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Abstract: We determine conditions allowing for simplification of the description of the impact of a
short and arbitrarily intense laser pulse onto a cold plasma at rest. If both the initial plasma density
and pulse profile have plane symmetry, then suitable matched upper bounds on the maximum and
the relative variations of the initial density, as well as on the intensity and duration of the pulse,
ensure a strictly hydrodynamic evolution of the electron fluid without wave-breaking or vacuum-
heating during its whole interaction with the pulse, while ions can be regarded as immobile. We
use a recently developed fully relativistic plane model whereby the system of the Lorentz–Maxwell
and continuity PDEs is reduced into a family of highly nonlinear but decoupled systems of non-
autonomous Hamilton equations with one degree of freedom, the light-like coordinate ξ = ct−z
instead of time t as an independent variable, and new a priori estimates (eased by use of a Liapunov
function) of the solutions in terms of the input data (i.e., the initial density and pulse profile). If the
laser spot radius R is finite and is not too small, the same conclusions hold for the part of the plasma
close to the axis~z of cylindrical symmetry. These results may help in drastically simplifying the study
of extreme acceleration mechanisms of electrons.

Keywords: plasma hydrodynamics; non-autonomous Hamilton equations; Liapunov function; rela-
tivistic electrodynamics; plasma wave; wave-breaking

MSC: 34C11; 34C99; 34C60; 76W05; 70H05; 70H40

1. Introduction and Preliminaries

Laser–plasma interactions induced by ultra-intense laser pulses lead to a variety of
very interesting phenomena [1–5], notably plasma compression for inertial fusion [6], laser
wakefield acceleration (LWFA) [7–9] and other extremely compact acceleration mecha-
nisms (e.g., hybrid laser-driven and particle-driven plasma wakefield acceleration [10])
of charged particles, which hopefully will be the basis of a generation of new table-top
accelerators. This is paramount because accelerators have extremely important applications
in particle physics, materials science, medicine, industry, environmental remediation, etc.,
and therefore huge investments (such as the EU-funded project Eupraxia [11–13]) are being
developed all over the world to promote the development of such accelerators. Similar
extreme conditions (huge electromagnetic fields and huge accelerations of charged particles
in plasmas) occur in a number of violent astrophysical processes as well; see, e.g., [9] and ref-
erences therein. In general, these phenomena are ruled by the equations of a kinetic theory
coupled to Maxwell’s equations, which can be only solved numerically via particle-in-cell
(PIC) techniques. Unfortunately, PIC codes involve huge and expensive computations for
each choice of the free parameters; even with the presently ever increasing computational
power, exploring the parameter space blindly in order to single out interesting regions
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remains prohibitively expensive. Sometimes, good predictions can be obtained by treating
the plasma as a multicomponent fluid (electrons and ions) and by numerically solving the
simpler associated hydrodynamic equations via multifluid codes such as QFluid [14] or
hybrid kinetic/fluid codes. In general, however, it is not known a priori in which conditions
or spacetime regions this is possible. Therefore any analytical insights that can simplify the
work, at least in special cases or in a limited space-time region, are welcome.

This applies in particular to studying the impact of a very short (and possibly very
intense) laser pulse perpendicularly onto a cold diluted plasma at rest, as well as onto
matter which is locally ionized into a plasma by the front of the pulse itself. As is well
known, electrons start oscillating orthogonally to the direction~z of pulse propagation and
drifting in the positive z-direction, pushed respectively by the electric and magnetic parts of
the Lorentz force induced by the pulse; thereafter, electrons start oscillating longitudinally
as well (i.e., in ~z-direction), pushed by the restoring electric force induced by charge
separation. Readers can find such initial longitudinal motions in Figure 1c and from the
electron worldlines reported in Figures 7 and 8. It turns out that the initial dynamics
are simpler if the pulse is essentially short. We say here (see Definition 1) that the pulse
is essentially short if it overcomes each electron before the z-displacement, ∆, of the latter
reaches a negative minimum for the first time; an essentially short pulse is strictly short if
it overcomes each electron before ∆ becomes negative for the first time. In other words,
we regard a pulse as strictly short (essentially short) if it overcomes each electron before it
finishes the first half (three quarters) longitudinal oscillation. In the nonrelativistic (NR)
regime, a pulse which is symmetric under inversion around its center is strictly short
(essentially short) if its duration l/c does not respectively exceed half (1) times the NR
plasma oscillation period tnr

H ≡
√

πm/nbe2 associated with the maximum, nb, of the initial
electron density; that is (see Proposition 1), if

Gb :=

√
nbe2

πmc2 l ≤
{

1/2
1

(1)

where −e, m are the electron charge and mass c is the speed of light. (If the pulse is a
slowly modulated monochromatic wave (58) with wavelength λ = 2π/k, this implies a
fortiori 4πe2

mc2 nbλ2 � 1, meaning that the plasma is underdense). The general relativistic
plasma oscillation period is not independent of the oscillation amplitude, but grows with
the latter, which in turn grows with the pulse intensity. Correspondingly, Equation (16) can
be fulfilled with a larger Gb; in addition, it is compatible with maximizing the oscillation
amplitude, and thus the energy transfer from the pulse to the plasma wave, as for a given
nb and pulse energy such a maximization can be achieved [3,15] through a suitable

l ∼ ξ̃2, (i.e., when Gb ∼ 1/2 in the nonrelativistic regime). (2)

We believe that such impacts require a deeper understanding because, among other
things, they may generate: (i) a plasma wave (PW) [16,17] or even an ion bubble (a region
containing only ions, because all electrons have been expelled out of it) [18–24] producing
the LWFA, i.e., accelerating a small bunch of (socalled witness) electrons trailing the pulse
at very high energy in the forward direction; and (ii) the slingshot effect [15,25,26], i.e.,
the backward acceleration and expulsion of energetic electrons from the vacuum–plasma
interface during or just after the impact. The present work is one out of a few papers [27–29]
arguing that, with the help of the plane, fully relativistic Lagrangian model of [30,31], and
very little computational power, we can obtain important information about such an impact,
in particular the formation of a PW, its persistence before wave-breaking (WB), and the
features of the latter. As is known, a small WB is not necessarily undesirable, and may be
used to produce and inject the mentioned witness electrons into the PW (self-injection).
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Figure 1. (a) Normalized amplitude of a linearly polarized (i.e., set ψ = 0 in (58)) monochromatic
laser pulse slowly modulated by a Gaussian with full width at half maximum l′ and peak amplitude
a0≡λeE⊥M/mc2 =1.3; this yields a moderately relativistic electron dynamics, and ∆u ≡ ∆(0)(l) ' 0.45l′.
If l′=7.5 µm (corresponding to a pulse duration of τ′ = l′/c ' 2.5× 10−14 s), and the wavelength is
λ = 0.8 µm, then the corresponding peak intensity must be I=7.25× 1018 W/cm2; these are typical
values obtainable by Ti:Sapphire lasers in LWFA experiments. (b) The corresponding forcing term
v(ξ) and average-over-cycle (60) va(ξ) of the latter. (c) Corresponding solution of (8) and (9), or
equivalently of (14) if Kn0l′2 ' 4 ; this value is obtained if l′=7.5 µm and ñ0(Z)≡n0 = 2× 1018 cm−3

(a typical value of the electron density used in LWFA experiments). As expected, s is insensitive to
the rapid oscillations of ε⊥ for ξ ∈ [0, l], while for ξ ≥ l the energy H is conserved and the solution
is periodic. The length l is determined on physical grounds; if, e.g., the plasma is created locally
by the impact of the pulse itself on a gas (e.g., hydrogen or helium), then [0, l] has to contain all
points ξ where the pulse intensity is sufficient to ionize the gas. Here, for simplicity and following
convention, we have fixed it to be l = 4l′; the possible inaccuracy of such a cut is very small, because
ε(0+) = ε(l−) is 2−16 times the maximum ε(l/2) of the modulation, i.e., practically zero, which
makes Gb ≡

√
Kn0 l ' 8.
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The plane model is as follows. We assume that the plasma is initially neutral, unmag-
netized, and at rest, with zero densities in the region z<0. More precisely, the t=0 initial
conditions for the electron fluid Eulerian density ne and velocity ve are of the type

ve(0,x)= 0, ne(0,x)= ñ0(z), (3)

where the initial electron (as well as proton) density ñ0(z) fulfills

ñ0(z)=0 if z≤0, 0< ñ0(z)≤nb if z>0 (4)

for some nb > 0 (a few examples are reported in Figure 2). Assuming that prior to the
impact the laser pulse is a free plane transverse wave travelling in the z-direction, i.e., that
the electric and magnetic fields E, B are of the form

E(t, x) = E⊥(t, x) = ε⊥(ct−z), B = B⊥ = k×E⊥ if t ≤ 0 (5)

where ε⊥(ξ) has a bounded support with ξ =0 as the left extreme (i.e., the pulse reaches
the plasma at t = 0) and the superscript ⊥ denotes vector components orthogonal to
k ≡ ∇z. The input data of a specific problem are the functions ñ0(z), ε⊥(ξ); in addition, it
is convenient to define the related functions

α⊥(ξ) := −
∫ ξ

−∞
dζ ε⊥(ζ), v(ξ) :=

[
eα⊥(ξ)

mc2

]2

, (6)

Ñ(Z) :=
∫ Z

0
dζ ñ0(ζ), U (∆; Z) :=K

∫ ∆

0
dζ (∆−ζ) ñ0(Z+ζ) , (7)

where K := 4πe2

mc2 . By definition, v is dimensionless and nonnegative, and Ñ(Z) strictly
grows with Z. We can describe the plasma as a fully relativistic collisionless fluid of
electrons and a static fluid of ions; as usual, in the short time lapse of interest here, the
motion of the much heavier ions is negligible, with E, B and the plasma dynamical variables
fulfilling the Lorentz–Maxwell and continuity equations. As at the impact time t=0 the
plasma is made up of two static fluids, by continuity, such a hydrodynamical description
(HD) is justified and we can neglect the depletion of the pulse at least for small t>0; the
specific time lapse is determined a posteriori by self-consistency. This allows us (see [30,31],
or [32–35] for shorter presentations) to reduce the system of the Lorentz–Maxwell and
continuity partial differential equations (PDEs) into ordinary ones, more precisely into the
following continuous family of decoupled Hamilton equations for systems with one degree of
freedom. Each system determines the complete Lagrangian (in the sense of non-Eulerian)
description of the motion of the electrons having a same initial longitudinal coordinate
Z > 0 (the Z-electrons, for brevity), and reads

∆′(ξ, Z) =
1+v(ξ)

2s2(ξ, Z)
− 1

2
, s′(ξ, Z) = K

{
Ñ[Z+∆(ξ, Z)]−Ñ(Z)

}
; (8)

it is equipped with the initial conditions

∆(0, Z) = 0, s(0, Z) = 1. (9)



Mathematics 2022, 10, 2622 5 of 26

Figure 2. Plots of the ratios ñ0/nb for the following initial densities: (0) ñ0(z) = nb θ(z). (1)
ñ0(z) = 1

2 nb θ(z)[1+θ(l′−z) z/l′+ θ(z−l′)]. (2) ñ0(z) = nb [θ(z) θ(l′−z) z/l′+ θ(z−l′)]. (3) ñ0(z) =

nb

{
z
z̄

f (z̄)
1+f (z̄) θ(z)θ(z̄−z) + θ(z−z̄) f (z)

1+f (z)

}
, where f (z) := (0.1 z/l′)2 + (0.2 z/l′)4 and z̄ = 6.5l′; this

grows as z for z ≤ z̄ and coincides with the next one for z > z̄. (4) ñ0(z) = nb θ(z) f (z)
1+f (z) .

Here, the unknown basic dynamical variables ∆(ξ, Z), s(ξ, Z) are respectivey the
longitudinal displacement and s-factor of the Z-electrons espressed as functions of ξ, Z,
while ze(ξ, Z) := Z+∆(ξ, Z) is the present longitudinal coordinate of the Z-electrons; s is
the light-like component of the 4-velocity of the Z electrons, or equivalently is related to
their 4-momentum by p0−cpz ≡ mc2s; it is positive-definite. In the NR regime |s−1| � 1;
in the present fully relativistic regime, it need only satisfy the inequality s > 0. We consider
all dynamical variables f (in the Lagrangian description) as functions of ξ, Z instead of
t, Z; in the cited papers [30–35], the two dependences are denoted as f̂ (ξ, Z) and f (t, Z),
respectively, although here we use only the former and thus denote it simply as f (ξ, Z)
without the .̂ In the above, f ′ stands for the total derivative d f /dξ := ∂ f /∂ξ+s′∂ f /∂s+
∆′∂ f /∂∆ and Z plays the role of the family parameter; all of the other electron dynamical
variables can be expressed in terms of ∆, s and the initial coordinates X ≡ (X, Y, Z) of the
generic electron fluid element. In particular, in the basic approximation the dimensionless
variable u⊥ := p⊥/mc, i.e., the electrons’ transverse momentum in mc units, is given by
u⊥ = eα⊥

mc2 ; hence, v = u⊥2. The light-like coordinate ξ = ct−z in Minkowski spacetime
can be adopted as an independent variable instead of time t, as all particles must travel
at a speed lower than c; at the end, to express the solution as a function of t it is only
necessary to replace ξ with the inverses ξ̃(t, Z) of the strictly increasing (in ξ) functions
t̂(ξ, Z) := (ξ+ze(ξ, Z))/c. Equation (8) consists of Hamilton equations, with ξ, ∆,−s
playing the role of the usual t, q, p and the (dimensionless) Hamiltonian

H(∆, s, ξ; Z) ≡ s2 + 1+v(ξ)
2s

+ U (∆; Z); (10)

the first term provides the kinetic + rest mass energy, while U plays the role of potential
energy due to the electric charges’ mutual interaction. Consequently, along the solutions
of (8) H′ = ∂H/∂ξ = v′/2s. Integrating the latter identity by parts and using the
definition (10) of H, we find

(s−1)2

2s
+ U (∆; Z) = H(ξ, Z)− 1− v(ξ)

2s(ξ, Z)
=
∫ ξ

0
dη

vs′

2s2 (η, Z) =: ν(ξ, Z). (11)

The Hamilton Equations in (8) are non-autonomous for 0< ξ < l, where [0, l] is the
smallest closed interval containing the support of ε⊥; ultra-intense pulses are characterized
by maxξ∈[0,l]{v(ξ)} � 1 and induce ultra-relativistic electron motions. For ξ ≥ l, (8) can
be solved by quadrature as well, using the energy integrals of motion H(ξ, Z) = H(l, Z) =:
h(Z) = const.

Solving (8) and (9) yields the motions of the Z-electrons’ fluid elements, which are
fully represented through their worldlines in Minkowski space. In Figures 7 and 8 we have
displayed the projections onto the z, ct plane of these worldlines for two specific sets of
input data; as can be seen, the PW emerges from them as a collective effect. Mathematically,
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the PW features can be derived by reference to the Eulerian description of the electron fluid;
the resulting flow is laminar, with xy plane symmetry. The Jacobian of the transformation
X 7→ xe ≡ (xe, ye, ze) from the Lagrangian to the Eulerian coordinates reduces to J(ξ, Z) =
∂ze(ξ, Z)/∂Z, because x⊥e −X⊥ does not depend on X⊥.

The HD breaks where worldlines intersect, leading to WB of the PW. No WB occurs
as long as J remains positive. If the initial density is uniform, ñ0(Z) = n0 = const, both
Equation (8) and the initial conditions (9) become Z-independent, because (8 Right) takes
the form s′ = M∆, where M :=Kn0. Consequently, their solutions become Z-independent
as well, and J ≡ 1 at all ξ. Otherwise, WB occurs after a sufficiently long time [36].

Our main goal here is to determine manageable sufficient conditions on ñ0(z), ε⊥(ξ)
guaranteeing that J(ξ, Z) > 0 for all Z > 0 and ξ ∈ [0, l], without solving the Cauchy
problems (8) and (9). This ensures that there is no wave-breaking during the laser–plasma
interaction (WBDLPI), i.e., while the Hamilton Equations (8) are non-autonomous (due to
the dependence of v on ξ. We reach this goal by determining upper and lower bounds first
on ∆, s, H (Section 2), then on J and ∂s/∂Z (Section 3), with the help of a suitable Liapunov
function. These bounds provide useful approximations of these dynamical variables in
the interval 0 ≤ ξ ≤ l. As previously mentioned, the NR short-pulse conditions (1) are
generalized by the ones (16) in the present fully relativistic regime. Inequalities (35) and
(36) are respectively sufficient conditions for (16 Left) and (16 Right). Instead of (35), we
can first check the stronger and more easily verifiable condition (40), or even the simplest
and strongest one, Mul2 ≤ 2. In the case that (36) is satisfied, we can exclude WBDLPI
in the NR regime if (48) is fulfilled; in the general case, if one of the three conditions of
Proposition 1 is fulfilled, namely if the plasma is initially sufficiently diluted and/or the
local relative variations of its density are sufficiently small (if Q0 < 1, the strongest and
easiest to compute, is not fulfilled, Q1 < 1 or Q2 < 1 can be used). In Section 4 we compare
the dynamics of s, ∆, J, σ induced by the same pulse on five representative ñ0(z) having the
same upper bound and asymptotic value nb, both by numerically solving the equations
and by applying the mentioned inequalities. In particular, we find that the density profile
at the very edge of the plasma is critical; for instance, if ñ0(z) ∼ z as z → 0+, then WB
occurs earlier than if ñ0(z) ∼ z2 or if limz→0+ ñ0(z) > 0 (discontinuous density at z = 0),
albeit with the electrons colliding at very small relative velocities. To produce LWFA, the
laser pulse is usually fired orthogonally to a supersonic gas jet (e.g., hydrogen or helium);
outside the jet nozzle it is ñ0(z) ∼ z2, and thus our results imply that such impacts occur in
the hydrodynamic regime under rather broad conditions.

For ξ ≥ l, by using the conservation of energy we can show [28] that, while ∆ and s
are periodic with a suitable period ξH, J and σ are linearly quasiperiodic, that is, they are of
the form

f (ξ) = a(ξ) + ξ b(ξ), ξ ≥ l, (12)

where a, b are periodic in ξ with period ξH and b has zero average over a period; b(ξ)
oscillates between positive and negative values, as does the second term, which dominates
as ξ → ∞, with ξ acting as a modulating amplitude. Therefore, the occurrence of WB after
the laser–plasma interaction is best investigated by studying the dependence (12) [28].

The spacetime region where the present plane hydrodynamic model predicting a
laminar and xy-symmetric flow is self-consistent is determined (Section 4) by the condi-
tions J > 0 (no collisions) and (62) (undepleted pulse approximation). For typical LWFA
experiments, the length and time sizes allowed by (62) are respectively on the order of
several hundred microns and femtoseconds, respectively. The spacetime region where the
predictions of the model can be trusted is further reduced (Section 4) by the finite transverse
size R of the laser pulse. According to our model, other phenomenal characteristic of
plasma physics, such as turbulent flows, diffusion, heating, heat exchange, as well as the
very motion of ions, can be excluded inside the latter region, although of course they can
and will occur outside.
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Finally, we point out that recent advances in multi-timescale analysis have permit-
ted (semi)-analytical studies of laser–plasma interaction, including aspects of WB, in the
ultrarelativistic regime using Vlasov description [37] .

2. A Priori Estimates of ∆, s, H for Small ξ > 0

The Cauchy problem (see (8) and (9)) is equivalent to the following integral one:

∆(ξ, Z) =
∫ ξ

0
dη

1+v(η)
2s2(η, Z)

− ξ

2
, s(ξ, Z)− 1 =

∫ ξ

0
dη
∫ ze(η,Z)

Z
dZ′ Kñ0(Z′). (13)

If ñ0(Z)≡n0=const, then U (∆)=M∆2/2, s′ = M∆, and (13) amounts to

s(ξ) = 1 +
M
2

[
− ξ2

2
+
∫ ξ

0
dη (ξ−η)

1+v
s2 (η)

]
, (14)

where M :=Kn0; once (14) is solved, we can obtain ∆ from ∆ = s′/M. In Figure 1, we plot
an example of a monochromatic laser pulse slowly modulated by a Gaussian along with
the corresponding solution (s, ∆) in a constant density plasma; the qualitative behaviour of
the solution remains the same if ñ0(z) 6=const. In the NR regime v� 1, whence |∆/l| � 1,
|δ| � 1, where δ := s−1; at lowest order in δ, ∆ (8) and (9) reduce to the equations
δ′ = M∆, ∆′ = v/2− δ of a forced NR harmonic oscillator with trivial initial conditions.
The solution is

∆(ξ) =
∫ ξ

0
dη

v(η)
2

cos
[√

M(ξ−η)
]
, δ(ξ) =

∫ ξ

0
dη

v(η)
2

sin
[√

M(ξ−η)
]
. (15)

By (8 Right), the zeroes of ∆(·,Z) are extrema of s(·,Z) and vice versa, because Ñ(Z)
grows with Z. Let us recall how ∆, s start evolving from their initial values (9). As previously
mentioned, for ξ >0 all electrons reached by the pulse start to oscillate transversely and
drift forward; in fact, v(ξ) becomes positive, implying in turn that the right-hand side (rhs)
of (8 Left) and ∆ does as well; the Z=0 electrons leave a layer of ions of finite thickness
behind themselves that is completely evacuated of electrons. If the density vanished
(ñ0 ≡ 0), then we would obtain

s ≡ 1, ∆(ξ, Z) =
∫ ξ

0
dη

v(η)
2

=: ∆(0)(ξ);

∆(0)(ξ) grows with ξ and is almost constant for ξ > l if v(ξ) ' 0 for ξ > l (which occurs if
the pulse is slowly modulated (58)). On the contrary, as the density is positive, the growth
of ∆ implies the growth of the rhs of (8 Right), because the latter grows with ∆, as well
as of s(ξ,Z)−1. Meanwhile, ∆(ξ,Z) continues to grow as long as 1+v(ξ) > s2(ξ,Z), and
reaches a maximum at ξ̃1(Z) ≡ the smallest ξ>0 such that the rhs (8 Left) vanishes. s(ξ,Z)
keeps growing as long as ∆(ξ,Z)≥0, reaches a maximum at the first zero ξ̃2 > ξ̃1 of ∆(ξ,Z),
and decreases for ξ > ξ̃2, while ∆(ξ,Z) is negative. ∆(ξ,Z) reaches a negative minimum at
ξ̌3(Z) ≡ the smallest ξ> ξ̃2, such that the rhs (8 Left) vanishes again. Here, we denote by
ξ̃3(Z) the smallest ξ> ξ̌3 such that s(ξ,Z) = 1 and I := [0, ξ̃3]. We encourage the reader to
single out ξ̃1, ξ̃2, ξ̌3, ξ̃3 for the solution considered in Figure 1 from the graphs in 1c. If ε⊥ is
slowly modulated, then v(l)'0 (see Appendix A.2 for details, and Appendix 5.4 in [31] for
further information); then, ξ̌3 ' ξ̃3 if l < ξ̌3.

Definition 1. A pulse is strictly short, essentially short with respect to ñ0 if it respectively fulfills{
∆(ξ, Z) ≥ 0 ,

s(ξ, Z) ≥ 1 ,
∀ξ ∈ [0, l], Z ≥ 0 ⇔ l ≤

{
ξ̃2(Z)

ξ̃3(Z)
∀Z ≥ 0 . (16)
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In the NR regime, if ñ0(Z) ≡ n0 =const, these respectively amount to requiring
that the corresponding solution (15) fulfills ∆(l) ≥ 0, δ(l) ≥ 0; if ñ0(Z) 6=const, it is
sufficient to replace n0 with nb to obtain sufficient conditions for the fulfillment of (16), said
conditions being

2∆(ξ) =
∫ ξ

0
dη v(η) cos

[√
Knb(ξ−η)

]
≥ 0 ,

2δ(ξ) =
∫ ξ

0
dη v(η) sin

[√
Knb(ξ−η)

]
≥ 0 ,

∀ξ ∈ [0, l]. (17)

Proposition 1. If v is symmetric about ξ = l/2, i.e., v(ξ) = v(l−ξ), then (17 Left) amounts to
Gb ≤ 1/2; if in addition v has a unique maximum in ξ = l/2, then (17 Right) amounts to Gb ≤ 1.

The proof is provided in Appendix A.1. The assumption that v(ξ) be symmetric is
satisfied with very good approximation if the pulse is a slowly modulated one (58) with a
symmetric modulation ε(ξ) about ξ = l/2 (as in Figure 1b), per (59).

The following estimates hold for ξ ∈ I = [0, ξ̃3]. First, s ≥ 1 and (13 Left) imply
the bound

∆(ξ, Z) ≤ ∆(0)(ξ). (18)

2.1. Constant Density Case

If ñ0(Z)≡n0>0, for ξ ∈ I we find by (18) s(ξ)−1 = M
∫ ξ

0 dη ∆(η) ≤ M
∫ ξ

0 dη ∆(0)(η), i.e.,

s(ξ) ≤ 1 +
M
2

∫ ξ

0
dη (ξ − η) v(η) =: s(1)(ξ). (19)

As s(1)(ξ) grows strictly with ξ and is convex, Equation (19) and (13 Left) in turn imply

∆(ξ) ≥
∫ ξ

0
dη

1+v(η)

2[s(1)(η)]2
− ξ

2
=: ∆(1)(ξ). (20)

It is apparent that ∆(1)(ξ) vanishes at ξ = 0 and grows with ξ for small ξ > 0 until its
(unique) maximum point, while for larger ξ it decreases and becomes negative. Hence, a
lower bound ξ̃(1)

2 for ξ̃2 is the smallest ξ > 0 such that ∆(1)(ξ) = 0. Therefore, ∆(1)(l) ≥ 0
ensures that ξ̃2 ≥ ξ̃(1)

2 ≥ l.
Equation (13 Right) implies that s(ξ)−1 = M

∫ ξ
0 dη ∆(η) ≥ M

∫ ξ
0 dη ∆(1)(η), namely,

M
2

f (ξ) =: s(2)(ξ), f (ξ) :=
∫ ξ

0
dη

(ξ−η)[1+v(η)]

[s(1)(η)]2
− ξ2

2
. (21)

At least for small ξ, this is a more stringent lower bound for s in I than s ≥ 1; f (ξ)
vanishes at ξ = 0, and grows with ξ for small ξ > 0 until its (unique) maximum point; for
larger ξ, it decreases and becomes negative. Hence, a lower bound ξ̃(1)

3 for ξ̃3 is the smallest
ξ > 0 such that f (ξ) = 0. Therefore, f (l) ≥ 0 ensures that ξ̃3 ≥ ξ̃(1)

3 ≥ l.

2.2. Generic Density Case

Let ň(ξ, Z) := ñ0
[
ze(ξ, Z)

]
, ξ̃ ′2 := min{ξ̃2, l}, nu, nd > 0 be some upper, lower bounds

on ň
nd(Z) ≤ ň(ξ, Z) ≤ nu(Z) (22)

for 0 ≤ ξ ≤ ξ̃ ′2. If ñ0(Z)≡ n0, then ň≡ n0, and we can set nu = nd = n0. In general, a
Z-independent choice of nu is nu = nb; see (4). More accurately, with ∆u > 0 such that

∆(ξ, Z) ≤ ∆u ∀ξ ∈ [0, ξ̃3], (23)
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then 0 ≤ ∆(ξ, Z) ≤ ∆u(Z) for all ξ ∈ [0, ξ̃2] (by the definition of ξ̃2), and (22) holds,
choosing

nu(Z)= max
Z′∈
[

Z,Z+∆u
]{ñ0(Z′)}, nd(Z)= min

Z′∈
[

Z,Z+∆u
]{ñ0(Z′)}; (24)

in general, (24 Left) is a lower (and therefore better) upper bound than nu = nb. Henceforth
we abbreviate Mu(Z) := Knu(Z), Md(Z) := Knd(Z). By (18), we can adopt the simple
choice ∆u := ∆(0)(l) (if v(l) ' 0, as occurs if the pulse is a slowly modulated one (58), then
∆(0)(ξ) ' ∆(0)(l) if ξ > l, and (22) holds with ∆u = ∆(0)(l) for all 0 ≤ ξ ≤ ξ̃2 even if ξ̃2 > l).

Lemma 1. For all ξ ∈ [0, ξ̃3], the rhs ν of (11) can be bound by

ν(ξ, Z) ≤ νu(ξ, Z) :=
Mu(Z)

2
[
∆(0)(ξ)

]2 (25)

Proof. For ξ ∈ [0, ξ̃2], the inequality is proven as follows:

ν(ξ) =
∫ ξ

0
dη

vs′

2s2 (η) ≤
∫ ξ

0
dη

v
2s2 (η)

∫ Z+∆(η)

Z
dz Mu = Mu

∫ ξ

0
dη

v∆
2s2 (η) ≤ Mu

∫ ξ

0
dη

v∆(0)

2
(η) = νu(ξ)

using ∆(0) ′ = v/2; for brevity, we have not displayed the Z argument here. The inequality
holds in ]ξ̃2, ξ̃3] as well, because there ν decreases, whereas νu grows.

The maximum of ν(ξ, Z) in [0, ξ̃3] is in ξ = ξ̃2 because s′ > 0 in ]0, ξ̃2[ and s′ < 0
in ]ξ̃2, ξ̃3[. To obtain upper, lower bounds su, sd for s(ξ, Z) and a lower bound ∆d(Z) for
∆(ξ, Z) in the longer interval 0 ≤ ξ ≤ ξ̃ ′3 := min{l, ξ̃3}, we use (25) to majorize

ν(ξ, Z) ≤ ν
(
ξ̃2, Z

)
≤ Mu

2
[
∆(0)
(
ξ̃2
)]2 ≤ Mu

2
∆2

u

(again, if v(l) ' 0, as occurs if the pulse is a slowly modulated one (58), then ∆(0)(ξ) ' ∆(0)(l)
if ξ > l, and these results remain valid if we replace ξ̃ ′3 by ξ̃3, even if ξ̃3 > l).

When replaced in (11), this yields (s−1)2/2s ≤ Mu∆2
u/2 and U ≤ Mu∆2

u/2, whence

sd ≤ s(ξ, Z) ≤ su,
su
sd

}
:= 1+

Mu

2
∆2

u±

√(
1+

Mu

2
∆2

u

)2
−1, ∆(ξ, Z) ≥ ∆d(Z), (26)

where ∆d is the negative solution of the equation U (∆; Z) = Mu(Z)∆2
u/2 (as a first estimate,

∆d = −∆u). Clearly, 1/sd = su > 1.

Proposition 2. For all ξ∈ [0, ξ̃ ′3], the dynamical variables ∆, s are bounded as follows:

∆(0)(ξ, Z) ≥ ∆(ξ, Z) ≥ ∆(1)(ξ, Z),

s(1)(ξ, Z) ≥ s(ξ, Z) ≥ s(2)(ξ, Z),
(27)
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where ∆(0)(ξ) :=
ξ∫

0
dη v(η)/2, and

s(1)(ξ,Z) := min{su, 1 + g(ξ,Z)}, g(ξ,Z) :=
Mu

2

∫ ξ

0
dη (ξ−η) v(η),

∆(1)(ξ,Z) := max{∆d, d(ξ,Z)}, d(ξ,Z) :=
∫ ξ

0
dη

1+v(η)

2[s(1)(η,Z)]2
− ξ

2
,

s(2)(ξ, Z) :=


1 + Md

2 f (ξ, Z) 0 ≤ ξ ≤ ξ̃(1)
2

max
{

sd, 1 +
[

Md
2 −

M′u
2

]
f
(

ξ̃(1)
2 , Z

)
+ M′u

2 f (ξ, Z)
}

ξ̃(1)
2 < ξ ≤ ξ̃ ′3,

f (ξ, Z) :=
∫ ξ

0
dη (ξ−η)

{
1+v(η)

[s(1)(η, Z)]2
− 1

}
,

(28)

where ξ̃(1)
2 (Z) < ξ̃2 is the zero of d(ξ,Z) as well as the maximum point of f (ξ, Z), and M′u/K =

n′u := max
Z′∈[Z+∆d ,Z]

{ñ0(Z′)}. Moreover, the value of the Hamiltonian is bounded by

Hd := 1 +
v

2s(1)
+ νd ≤ H ≤ 1 +

v
2s(2)

+
Mu

2
[
∆(0)
]2

=: Hu, (29)

where, dubbing the maximum of d(ξ,Z) by ξ̃(1)
1 (Z), we have defined

νd(ξ, Z) :=



Md(Z)
2

[
∆(1)(ξ, Z)

]2
ξ ∈

[
0, ξ̃(1)

1
]
,

Md(Z)
2

[
∆(1)
(
ξ̃(1)

1
)]2

ξ ∈
[
ξ̃(1)

1 , ξ̃(1)
2
]
,

Md(Z)
2

[
∆(1)
(
ξ̃(1)

1 , Z
)]2

+ M′u(Z)
∫ ξ

ξ̃
(1)
2

dη
v∆(1)

2
(η, Z) ξ ∈

[
ξ̃(1)

2 , ξ̃ ′3
]
.

(30)

Note that ξ̃(1)
1 (Z) < ξ̃1(Z). Equations (27) and (28) reduce to (18) and (21) if ñ0(Z) ≡

n0 = const.

Proof. The left inequality in (27 Left) is the already proven (18). Equation (13) by (24), (18)
implies s(ξ, Z)− 1 ≤

∫ ξ
0 dη Mu∆(η, Z) ≤ Mu

∫ ξ
0 dη ∆(0)(η), which together with (26 Left)

implies the left inequality in (27 Right); the latter, together with (13 Left), (26 Right), in turn
implies the right inequality in (27 Left). First, d(ξ, Z) = f ′(ξ, Z) vanishes at ξ = 0, grows
with ξ for small ξ > 0 until it reaches a maximum for sufficiently large ξ, then decreases
to negative values. Hence, ξ̃(1)

2 , i.e., the smallest ξ > 0 such that ∆(1)(ξ, Z) = 0, is indeed
a lower bound for ξ̃2; meanwhile, ξ̃(1)

2 is the maximum point of f and s(2). Equation (13)
implies that for all ξ ∈ [0, ξ̃2]

s(ξ,Z)−1 ≥ Md

∫ ξ

0
dη ∆(η,Z) ≥ Md

∫ ξ

0
dη d(η,Z) =

Md
2

f (ξ, Z). (31)

If ξ ∈]ξ̃2, ξ̃ ′3], integrating (8 Right) over [ξ̃2, ξ] and recalling that ∆d ≤ ∆ < 0 there,
we find

s(ξ,Z)−s(ξ̃2,Z) = −K
∫ ξ

ξ̃2

dη
∫ Z

Z+∆(η,Z)
dZ′ ñ0(Z′) ≥ M′u

∫ ξ

ξ̃2

dη ∆(η,Z) ≥ M′u
∫ ξ

ξ̃2

dη ∆(1)(η,Z)

> M′u
∫ ξ

ξ̃
(1)
2

dη ∆(1)(η,Z) ≥ M′u
2

[
f (ξ, Z)− f

(
ξ̃(1)

2 , Z
)]

(32)
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where the first inequality in the last line holds because ∆(1)(η,Z) < 0 if η ∈ [ξ̃(1)
2 , ξ̃2]; as s has

its maximum in ξ̃2, (31) implies in particular that s
(
ξ̃2,Z

)
≥ s

(
ξ̃(1)

2 ,Z
)
≥ 1+ Md

2 f
(
ξ̃(1)

2 ,Z
)
,

which when replaced in (32) provides

s(ξ,Z) ≥ 1+
Md
2

f
(
ξ̃(1)

2 ,Z
)
+

M′u
2

[
f (ξ, Z)− f

(
ξ̃(1)

2 , Z
)]

;

the latter inequality and (31) amount to the right inequality in (27 Right), which holds,
together with s(ξ, Z) ≥ 1. The right inequality in (29) follows from (11) and (25). From
2∆(1) ′ = (1+v)/s(1)2−1 ≤ v/s(1)2, it follows for ξ ∈ [0, ξ̃2] that

ν(ξ, Z) ≥ Md

∫ ξ

0
dη

v∆
2s2 (η) ≥ Md

∫ ξ

0
dη

v∆(1)

2s(1)2
(η) ≥ Md

∫ ξ

0
dη
[
∆(1)∆(1) ′](η) = Md

2
[
∆(1)(ξ)

]2,

where again, for brevity, we have not displayed the Z argument. As the rhs has its maximum
in ξ = ξ̃(1)

1 , whereas ν(ξ, Z) can grow in [ξ̃(1)
1 , ξ̃2

]
, we obtain

ν(ξ, Z) ≥


Md
2
[
∆(1)(ξ)

]2
ξ ∈

[
0, ξ̃(1)

1
]

Md
2

[
∆(1)
(
ξ̃(1)

1
)]2

ξ ∈
[
ξ̃(1)

1 , ξ̃2
] (33)

If ξ ∈ [ξ̃2, ξ̃ ′3], then s′, ∆ < 0 in [ξ̃2, ξ], and

∫ ξ

ξ̃2

dη
vs′

2s2 (η) = −
∫ ξ

ξ̃2

dη
Kv
2s2 (η)

∫ Z

Z+∆(η)
dz ñ0(z) ≥ M′u

∫ ξ

ξ̃2

dη
v∆
2
(η) ≥ M′u

∫ ξ

ξ̃2

dη
v∆(1)

2
(η) > M′u

∫ ξ

ξ̃
(1)
2

dη
v∆(1)

2
(η)

where the last inequality holds because ∆(1) < 0 in
[
ξ̃(1)

2 , ξ̃2
]
; by summing this inequality and

ν
(
ξ̃2, Z

)
≥ Md

[
∆(1)
(
ξ̃(1)

1
)]2

/2 we obtain ν
(
ξ, Z

)
≥ Md

[
∆(1)
(
ξ̃(1)

1
)]2

/2+

M′u
∫ ξ

ξ̃
(1)
2

dη v∆(1)(η)/2, which actually holds for all ξ ∈]ξ̃(1)
2 , ξ̃ ′3] by (33) and because the

second term is negative if ξ∈ [ξ̃(1)
2 , ξ̃2]. Summing up, we find ν(ξ, Z) ≥ νd(ξ, Z) in all the

interval [0, ξ̃ ′3]; this, together with (11), implies the left inequality (29).

By (26), inequalities (22) hold for all ξ ∈ [0, ξ̃ ′3] if, rather than by (24), we define
nu, nd by

nu(Z)= max
Z′∈
[

Z+∆d ,Z+∆u
]{ñ0(Z′)}, nd(Z)= min

Z′∈
[

Z+∆d ,Z+∆u
]{ñ0(Z′)}. (34)

As mentioned previously, ∆(1)(ξ, Z) = d(ξ, Z) = f ′(ξ, Z) vanishes at ξ = 0, grows
up to its unique positive maximum at ξ̃(1)

1 , then decreases to negative values; ξ̃(1)
2 is the

unique ξ > ξ̃(1)
1 such that ∆(1)(ξ, Z) = 0. Hence, ξ̃(1)

2 is a lower bound for ξ̃2. Therefore, the
condition

∆(1)(l, Z) ≥ 0 (35)

ensures that ξ̃2(Z) ≥ ξ̃(1)
2 (Z) ≥ l, namely, that the pulse is strictly short. Similarly, s(2)−1

vanishes at ξ = 0, grows up to its unique positive positive maximum at ξ̃(1)
2 , then decreases

to negative values. Hence, a lower bound ξ̃(1)
3 for ξ̃3 is the unique ξ > ξ̃(1)

2 such that
s(2)(ξ, Z) = 1, and the condition

s(2)(l, Z) ≥ 1 (36)
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ensures that ξ̃3(Z) ≥ ξ̃(1)
3 (Z) ≥ l ≡ ξ̃ ′3, namely, that the pulse is essentially short. Moreover,

with this assumption we find by (29) the following upper and lower bounds on the final
Z-electron energy h(Z) after their interaction with the pulse:

Hd(l, Z) ≤ h(Z) ≤ Hu(l, Z). (37)

In Figures 3 and 4, we plot s(·, Z), ∆(·, Z) for two values of Z and the associated
upper and lower bounds corresponding to the densities of Figure 2, which have the same
asymptotic value nb. As can be seen, the bounds agree well. Moreover, a useful lower
bound for ∆(1) is provided by the following lemma.

Lemma 2.

∆(1)(ξ,Z) ≥ ∆(0)(ξ)

[
1− Mu(Z)

2
ξ2 −Mu(Z) ξ ∆(0)(ξ)

]
. (38)

Proof. g ≥ 0 implies 1/(1+g) ≥ 1−g, 1/(1+g)2 ≥ (1−g)2 ≥ 1−2g such that

2∆(1)(ξ,Z) ≥
∫ ξ

0
dη {[1+v(η)][1−2g(η, Z)]− 1} = 2∆(0)(ξ)−

∫ ξ

0
dη 2g(η, Z)[1+v(η)]. (39)

The definitions of g, ∆(0) immediately imply the inequality g(ξ,Z) ≤ Muξ∆(0)(ξ),
whence ∫ ξ

0
dη 2g(η,Z) ≤ Mu

∫ ξ

0
dη η2∆(0)(η) ≤ Mu

∫ ξ

0
dη η2∆(0)(ξ) ≤ Muξ2∆(0)(ξ),∫ ξ

0
dη 2g(η,Z)v(η) ≤ Mu

∫ ξ

0
dη η2∆(0)(η)v(η) ≤ Mu

∫ ξ

0
dη ξ4

[
∆(0)∆(0) ′](η) = 2Muξ[∆(0)(ξ)]2

Replacing the latter in (39), we obtain (38).

As a consequence, if the square bracket at the rhs (38) is nonnegative, then is as well
∆(1)(ξ,Z), and therefore another condition ensuring that ξ̃2 > l (i.e., that the pulse is strictly
short) is

Mu(Z) l2
[

1 + 2
∆u

l

]
≤ 2, (40)

which is more easily computable, although more difficult to satisfy, than (35).
More stringent (though less easily computable) bounds than (27) could be found by re-

placing them in (13) and reiterating the previous arguments. The first step is the new bound
∆(ξ, Z) ≤ ∆(2)(ξ, Z) :=

∫ ξ
0 dη

1+v(η)

2[s(2)(η,Z)]
2 − ξ

2 , the second is setting ∆u := max
ξ∈[0,l]

{∆(2)(ξ)}

instead of ∆u := ∆(0)(l) in (24), etc. However, for the scope of the present work we content
ourselves with these basic relations.
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Figure 3. The initial electron densities (1), (2) of Figure 2 (first line; left and right, respectively).
Below, assuming nb = 2× 1018cm−3, we plot the corresponding s, ∆, their upper and lower bounds
s(1), s(2), ∆(1), ∆(2), and the function Q, vs. ξ during interaction with the pulse in Figure 1 for the same
sample values, Z = l′/20 and Z = l′/2 of Z. The values Q2(Z) :=Q(l,Z) can be read off the plots.
As can be seen, the bounds are much better for density (1); the values Q2(Z) . 1 are consistent with
all worldlines intersecting rather far from the laser-plasma interaction spacetime region. On the other
hand, the large value of Q2(Z) for density (2) is an indication that worldlines intersect within or not
far from the laser–plasma interaction spacetime region. Our computations lead to Q0(l′/20) = 10.64,
Q0(l′/2) = with density (1) and Q0(l′/20) = 88.53, Q0(l′/2) = 32.35 with density (2).
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Figure 4. The initial electron densities (3), (4) of Figure 2 (left and right, respectively) with nb =

2× 1018 cm−3, corresponding plots of s, ∆, their upper and lower bounds s(1), s(2), ∆(1), ∆(2), and the
function Q(ξ, Z), vs. ξ for the same sample values Z = l′/20 and Z = l′/2 of Z. The values
Q2(Z) := Q(l,Z) can be read off the plots. As can be seen, the bounds are much better for density
(4); the values Q2(Z) ≤ 1 are consistent with all worldlines intersecting rather far from the laser-
plasma interaction spacetime region. On the other hand, the large value of Q2(Z) for density (3) is
an indication that worldlines intersect not far from the laser–plasma interaction spacetime region.
Our computations lead to Q0(l′/20) = 4.62, Q0(l′/2) = 3.08 with density (3) and Q0(l′/20) = 0.49,
Q0(l′/2) = 0.85 with density (4).

3. Bounds on the Jacobian for Small ξ > 0

Differentiating (8), we find that the dimensionless variables

ε(ξ, Z) := J(ξ, Z)−1 =
∂s(ξ, Z)

∂Z
, σ(ξ, Z) := l

∂s(ξ, Z)
∂Z

(41)
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fulfill the Cauchy problem

ε′ = −κσ, σ′ = Kl(ň−ñ0 + ň ε),

ε(0, Z) = 0, σ(0, Z) = 0,
(42)

where we have abbreviated κ := 1+v
ls3 ≥ 0. From σ, we can immediately obtain ∂uz/∂Z via

l
∂uz

∂Z
= −1 + v

2s2 σ, (43)

which is dimensionless, as well. To bound ε, σ for small ξ, we introduce the Liapunov function

V := ε2+βσ2, (44)

where β(Z) ∈ R+ is specified below. Clearly, V(0, Z) = 0. Equation (42) implies

V′ = εσ 2(βKlň−κ) + σ 2βKl(ň−ñ0) (45)

and as 2|εσ| ≤ V/
√

β, |σ| ≤
√

V/β, we obtain

V′ ≤ 2A
√

V + 2BV ⇒
(√

V
)′
≤ A + B

√
V,

where we have abbreviated B(ξ, Z) := |βKlň−κ|/2
√

β and introduced some A(Z) such
that A ≥ Kl

√
β max{|ň−ñ0|}. Per the comparison principle [38],

√
V ≤ R, where R(ξ, Z)

is the solution of the Cauchy problem R′ = A+BR, R(0, Z) = 0, which implies

|ε(ξ, Z)| ≤
√

V(ξ, Z) ≤ R(ξ, Z) = A(Z)
∫ ξ

0
dη exp

[∫ ξ

η
dζ B(ζ, Z)

]
(46)

and
√

b|σ| ≤ R. As R(ξ, Z) grows with ξ, if R(l, Z) < 1 then no WBDLPI may involve
the Z-electrons. Choosing β = 1/Mul2, we find for all ξ∈ [0, ξ̃ ′3]

2lB β =

∣∣∣∣1+v
s3 −

ň
nu

∣∣∣∣ ≤ ∣∣∣∣1+v
s3 −1

∣∣∣∣+∣∣∣∣1− ň
nu

∣∣∣∣ ≤ |D|+δ,

where D(ξ, Z) :=
1+v(ξ)

[s(ξ, Z)]3
−1, δ(Z) := 1− nd(Z)

nu(Z)
. (47)

In the NR regime, which is characterized by v� 1, we have s ' 1, κ ' 1/l, ∆u/l � 1,
D ' 0; setting D = 0 leads by a straightforward computation to

R(l, Z) ' Rnr(Z) := f [r(Z)], f (r) := 2
(

er/2 − 1
)

r(Z) := δ(Z)
√

Mu(Z) l.

As f (r) grows with r ≥ 0 and reaches the value 1 for r ' 0.81, we therefore find that the
condition

r(Z) = δ(Z)
√

Mu(Z) l < 0.81 (48)

is sufficient to ensure that the Z-electrons are not involved in WBDLPI. This is automatically
satisfied if

√
Mu(Z) l < 0.81, because by definition δ ≤ 1; otherwise, it is a very mild

condition on the relative variation δ of the initial electron density across an interval of
length ∆u � l and in fact to violate (48) one needs a discontinuous (or a continuous and
very steep) ñ0(Z) with large relative variations around Z; see Section 4.
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We now consider the general case. In the interval [0, ξ̃ ′3], the inequalities s(1) ≥ s ≥
s(2) ≥ 1 imply

|D(ξ, Z)| ≤ D(ξ, Z) := max

{
1+v(ξ)

[s(2)(ξ,Z)]3
− 1 , 1− 1+v(ξ)

[s(1)(ξ,Z)]3

}

≤ ṽ(ξ) := max{v(ξ), 1} (49)

≤ max{vM, 1} =: ṽM,

where vM, ṽM are the maxima of v, ṽ. Hence, we obtain the bounds∫ ξ

η
dζ B(ζ) ≤

√
Mu

2

[
(ξ−η) δ+

∫ ξ

η
dζ D(ζ)

]
≤
√

Mu

2

[
(ξ−η) δ+

∫ ξ

η
dζ ṽ(ζ)

]
≤
√

Mu

2
(ṽM+δ)(ξ−η),

which are replaced in (46) by choosing A =
√

Mu δ, respectively implying

R(ξ, Z) ≤ δ(Z)
√

Mu(Z)
ξ∫

0

dη exp

{√
Mu(Z)

2

[
(ξ−η) δ(Z)+

∫ ξ

η
dζ D(ζ,Z)

]}
=: Q(ξ,Z) (50)

Q(l,Z) ≤ δ(Z)
√

Mu(Z)
l∫

0

dη exp

{√
Mu(Z)

2

[
(l−η) δ(Z)+

∫ l

η
dζ ṽ(ζ)

]}
=: Q1(Z) (51)

≤ 2δ(Z)
ṽM+δ(Z)

{
exp

[
ṽM+δ(Z)

2

√
Mu(Z) l

]
− 1
}

=: Q0(Z) (52)

Here, we have redisplayed the Z-argument; Q2(Z) :=Q(l,Z) is the most difficult to com-
pute, while Q0(Z) is the easiest. We thus arrive at

Theorem 1. Assume that condition (36) is fulfilled. Then, no WBDLPI involves the Z-electrons if
in addition Q0(Z) < 1, or at least Q1(Z) < 1, or at least Q2(Z) < 1. If one of these conditions is
fulfilled for all Z, then WBDLPI occurs nowhere.

Consequently, for any fixed pump there is no WBDLPI if nb is sufficiently small. A
simple sufficient condition is provided by the following corollary.

Corollary 1. For any pulse (5) there is no WBDLPI if Knbl2 < 4
[

log 2/(1+ṽM)]2 and (36) are
fulfilled. In particular, it suffices that Knbl2 < min

{
4
[

log 2/(1+ṽM)]2, 2/(1+2∆u/l)
}

.

Proof. From δ ≤ 1 ≤ ṽM, it followss that δ l
√

Mu ≤ L := ṽM+δ
2 l
√

Mb. Hence, L < log 2
implies eL < 2, whence

Q0 = δ l
√

Mu
eL−1

L
≤ eL−1 < 1,

which, together with (36), implies the first claim. The second follows as well, as (40)
implies (36).

4. Discussion and Conclusions

As we have seen, if inequality (35) is fulfilled, then ξ̃2 > l, i.e., the pulse is strictly short
(that is, it completely overcomes the Z-electrons while their longitudinal displacement
remains nonnegative). If at least inequality (36) is fulfilled, then ξ̃3 > l, andt the pulse
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is essentially short (that is, the pulse completely overcomes the Z-electrons before their
longitudinal displacement reaches its first negative minimum), and the inequalities (27),
(29), (50) and (52) apply. If in addition one of the conditions of Proposition 1 is satisfied,
then WBDLPI can be excluded.

As seen above, the more easily computable (although more difficult to satisfy) con-
dition (40) implies (35) and the inequality Mu(Z) l2 ≤ 2

1+2∆u/l , which after substitution
in (50) and (52) simplifies the computation of their rhs; in particular, (52) becomes

Q0(Z) ≤ 2δ(Z)
ṽM+δ(Z)

(
eC − 1

)
=: Q̃0(Z), C :=

ṽM+δ(Z)√
2[1+2∆u/l]

. (53)

Therefore, (40) and Q̃0(Z) < 1 provide a sufficient condition to exclude WBDLPI
as well.

Note that in the above conditions, several dimensionless numbers characterizing the
input data, viz. ṽM, ∆u/l, G2

b = Mbl2, Mul2, Mdl2, δ, and possibly su, M′ul2, play a key
role in the main inequalities of the present paper. Therefore, their computation represents
the first step in checking whether and where such conditions are fulfilled or violated.

In the NR regime (48) is equivalent to either inequality

nd
p

>
nu

p
−
√

2nu

p
⇔ nu

p
< 1 +

nd
p

+

√
1 + 2

nd
p

, p :=
(0.81)2

2Kl2 . (54)

(In fact, inequality (48) amounts to nu−nd <
√

2p nu, i.e., (54); taking the square one
obtains the equivalent inequality n2

u−2nu(nd+ p)+n2
d < 0, which is fulfilled if n− <

nu < n+, where n± := nd+p±
√
(nd+p)2−n2

d = nd+p±
√

p2+2pnd solve the equation

x2−2x(nd+p)+n2
d = 0 in the unknown x; the left inequality is automatically satisfied

because nu ≥ nd > n2
d/n+ = n−. Dividing the inequality nu < n+ by p, we obtain (54)).

If ñ0 grows in [0, Z̄+∆u], then q(z) := ñ0(z)/p does as well, and for all ∈ [0, Z̄] the
previous conditions become

q(Z) > q
(
Z+∆u

)
−
√

2q
(
Z+∆u

)
⇔ q

(
Z+∆u

)
< 1+q(Z)+

√
1+2q(Z). (55)

This is fulfilled if, e.g., in [0, Z̄+∆u] ñ0 is continuous (without excluding ñ0(0+) > 0), at
least piecewise C1, and 0 ≤ dq(z)

dz ∆u < 1 +
√

1+2q(Z) for all Z ∈ [0, Z̄] and z ∈ [Z, Z+∆u].
Now, we impose that ñ0 is continuous in [−∞, Z̄+∆u] and reaches a given value n̄ > 0

at Z = Z̄ while respecting (55). We compare the minimum Z̄ for a linear and a quadratic
ñ0; note that dq/dZ for the former violates the above bound at Z = 0. We find

ñ0(Z) = n1(Z) := θ(Z)n̄
Z
Z̄

fulfills (55 ) if
Z̄

∆u
>

n̄
2p

=
Kn̄l2

(0.81)2 =:
Z̄1

∆u
(56)

ñ0(Z) = n2(Z) := θ(Z)n̄
Z2

Z̄2 fulfills (55) if
Z̄

∆u
>

√
n̄

2p
+

√
n̄

2p
+

1
4
− 1

2
=:

Z̄2

∆u
(57)

where θ is the Heavisde step function. In fact, if ñ0 = n1, then (55 Right) becomes n̄∆u/pZ̄ <
1+
√

1+2n̄Z/pZ̄ for all Z; the rhs is lowest for Z = 0, whereby the inequality becomes
(56 Right), as claimed. If ñ0 = n2, then (55 Left) becomes the condition

F(Z) :=

√
2p
n̄

Z̄(Z+∆u)−∆2
u−2∆uZ > 0;

this is of first degree in Z, and is hence fulfilled for all Z ∈ [0, Z̄] if it is for Z = 0, Z̄. The
quadratic polynomial F(Z̄) in Z̄ is positive if Z̄ > Z2, as claimed, because Z2 is the positive
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solution of the equation F(z) = 0 in the unknown z, and Z̄ > Z2 automatically makes
F(0) > 0.

If
√

Kn̄ l is considerably larger than 1, then Z̄1 is considerably larger than Z̄2; in
particular, assuming (2) with nb = n̄, i.e., Gb ∼ π, yields Z1 ∼ 15.04∆u, Z2 ∼ 6.78∆u.
Therefore, choosing Z̄ ∈]Z2, Z1[, we can exclude WBDLPI by adopting ñ0(Z) = n2(Z),
but not ñ0(Z) = n1(Z). Such a result is relevant for LWFA experiments, which usually
fulfill (2). From the physical viewpoint, it allows us to exclude WBDLPI because: (i) the
density ñ0(Z) obtained just outside the nozzle of a supersonic gas jet (orthogonal to the~z)
typically is C1(R), with ñ0(0) = 0 = dñ0

dZ (0) (see, e.g., Figure 2 in [39] or Figure 5 in [40]),
and therefore is closer to type n2(Z) than to type n1(Z); and (ii) by causality, the effects of a
pulse with a finite spot radius R near its symmetry axis~z are the same as with a plane wave
(R = ∞), at least for small ξ. From the viewpoint of mathematical modeling, this suggests
that it makes a major difference whether we describe the edge of the plasma by n1 or by
n2; in the first case, we can correctly predict the plasma evolution only by kinetic theory
and PIC codes, while in the second we can do this by a hydrodynamic description and less
computationally demanding multifluid codes.

If we allow a discontinuous (in Z = 0) linear Ansatz ñ0(Z) = θ(Z)n̄[a + (1−a)Z/Z̄]
(0< a≤ 1), then (55) is fulfilled if Z̄ > n̄(1−a)∆u/p[1+

√
1+2an̄/p], which is again smaller

than Z1.
Although our results apply to all ε⊥ with support contained in [0, l], regardless of their

Fourier analysis, in most applications one deals with a modulated monochromatic wave

ε⊥(ξ)= ε(ξ)︸︷︷︸
modulation

[i cos ψ sin(kξ+ϕ1)+j sin ψ sin(kξ+ϕ2)]︸ ︷︷ ︸
carrier wave ε⊥o(ξ)

, (58)

where i = ∇x, j = ∇y. The elliptic polarization in (58) is ruled by ψ, ϕ1, ϕ2; it reduces
to a linear one in the direction of a := i cos ψ + j sin ψ if ϕ1 = ϕ2, to a circular one
if | cos ψ| = | sin ψ| = 1/

√
2 and ϕ1 = ϕ2 ± π/2. If, as follows from (1), Knbλ2 � 1

(λ = 2π/k is the wavelength), i.e., the plasma is underdense, then the relative variations of
∆(ξ, Z) (and ze(ξ, Z)) in a ξ-interval of length ≤ λ are much smaller than those of x⊥e (ξ),
and those of s(ξ) even smaller; in fact, as s>0, v≥0, the integral in (13 Left) averages the
fast variations of v to yield much smaller relative variations of ∆, and the first integral in
(13 Right) averages the residual small variations of Ñ[ze(ξ)] to yield an essentially smooth
s(ξ) (see, e.g., Figure 1). On the contrary, α⊥(ξ), x⊥e (ξ) varies fast, as ε⊥(ξ). Under rather
general assumptions (see Appendix 5.2) [31],

α⊥(ξ) = − ε(ξ)

k
ε⊥p(ξ) + O

(
1
k2

)
' − ε(ξ)

k
ε⊥p(ξ), (59)

where ε⊥p(ξ) :=ε⊥o (ξ + λ/4), and similarly for other integrals with modulated integrands.
In the appendix, we recall upper bounds for the remainders O(1/k2). If |ε′|� |kε| (slow
modulations); the right estimate is very good, and v can be approximated very well by
v ' ε⊥p

2(eε/kmc2)2. For the reasons mentioned above, replacing v by its (approximated)
average over a cycle,

va(ξ) :=
1
2

(
e ε(ξ)

kmc2

)2

, (60)

has only a small effect on ∆ and almost no effect on s, V, and similarly on the functions
∆(0), s(1), ... introduced in Sections 2 and 3 to bound ∆, s, V; however, it simplifies their
computation a great deal. As a consequence, the bounds (27), (29) and (37), as well as the
short pulse conditions (35) and (36) and the no-WB conditions of proposition 1, remain
essentially valid if in computing the bounds we replace v with va.
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We illustrate the results obtained thus far considering a pulse (58) with a linear
polarization (e.g., ψ = 0) and a modulation of Gaussian type, except that it is cut off outside
of support 0 ≤ ξ ≤ l:

e
kmc2 ε(ξ) = a0 exp

[
− (ξ−l/2)2

l′2
2 log 2

]
θ(ξ) θ(l − ξ); (61)

where l′ is the full width at half maximum of the intensity I of the electromagnetic (EM)
field. More precisely, we adopt the pulse plotted in Figure 1a, which has its maximum
at ξ = l/2 and a0 = 1.3; this yields a moderately relativistic electron dynamics and
∆u ≡ ∆(0)(l) ' 0.45l′. In Figure 1b, we plot the associated v and va. We performed all
computations and plots running our specifically designed programs using an “off the shelf”
general-purpose numerical package on a common notebook for an elapsed time bewteen
several seconds and several minutes. Here, we compare the impact of such a pulse on the
density profiles plotted in Figure 2.

The upper bound nb plays the role of asymptotic value. Here, we choose
nb = 2× 1018 cm−3, which is the same as the n0 of Figure 1, which yields Knbl′2 ' 4;
however, the results for the dimensionless variables remain the same if we change nb, λ, l′

while keeping λ/l′ and Knbl′2 constant. As already stated, in the case of the step-shaped
density 0), if ξ̃2 > l, i.e., if the pulse is strictly short (a sufficient condition for which is (35)),
then nu = nd = nb, δ = 0, and by (50) and (52) there is no WBDLPI; more directly, this is a
consequence of J(ξ, Z) ≡ 1 for 0 ≤ ξ ≤ l, which follows from the Z-independence of ∆ in
such an interval. As for the other profiles, we have respectively plotted the following:

• In Figures 5 and 6, the solutions J, σ of Equation (42) and, by (43), the associated
function l′∂uz/∂Z for 0 ≤ ξ ≤ 6l′ and a few values of Z, assuming the initial electron
density profiles (1), (2) and (3), and (4), respectively.

• In Figures 3 and 4, the solutions s, ∆ of (8) and (9), their upper and lower bounds
s(1), s(2), ∆(1), ∆(2) (Equation (28)), and the function Q of Equation (50) for 0 ≤ ξ ≤ 6l′ and
a few values of Z, assuming the initial electron density profiles (1)–(4), respectively.

• In Figures 7 and 8, the corresponding worldlines of the Z-electrons for 0 ≤ ct ≤ 20l′

and Z = n l′/20, n = 0, 1, ..., 200 associated with the initial electron density profiles
(3) and (4). The support of the EM pulse is coloured pink (the red part is the more
intense part); the laser–plasma interaction takes place in the spacetime region which
has nonempty intersection with worldlines of electrons or protons.

We compare the results for densities (1)–(2) and those for densities (3)–(4) side by side.
In case (1), WBDLPI is avoided assuming that ñ0(0) > 0, although worldlines intersect
and WB takes place not far from the laser–plasma interaction region. In case (2), WBDLPI
takes place for Z ' 0 due to the steep growth of ñ0(Z) = Z/l′nb from the value ñ0(0) = 0.
In case (3), although the growth ñ0(Z) ∝ Z is much less steep, again worldlines intersect
and WB takes place not very far from the laser–plasma interaction region. Finally, in
case (4) this occurs quite far from the latter, consistently with the results |J − 1| � 1,
Q2 < 1. Thus, we note that although such dynamics are moderately relativistic rather
than nonrelativistic, switching from profile (1) to profile (2) or from profile (3) to profile (4)
has the same qualitative effect of avoiding (or distancing from) WBDLPI. We additionally
note that in cases (1) and (3) the Z ' 0 worldlines first intersect with very small angles, or
equivalently that when the corresponding electrons collide their longitudinal momenta
differ by only a very small amount. By Formula (43), l∂uz/∂Z is very small both because σ
is as well and because v ' 0 and s > 1. Hence, we can expect that these collisions will lead
only to very small momentum spreading.

Essentially the same results are reached when choosing a different pulse polarization,
because va is of the same type. In the case of circular polarization (ϕ1−ϕ2 = ±π/2,
cos ψ = ± sin ψ) and Gaussian modulation v, it will itself essentially coincide with va, thus
displaying a single maximum (see Figure 1b).
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As mentioned in the introduction, the equations of motion for the Z-electrons can
be reduced to the form (8), and thus are decoupled from those of all Z′-electrons, Z′ 6= Z,
only in the idealization where the laser pulse is "undepleted", i.e., not affected by its
interaction with the plasma. The latter is expected to be an acceptable approximation
only for small t, z > 0. Actually, for a slowly modulated monochromatic wave we can
show by self-consistency [28] that this is a good approximation in the spacetime region
that is the intersection of the ‘laser–plasma interaction’ stripe 0 ≤ ct− z ≤ l with the
orthogonal stripe

0 ≤ e2nbλ

2mc2 (ct + z) � 1. (62)

In view of the inequalities λ � l and (1) or (16), we can see that, to our satisfaction,
this region is much longer than l in the ct+z direction. Thus, if nb = 2× 1018cm−3 and the
pulse is as in Figure 1, we can consider the latter as undepleted and the electrons’ motion
determined above as accurate for time intervals [0, td], where td is at least a few 10−13s.

Figure 5. The initial electron densities (3), (4) of Figure 2 (left and right, respectively) with
nb = 2× 1018 cm−3, and below, the corresponding plots of J, σ, l′∂uz/∂z during interaction with the
pulse in Figure 1 for a few sample values of Z. As can be seen, J remains positive at least for all
ξ ∈ [0, 2l] if the density is of type (4) (which grows as Z2 for Z ∼ 0), whereas it becomes negative for
ξ ∼ 6.5l′ and small Z if the density is of type (3) (which grows as Z for Z ∼ 0). Correspondingly, the
right-hand worldlines do not intersect, while the left-hand ones do (see the down ze-graphs).
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Figure 6. The initial electron densities (1), (2) of Figure 2 (first line; respectively left, right), and below,
the corresponding plots of J, σ, l′∂uz/∂z vs. ξ during interaction with the pulse in Figure 1 for a few
sample values of Z. As can be seen, the right J remains positive for ξ < l and all Z, while the left J
becomes negative for very small Z and ξ . l; correspondingly, the right worldlines do not intersect,
while the right ones do (see the down ze-graphs).

The above predictions are based on idealizing the initial laser pulse as a plane EM
wave (5). In a more realistic picture, the t = 0 laser pulse is cylindrically symmetric
around the ~z-axis and has a finite spot radius R, namely, the t = 0 EM fields are of the
form E = ε⊥(−z) χ(ρ), B = k×E, where ρ2 = x2+y2, while χ(ρ) ≥ 0 is 1 for ρ ≤ 1 and
rapidly approaches zero for ρ > R. By causality, the motion of the electrons remains [25]
strictly the same in the future Cauchy development D+(D) of D = D1 ∪ D2, where
D1 := {(ct, x) = (0, 0, 0, z > 0} and D2 := {(0, x) | ρ ≤ R}, and almost the same in a
neighbourhood of D+(D); therefore, the conditions described above remain sufficient to
exclude WBDLPI at least in such a region. (Recall that the future Cauchy development D+(D)
of a region D in Minkowski spacetime M4 is defined as the set of all points x ∈ M4 for
which every past-directed causal, i.e., non-spacelike, line through x intersects D.)

Finally, the conditions of Proposition 1 are very general in that they apply to discontin-
uous ñ0 or non-monotone ñ0; however, if ñ0 has a bounded derivative, it turns out that they
are unnecessarily too strong for ensuring that no WBDLPI occurs. Weaker no-WBDLPI
conditions under the latter assumptions are treated in [28].
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Figure 7. Down: the initial electron density (3) of Figure 2. Up: The worldlines of Z-electrons
interacting with the pulse in Figure 1 for 200 equidistant values of Z; the support 0 ≤ ct−z ≤ l and
the ’effective support’ (l−l′)/2 ≤ ct−z ≤ (l+l′)/2 of the pulse are pink and red;, respectively, while
the spacetime region of the pure-ion layer is yellow. Horizontal arrows pinpoint where particular
subsets of worldlines first intersect.
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Figure 8. Down: The initial electron density (4) of Figure 2. Up: The worldlines of Z-electrons
interacting with the pulse in Figure 1 for 200 equidistant values of Z; the support 0 ≤ ct−z ≤ l and
the ’effective support’ (l−l′)/2 ≤ ct−z ≤ (l+l′)/2 of the pulse are pink and red, respectively, while
the spacetime region of the pure-ion layer is yellow. Horizontal arrows pinpoint where particular
subsets of worldlines first intersect; as can be seen, small Z worldlines first intersect quite farther
from the laser–plasma interaction spacetime region (shown in pink) than in the linear homogenous
case (3).
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Appendix A

Appendix A.1. Proof of Proposition 1

We abbreviate Ω :=
√

Knb, ζ := l − η. Equation (17) yields

2∆(l) =
∫ l/2

0
dη v(η) cos[Ω(l−η)] +

∫ l

l/2
dη v(l−η) cos[Ω(l−η)]

=
∫ l/2

0
dη v(η) cos[Ω(l−η)]−

∫ 0

l/2
dζ v(ζ) cos(Ωζ)

=
∫ l/2

0
dη v(η) cos[Ω(l−η)] +

∫ l/2

0
dη v(η) cos(Ωη)

= [1+cos(Ωl)]
∫ l/2

0
dη v(η) cos(Ωη) + sin(Ωl)

∫ l/2

0
dη v(η) sin(Ωη) (A1)

2δ(l) =
∫ l/2

0
dη v(η) sin[Ω(l−η)] +

∫ l

l/2
dη v(l−η) sin[Ω(l−η)]

=
∫ l/2

0
dη v(η) sin[Ω(l−η)]−

∫ 0

l/2
dζ v(ζ) sin(Ωζ)

= [1−cos(Ωl)]
∫ l/2

0
dη v(η) sin(Ωη) + sin(Ωl)

∫ l/2

0
dη v(η) cos(Ωη) (A2)

If Ωl ≤ π, both integrands in (A1) are nonnegative, as are the factors of both integrals,
and moreover the latter and ∆(l) itself are positive if Ωl < π and zero if Ωl = π. In
either case, ∆(ξ) > 0 for all ξ ∈]0, l[, because ∆′(l) = v(l) − δ(l) < 0 (as v(l) ' 0,
δ(l) > 0). Moreover, if ε := Ωl−π > 0 is sufficiently small, then both integrals and
1+cos(Ωl) = 1−cos ε ' ε2/2 are positive, whereas sin(Ωl) = − sin ε ' −ε; the second
negative term will dominate and make (A1) negative as well. Therefore, (17 Left) will be
satisfied iff Ωl ≤ π, i.e., if Gb ≤ 1/2.

Similarly, if Ωl = 2π, the factors of both integrals in (A2) vanish, and δl = 0. If
ε := Ωl−2π 6= 0 is sufficiently small, then 1−cos(Ωl) = 1−cos ε ' ε2/2, whereas
sin(Ωl) = sin ε ' ε, and the second term dominates over the first. Under our assumptions,
the second integral will be negative, because v(η) is larger where cos(Ωη) < 0. Hence, (A2)
will be negative if ε > 0 (and is sufficiently small); if ε < 0 (and is sufficiently small), then
(A2) will be positive, and δ(ξ) > 0 for 0 < ξ < l, because δ′(l) = M∆(l) < 0 (as in this case
∆(l) < 0. Therefore, (17 Right) will be satisfied iff Ωl ≤ 2π, i.e., if Gb ≤ 1.
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Appendix A.2. Estimates of Oscillatory Integrals

Here, we recall useful estimates [31] of oscillatory integrals such as (6 Left) in case (58).
Given a function f ∈ C2(R), integrating by parts we find that for all n ∈ N∫ ξ

−∞
dζ f (ζ)eikζ = − i

k
f (ξ)eikξ + R f

1(ξ), (A3)

R f
1(ξ) :=

i
k

∫ ξ

−∞
dζ f ′(ζ) eikζ =

(
i
k

)2[
− f ′(ξ) eikξ +

∫ ξ

−∞
dζ f ′′(ζ) eikζ

]
. (A4)

Hence, we find the following upper bounds for the remainder R f
1 :∣∣∣R f

1(ξ)
∣∣∣ ≤ 1
|k|2

[
| f ′(ξ)|+

∫ ξ

−∞
dζ | f ′′(ζ)|

]
≤ ‖ f ′‖∞ + ‖ f ′′‖1

|k|2 , (A5)

It follows that R f
1 =O(1/k2). All inequalities in (A5) are useful; the left inequalities

are more stringent, while the right ones are ξ-independent.
Equations (A3) and (A5) and R f

1 = O(1/k2) hold if f ∈ W2,1(R) (a Sobolev space),
and in particular if f ∈ C2(R) and f , f ′, f ′′ ∈ L1(R), because the previous steps can be
performed under such assumptions. Equations (A3) will hold with a remainder R f

1 =
O(1/k2) under weaker assumptions, e.g., if f ′ is bounded and piecewise continuous and
f , f ′, f ′′ ∈ L1(R), although R f

1 will be a sum of contributions such as (A4) for every interval
in which f ′ is continuous.

Letting ξ→∞ in (A3), (A5) we find for the Fourier transform f̃ (k) =
∫ ∞

−∞
dζ f (ζ)e−iky

of f (ξ)

| f̃ (k)| ≤ ‖ f ′‖∞ + ‖ f ′′‖1

|k|2 , (A6)

hence, f̃ (k) = O(1/k2) as well. Actually, if f ∈ S(R), then f̃ (k) decays much faster,
as |k| → ∞, because f̃ ∈ S(R) as well. For instance, if f (ξ) = exp[−ξ2/2σ], then
f̃ (k) =

√
πσ exp[−k2σ/2].

To prove approximation (59), now we just need to choose f = ε and note that every
component of α⊥ will be a combination of (A3) and (A3)k 7→−k.
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