interpolation and linear time
interpolation. As a result, we treat the high-conductive continuum’s pressure as a known
function that we may use to find the other pressure.

A basic DNN is made up of layers, each of which uses a differentiable function
to translate one volume of activations to another. The layers of a neuron network are
nonlinear transformations. The previous layer’s output result is transmitted to the following
layer. The neurons of the previous layer are linked to the neurons of the current layer,
and the connection data are a weighting parameter. As a result, the neural network
training aims to perfect the weights. Deep neural networks use a nonlinear operation
to minimize the amount of input data and simplify the task. We use TensorFlow’s most
straightforward DNN variation in the sequential model [26]. The generation of the dataset
used to train is essential in machine learning. The final need is to create an appropriate
neural network architecture.

A neural network function N of L—layers with samples x—input data and y—output
data may be represented in the following form in deep learning.

N L(x, θ) = σL(WLσL−1(· · · σ2(W2σ1(W1x + b1) + b2) · · · ) + bL),

where Ws are weight matrices, bs are bias vector, and σs are the activation functions, where
σ− > RELU = max(0, x).

Let us write:

• The first output layer: N 1(x0) = Y1, i.e., Y1 = σ1(W1x + b1);
• For i’s layer: Yi = σi(Wixi−1 + bi), where i = 1,2,. . . , L.
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For estimating the output y, a neural network called N L is employed. The goal of the
neural network is to solve an optimization problem to identify parameters θ∗.

θ∗ = argminθ

1
N

N

∑
j=1
||yj −N (xj; θ)||22,

where N is the number of the samples. Here, 1
N ∑N

j=1 ||yj −N (xj; θ)||22 is the loss function—
L(θ).

We generate a network N L(x, θ) using:

• Activation function: ReLU (Rectified Linear Unit) activation function for all layers
(first input and hidden layers), no activation function at the last output layer;

• DNN structure: 2 hidden layers, each layer comprises 12 neurons;
• Kernel initializer: normal for input and output layers and he_normal for all hidden

layers;
• Training optimizer: Adam.

We chose the activation function ReLU because it has shown effectiveness in deep
neural network training without experiencing a vanishing gradient problem.

Therefore, our method consists of two stages: offline and online. In the offline stage,
we compute the POD basis functions and interpolation nodes, generate (or receive) data,
and train the neural network to obtain high-conductive continuum pressure in the interpo-
lation nodes. In the online stage, we can already solve the problem for an arbitrary set of
input parameters. We pass the input data to the neural network, which gives the pressure
values at the interpolation nodes. We perform spatial and temporal interpolation and
solve the problem by treating the pressure of the high-permeability continuum as a known
function. Figure 2 depicts a block diagram of our method’s offline and online stages.

Figure 2. Flow charts of the offline and online stages of partial learning using partially explicit
discretization with limited observation.



Mathematics 2022, 10, 2629 9 of 17

6. Numerical Results

This section considers the numerical solution of the poroelasticity problems in dual con-
tinuum heterogeneous media. As a computational domain, we consider Ω = [0, 1]× [0, 1].
We use a structured computational mesh with 121 vertices and 200 cells (see Figure 3).
For model problem parameters, we set M1 = M2 = 1, α1 = α2 = 1.0, ν = 0.3. The cal-
culation is performed by Tmax = 1 with time step τ = 0.01. For the initial conditions,
we set p0 = 0 and u0 = 0. The eterogeneous coefficients for elasticity modulus E and
heterogeneous permeability k for the first and second continua are presented in Figure 4.
We set the parametric function g = ∑Na

i=1 Ai sin(iπx) sin(iπy) sin(it), where Na = 5 , and
the value range Ai ∈ [−1, 1].

Note that this paper focuses mainly on developing a solution method, so we consider
only the two-dimensional case. However, our approach can be beneficial for more complex
problems, such as modeling three-phase and three-dimensional materials. Solving such
problems will not require any significant changes to the algorithm.

Figure 3. Computational domain.

Figure 4. Elasticity parameter E (left) and heterogeneous permeabilities k1 (center) and k2 (right).
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GMSH software was used to construct the computational domains and meshes [27].
The numerical realization of the problem was based on finite element approximation
using the FEniCS computing platform [28]. For partial learning implementation, we used
Keras [29]—a high-level API for the TensorFlow machine learning platform [26]. Finally,
visualization of the numerical results was based on the ParaView software [30].

Our neural network aimed to find the high-conductive continuum pressure at nine
interpolation points. As mentioned before, we used the Discrete Empirical Interpolation
Method (DEIM) to perform the spatial interpolation. The first step of the DEIM was gen-
erating snapshot functions. To generate them, we solved the problem five times with
different values of Ai. We saved the results every second time step. Therefore, we ob-
tained N = 250 snapshots. Then, we solved a spectral problem and obtained nine basis
functions. Using the DEIM algorithm, we selected nine optimal interpolation nodes. Next,
we trained the neural network to obtain the high-conductive continuum pressure at these
interpolation points.

The neural network considered random Ai values as the input and the high-conductive
continuum pressure at nine interpolation points as output. Thus, the input data size was
five, and the output data size was nine. We solved the problem 300 times with randomly
generated Ai values to prepare a training dataset. For a test dataset, we solved the problem
20 times with Ai that were absent from the training dataset. Then, we performed spatial
and time interpolations.

We used relative errors L2 between the reference solution and the proposed approach’s
solution to compare the results. We performed multiple tests to determine the errors caused
by different steps of our approach.

ep1
L2 =

(∫
Ω(pre f

1 − pappr
1 )2dx∫

Ω(pre f
1 )2dx

)1/2

· 100%, ep2
L2 =

(∫
Ω(pre f

2 − pappr
2 )2dx∫

Ω(pre f
2 )2dx

)1/2

· 100%,

eu
L2 =

(∫
Ω(ure f − uappr)2dx∫

Ω(ure f )2dx

)1/2

· 100%,

where the superscript re f denotes the reference solution, and the superscript appr denotes
the approximate solution. We considered different methods depending on the part of the
error we wanted to evaluate.

Figures 5–8 present the distributions of pressures for the first and second continua and
the displacements in x1 and x2 directions at different time steps (tm with m = 0.4, 0.8, 1).
In each figure, we depicted the solutions using the coupled explicit–implicit scheme,
the split explicit–implicit scheme, and the proposed approach (from top to bottom). Be-
cause all results were very similar, we can conclude that our proposed method can provide
good accuracy.
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Figure 5. Distribution of pressure for the first continuum at different times, tm with m = 0.4, 0.8, 1
(from left to right). (The first row): the coupled explicit–implicit solution. (The second row): the
split explicit–implicit solution. (The third row): the proposed approach’s solution.
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Figure 6. Distribution of pressure for the second continuum at different times, tm with m = 0.4, 0.8, 1
(from left to right). (The first row): the coupled explicit–implicit solution. (The second row): the
split explicit–implicit solution. (The third row): the proposed approach’s solution.
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Figure 7. Distribution of displacement in x1 direction at different times, tm with m = 0.4, 0.8, 1 (from
left to right). (The first row): the coupled explicit–implicit solution. (The second row): the split
explicit–implicit solution. (The third row): the proposed approach’s solution.
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Figure 8. Distribution of displacement in x2 direction at different times, tm with m = 0.4, 0.8, 1 (from
left to right). (The first row): the coupled explicit–implicit solution. (The second row): the split
explicit–implicit solution. (The third row): the proposed approach’s solution.

In Figure 9, we studied the dependence of accuracy on the computational mesh. As a
reference mesh, we took the finest mesh (6561 vertices) and compared its results with the
results of coarser meshes (121, 441, and 1681 vertices) for the first and second continuum
and displacement. Figures 10 and 11 describe the distributions of strain and stress at the
final time.

Figure 9. Relative L2 errors in % for the reference mesh (6561 vertices) with other meshes (121, 441,
and 1681 vertices) for the first and second continuum and displacement (from left to right).
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Figure 10. Distributions of the stress at the final time. The coupled explicit–implicit solution, the split
explicit–implicit solution, and the proposed approach’s solution (from left to right).

Figure 11. Distributions of the strain at the final time. The coupled explicit–implicit solution, the split
explicit–implicit solution, and the proposed approach’s solution(from left to right).

7. Conclusions

This work considered the poroelasticity problem in dual continuum heterogeneous
media. For the mathematical model, we used dual continuum flow and the effective stress
that contained terms of both continua. We applied a finite element method with standard
linear basis functions for the spatial approximation. Furthermore, we used the explicit–
implicit scheme for the time approximation, where the explicit scheme was used for the
low-conductive continuum, and the implicit scheme was applied for the high-conductive
one.

We proposed a new method based on hybrid explicit–implicit (HEI) learning to solve
the poroelasticity problem in dual continuum heterogeneous media. The method’s main
idea was to train a Deep Neural Network to predict the implicit flow part at some node at
some time steps. Then, we performed the DEIM interpolation and linear time interpolation.
After that, we treated the high-conductive continuum’s pressure as a known function and
solved the whole problem. We considered the two-dimensional model problem to test the
proposed method. We solved the problem using various methods to evaluate errors in the
different steps of our method. The results demonstrated that the proposed approach can
successfully solve the poroelasticity problems in dual continuum heterogeneous media.
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