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Abstract: In order to consider both the refining efficiency of the ladle furnace (LF) and the quality
of molten steel, the water model experiment is carried out. In this study, the single factor analysis,
central composite design principle, response surface methodology, visual analysis of response surface,
and multiobjective optimization are used to obtain the optimal arrangement scheme of argon blowing
of LF, design the experimental scheme, establish the prediction models of mixing time (MT) and slag
eye area (SEA), analyze the comprehensive effects of different factors on MT and SEA, and obtain
the optimal process parameters, respectively. The results show that when the identical porous plug
radial position is 0.6R and the separation angle is 135◦, the mixing behavior is the best. Moreover, the
optimized parameter combination is obtained based on the response surface model to simultaneously
meet the requirements of short MT and small SEA in the LF refining process. Meanwhile, compared
with the predicted values, the errors of MT and SEA for different conditions from the experimental
values are 1.3% and 2.1%, 1.3% and 4.2%, 2.5% and 3.4%, respectively, which is beneficial to realizing
the modeling of argon bottom blowing in the LF refining process and reducing the interference of
human factors.

Keywords: ladle furnace; argon bottom blowing; hydraulic experiment; mixing time; slag eye area;
multiobjective collaborative optimization; response surface methodology

MSC: 62J05

1. Introduction

Ladle furnace (LF) refining has been widely used in steelmaking plants thanks to
its multiple advantages [1,2]. As one of the main functions of LF refining, argon bottom
blowing of LF has an important influence on the refining efficiency and quality of molten
steel. In the LF refining process, unreasonable arrangement of argon bottom blowing and
operation processes will lead to low refining efficiency and even cause serious secondary
oxidation of molten steel, which affects the quality of molten steel. Therefore, many
researchers carried out a lot of studies by physical simulation and numerical simulation
to analyze the effects of gas flow rate [3], liquid depth [4], slag thickness [5], porous plug
radial position and separation angle [6,7], and tracer addition position [8] on the mixing
time (MT).

Mandal et al. [9] studied the influences of gas flow rate, liquid depth and ladle radius
on MT, and obtained the calculation formula of MT based on the experimental data. Zhu
et al. [10] proposed a mathematical model for mixing time in the ladle considering the
number of tuyeres, and the predicted values are in good agreement with the experimental
values. Morales et al. [11] studied the influence of slag thickness on the fluid dynamics
of argon bottom blowing of LF by physical simulation and numerical simulation and
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concluded that increasing the slag thickness could increase the MT and reduce slag eye
area (SEA). Herrera-Ortega et al. [8] studied the influence of the additional position of
tracer on MT through physical and numerical simulation, and the results showed that
MT changed with the change of the additional position of tracer, which was related to
the turbulent viscosity to some extent. Meanwhile, the effects of gas flow rate [12], liquid
depth [13], slag thickness [14] and physical properties of slag [15] on SEA were studied.
Conejo et al. [16] studied the effects of gas flow rate, porous plug radial position and
separation angle on the MT, SEA and wall shear stress, and the results showed that it was
beneficial to improve the mixing effect of the ladle when the identical porous plug radial
position was 0.7R, the separation angle was 45◦ and the gas flow rate was equal; compared
with the identical porous plug radial position, when the porous plug radial position was
different (0.7R/0.5R), the separation angle was 90◦, and the gas flow rate was not equal (1:3),
it was beneficial to reduce the SEA and the shear stress between molten steel and the ladle
wall. Subsequently, the existing experimental data of ladle SEA were re-evaluated based
on dimensional analysis, and the dimensionless calculation formulae of SEA for single
and double porous plugs were established [17]. Krishnapisharody et al. [18] developed a
mechanistic model for eye size, and this model is consistent with the experimental results
and those of others in different liquid systems. Peranandhanthan et al. [13] studied the
effects of gas flow rate, liquid depth, slag thickness and physical properties of slag on the
SEA through physical simulation and established the dimensionless calculation formulae
for SEA. In addition, the results showed that the viscosity and density of slag had a decisive
effect on the SEA, while the interfacial tension had no effect on the SEA. However, the
research of Li et al. [15] showed that both the viscosity and the interfacial tension had little
effect on the SEA.

Reasonable argon bottom blowing of LF can not only reduce MT and enhance refining
efficiency but also play an important role in improving the quality of molten steel. Many
researchers have carried out a large number of studies on the effects of different factors
on MT and SEA, which provides great support for the development of high-efficiency LF
refining. However, current studies mostly use the single-factor analysis method to research
a single objective (MT or SEA), and there are, so far, few reports on the optimization
of multiple objectives for multiple factors. In the LF refining process, the MT can be
reduced by increasing the gas flow rate. However, a large gas flow rate will lead to
large SEA and secondary oxidation of molten steel. Therefore, the effects of different
factors on MT and SEA should be considered comprehensively in the optimization of
argon bottom blowing of LF. In terms of multiobjective optimization, Leung et al. [19]
proposed a collaborative neurodynamic approach for multiobjective optimization based on
the particle swarm optimization algorithm and projection neural network to attain both
goals of Pareto optimality and solution diversity. Wang et al. [20] presented an interactive
multiobjective optimization-based manufacturing planning system to help the decision
maker reach a satisfactory tradeoff between the two objectives without causing a severe
computational burden. Nole et al. [21] used an interactive method based on a multiobjective
integer linear programming weighted sum scalarization to examine how classroom design
affects cognitive processes. Response surface methodology (RSM) is a statistical analysis
method of multiobjective collaborative optimization combining experimental design and
mathematical modeling. This method has been applied in different fields for its short
experimental period and high reliability of the regression equation [22–25]; however, there
are few reports on the optimization of argon bottom blowing of LF using RSM.

In this study, according to the similarity principle, the 150 t LF was taken as the
research object and the hydraulic experiment was carried out. Firstly, the influences of
different identical porous plug radial position and separation angle on MT were studied to
obtain the optimal arrangement scheme of argon bottom blowing of LF. Then, the effects
of gas flow rate, liquid depth and slag thickness on MT and SEA were studied by single
factor analysis. Moreover, the comprehensive effects of gas flow rate, liquid depth and slag
thickness on MT and SEA were studied using RSM. Meanwhile, the prediction models for
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MT and SEA were established and evaluated. Finally, in order to meet the requirements
of short MT and small SEA, the response surface models were used to obtain the optimal
parameters and the model results were verified by a hydraulic experiment.

2. Experimental Principles and Methods

In this study, the hydraulic experiment of MT determination and slag eye formation
were carried out based on the similarity theory (including geometric similarity, dynamic
similarity and steel-slag interface similarity).

2.1. Experimental Principles
2.1.1. Geometric Similarity

The hydraulic experiment takes 150-t ladle as the prototype. The scale factor is 1:4,
and the dimensions of the prototype and model are shown in Table 1. In the process of
the hydraulic experiment, water was used to simulate molten steel and air was used to
simulate argon. The physical properties of various substances are shown in Table 2.

Table 1. Dimensions of prototype and model.

Parameters/mm Prototype Model

Top diameter 3000 750
Basal diameter 2651 663
Ladle height 3915 979

Porous plug diameter 120 30

Table 2. Physical properties of various substances [26].

Physical Properties Water (Normal
Temperature) Steel (1600 ◦C) Slag (1600 ◦C) Air (Normal

Temperature)
Argon (Normal
Temperature)

Density (kg/m3) 1000 7000 3500 1.205 1.784
Dynamic viscosity (Pa·s) 0.001 6.7 × 10−3 0.13–0.20 - -

Kinematic viscosity/(10−6

m2·s−1)
1.0 0.95 37–57 - -

2.1.2. Dynamic Similarity

In a gas-liquid two-phase flow system, it is necessary to make the modified Froude
number of prototype and model equal to meet the conditions of dynamic similarity [27–30].
The gas flow rate of model can be calculated using the modified Froude number, as shown
in Equation (1).

Qm =

[
ρg,p

ρg,m

ρl,m

ρl,p

(
dm

dp

)4(Hm

Hp

)]1/2

Qp = 0.01437Qp (1)

where ρg and ρl represent the density of gas and liquid, respectively; H represents the
liquid depth; Q represents the gas flow rate; D represents the porous plug diameter; p
represents the prototype; m represents the model.

Combined with the actual production and Equation (1), the gas flow rate of the model
was obtained, as shown in Table 3.

Table 3. Gas flow rate of prototype and model.

Type Gas Gas Flow Rate of Each Porous Plug (NL·min−1)

Prototype Argon 100 200 300 400 500
Model Air 1.4 2.9 4.3 5.7 7.2

Note: There are two porous plugs for prototype and model, and these porous plugs have the same gas flow rate.
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2.1.3. Steel-Slag Interface Similarity

For the hydraulic experiment containing slag, it is necessary to ensure that the steel-
slag interface is similar. Therefore, on the basis of satisfying the geometric similarity and
the equality of the modified Froude number, it is necessary to make the Weber number of
prototype and model equal.

Based on the equality of Froude number, Equation (2) can be obtained.

u2
water

u2
steel

=
ρAr · ρwater · Hm

ρAir · ρsteel · Hp
=

ρAr · ρwater

ρAir · ρsteel
· λ (2)

Based on the equality of Weber number, Equation (3) can be obtained.

ρoil = ρwater −
u4

waterρ2
waterσ2

steel-slag(ρsteel − ρslag)

u4
steelρ

2
steelσ

2
water-oil

(3)

The density of oil obtained when combining Equations (2) and (3), as expressed in
Equation (4).

ρoil = ρwater −
ρ2

Arρ4
waterσ2

steel-slag

ρ2
Airρ4

steelσ
2
water-oil

λ2(ρsteel − ρslag) = 846.473 ≈ 846 kg ·m−3 (4)

where uwater and usteel represent the characteristic velocities of water and molten steel,
respectively; ρwater and ρsteel represent the density of water and molten steel, respectively;
σwater-oil and σsteel-slag represent interfacial tension of water-oil and steel-slag, respectively.
The σwater-oil [31] and σsteel-slag [31] are 0.044 N·m−1 and 1.22 N·m−1, respectively.

The viscosity of slag has a great influence on SEA. In order to obtain more accurate
experimental results, the kinematic viscosity of oil used to simulate slag should meet
Equation (5) [32].

νsteel
νslag

=
νwater

νoil
(5)

where vsteel represents the kinematic viscosity of molten steel; vslag represents the kinematic
viscosity of slag; vwater represents the kinematic viscosity of water; voil represents the
kinematic viscosity of oil.

According to Table 2 and Equation (5), the range of kinematic viscosity of oil should
be 39–60 × 10−6 m2·s−1. Under normal temperature, the dynamic viscosity, density and
kinematic viscosity of abrasion-resistant hydraulic oil are 50 × 10−3 Pa·s, 870 kg·m−3 and
57 × 10−6 m2·s−1, respectively, which are basically consistent with the calculated density
and kinematic viscosity of experimental oil. Therefore, the abrasion-resistant hydraulic oil
was used to simulate slag.

2.2. Experimental Method

The equipment connection diagram of hydraulic experiment is shown in Figure 1.
For the experimental determination of MT, firstly, the model was filled with the amount
of water specified in the experimental scheme, and the gas flow rate was adjusted to the
experimental flow rate. Then, a funnel was fixed on the top of the model and the position
was consistent with the actual production. After blowing air for 3 min, the flow field in
ladle was basically stable. The saturated KCl solution as tracer was added into the model
through the funnel. Finally, the electrical conductivity data were collected by conductivity
electrode, conductivity meter and DJ800 multi-function monitoring system and the data
were transferred to computer to obtain the residence time distribution (RTD) curves. The
MT was determined according to the changes in the relative electrical conductivities of
electrodes are less than 5% of the steady state. The experiment was repeated 3 times for
each experimental condition and the average value was taken as the MT.
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Figure 1. Equipment connection diagram. 1—model; 2—conductivity electrode; 3—porous plug;
4—tube; 5—gas flowmeter; 6—air compressor; 7—conductivity meter; 8—multifunction monitoring
system (DJ800); 9—computer; 10—camera.

For hydraulic experiment of slag eye formation, according to the similarity ratio of
1:4, the oil thickness was calculated by combining the actual production. The process
of the hydraulic experiment of slag eye formation was the same as that of the hydraulic
experiment without slag. The specified amount of water and oil were added to the model
and the gas flow rate was set as the experimental flow rate. After the flow field in the
ladle was basically stable, the MT and SEA were measured under different gas flow rates,
different liquid depths and different slag thicknesses. For the measurement of SEA, firstly,
the slag surface was photographed vertically by a camera, as shown in Figure 2a. Secondly,
the pixels of the slag eye and the slag surface were calculated using the image processing
software (Photoshop), as shown in Figure 2b,c. Then, the percentage of slag eye on slag
surface was calculated according to the statistics results of pixel. Finally, the SEA was
calculated according to the slag surface area.

Figure 2. Diagram of slag surface of ladle (Top view). (a) Initial diagram; (b) pixel statistics of slag
eye; (c) pixel statistics of slag surface.

3. Experimental Schemes

The single factor analysis was used to design the experimental scheme to obtain the
optimal arrangement scheme of argon blowing for LF. Subsequently, based on the optimal
arrangement scheme, the experimental scheme was designed to analyze the effects of
different factors on MT and SEA. Moreover, based on the central composite design (CCD)
principle, an experimental scheme was designed to establish the prediction models of MT
and SEA and analyze the comprehensive effects of different factors on MT and SEA.

3.1. Single Factor Analysis Experiment Scheme of Argon Bottom Blowing of LF

The optimal arrangement of argon bottom blowing of LF was evaluated by MT. The
porous plug radial positions were 0.43R, 0.6R and 0.7R, and the separation angles were 90◦,
135◦ and 180◦. The porous plug radial position and separation angle of the prototype were
0.43R and 90◦, respectively. The experimental scheme of MT measurement is shown in
Table 4. Subsequently, based on the optimal arrangement scheme of argon bottom blowing
of LF, the effects of gas flow rate, liquid depth and slag thickness on MT and SEA were
analyzed and the experimental scheme is shown in Table 5.
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Table 4. Experiment scheme of optimal arrangement of porous plugs.

Number 1 2 3 4 5 6 7 8 9

Separation angle 90◦ 90◦ 90◦ 135◦ 135◦ 135◦ 180◦ 180◦ 180◦

Porous plug radial location 0.43R 0.6R 0.7R 0.43R 0.6R 0.7R 0.43R 0.6R 0.7R

Table 5. Experiment scheme of single factor analysis.

Number 1 2 3 4 5

Gas flow
rate/(NL·min−1) 1.4 2.9 4.3 5.7 7.2

Liquid depth 760.5 mm; Slag thickness 32.5 mm

Number 6 7 8 9 10

Liquid depth/mm 653 707 760.5 814 866
Gas flow rate 4.3 NL·min−1; Slag thickness 32.5 mm

Number 11 12 13 14 15

Slag
thickness/mm 20 26.3 32.5 38.8 45

Gas flow rate 4.3 NL·min−1; Liquid depth 760.5 mm

3.2. Experimental Scheme and Results of Argon Bottom Blowing of LF Based on RSM

The CCD of the response surface method can be used to analyze the effects of single-
factor and multi-factor interactions on the research object [33,34]. Based on the single
factor analysis and the CCD principle, an experimental scheme with 3 factors and 5 levels
was designed using Minitab software to analyze the effects of gas flow rate, liquid depth
and slag thickness on the MT and SEA. The experimental factors and levels are shown
in Table 6. The levels of three factors were set based on the actual production and the
similarity principle. In the LF refining process, the range of gas flow rate of a single porous
plug was 100–500 NL·min−1. The range of liquid depth was 2611–3463 mm according to
the minimum and maximum treatment capacity of molten steel. The value of slag thickness
ranged from 80 to 180 mm. According to a similar principle, the ranges of the gas flow
rate, liquid depth and slag thickness were 1.4–7.2 NL·min−1, 653–866 mm and 20–45 mm,
respectively, in the hydraulic experiment. The experimental scheme is shown in Table 7. It
includes 20 experiments and all combinations of the three factors.

Table 6. Experimental factors and levels of CCD experimental design.

Parameters Coding Level

−1.68179 −1 0 1 1.68179

Gas flow rate/(NL·min−1) A 1.9 2.9 4.3 5.7 6.7
Liquid depth/mm B 670.5 707 760.5 814 850.5

Slag depth/mm C 21.6 26 32.5 39 43.4
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Table 7. Experimental design and results.

Number Gas Flow Rate/(NL·min−1) Liquid Depth/mm Slag Depth/mm MT/s SEA/mm2

1 2.9 707 26 76 54,767
2 5.7 707 26 65 95,459
3 2.9 814 26 79 56,154
4 5.7 814 26 68 110,356
5 2.9 707 39 83 36,926
6 5.7 707 39 74 66,479
7 2.9 814 39 85 36,724
8 5.7 814 39 79 77,598
9 1.9 760.5 32.5 92 25,141
10 6.7 760.5 32.5 74 96,792
11 4.3 670.5 32.5 69 58,130
12 4.3 850.5 32.5 80 91,154
13 4.3 760.5 21.6 66 96,683
14 4.3 760.5 43.4 79 51,141
15 4.3 760.5 32.5 73 72,446
16 4.3 760.5 32.5 72 73,248
17 4.3 760.5 32.5 75 75,002
18 4.3 760.5 32.5 73 72,529
19 4.3 760.5 32.5 71 75,149
20 4.3 760.5 32.5 69 63,140

4. Results and Discussion

Firstly, the optimal arrangement scheme of argon bottom blowing of LF was obtained
by comparing the MT under different radial positions and the separation angle of porous
plugs. Then, based on the optimal arrangement scheme, the effects of different factors
on MT and SEA were analyzed. Moreover, the prediction models of MT and SEA were
established based on the RSM, and the comprehensive effects of different factors on MT
and SEA were analyzed based on the visual analysis of the response surface. Finally, on the
basis of multiobjective optimization, the optimal process parameters of argon blowing for
LF were determined and verified by hydraulic experiment.

4.1. Experimental Results of Single Factor Analysis
4.1.1. Effect of Porous Plug Radial Position on MT

Figure 3 shows the effects of gas flow rate, separation angle and radial position of
porous plugs on MT. In Figure 3a, when the separation angle is 90◦ and the porous plug
radial positions are 0.43R and 0.7R, respectively, the MT first decreases and then increases
slightly with the increase in gas flow rate. For instance, under the conditions of a porous
plug radial position of 0.43R and a separation angle of 90◦, when the gas flow rate increases
from 1.4 NL·min−1 to 5.7 NL·min−1, the MT decreases from 102 s to 64 s and the MT
decreases by 38 s; when the gas flow rate increases continuously to 7.2 NL·min−1, the
MT increases from 64 s to 67 s and the MT increases by 3 s. At a fixed porous plug radial
position of 0.6R, the MT decreases with increasing the gas flow rate. When the range of
the gas flow rate is 2.9–5.7 NL·min−1, the order of the MT of different porous plug radial
positions, from long to short, is as follows: 0.43R, 0.6R, 0.7R.

Figure 3. Effect of gas flow rate on MT at various radial angle: (a) 90◦; (b) 135◦; (c) 180◦.



Mathematics 2022, 10, 2610 8 of 16

In Figure 3b, at a fixed separation angle of 135◦, the MT first decreases and then
increases with the increase in gas flow rate in different porous plug radial positions, and
the MT reaches its minimum when the gas flow rate is 5.7 NL·min−1. When the range of
the gas flow rate is 1.4–4.3 NL·min−1, the order of the MT of different porous plug radial
positions, from long to short, is as follows: 0.43R, 0.6R, 0.7R; when the gas flow rate is
further increased to 5.7 NL·min−1, the order of the MT of different porous plug radial
positions, from long to short, is as follows: 0.43R, 0.7R, 0.6R.

In Figure 3c, at a fixed separation angle of 180◦, the MT first decreases and then
increases with the increase in gas flow rate in different porous plug radial positions. The
analysis reason is that the main function of the bubble is to promote the flow of molten
steel and then form a circulating flow. The gas flow rate increases, and the stirring energy
increases, which reduces the MT. However, when the gas flow rate is increased to exceed
some critical value, part of the gas directly spills out from the liquid surface and part of
the energy is applied to roll the surface of the liquid, which causes a loss of stirring energy.
Additionally, the MT is not shortened significantly and even results in a time extension [31].
When the range of the gas flow rate is 2.9–7.2 NL·min−1, the order of the MT of different
porous plug radial positions, from long to short, is as follows: 0.43R, 0.6R, 0.7R. To sum
up, the MT decreases with the increase in porous plug radial position. The analysis reason
is that with the increase in porous plug radial position, the collision of two rising gas
columns is reduced, which leads to the decrease in MT [31]. However, when the porous
plug radial position is 0.7R, the large gas flow rate leads to serious erosion of the lining of
the ladle, which not only reduces the service life of the ladle lining but also increases the
MT. Therefore, the porous plug radial position of 0.6R is taken as the optimal scheme.

4.1.2. Effect of Porous Plug Separation Angle on MT

Figure 4 shows the effects of gas flow rate, separation angle and radial position of
the porous plug on the MT. In Figure 4a, at a fixed porous plug radial position of 0.43R,
the MT first decreases and then increases with the increase in gas flow rate at different
separation angles, and the MT reaches its minimum when the gas flow rate is 5.7 NL·min−1.
When the range of gas flow rate is 1.4–4.3 NL·min−1, the bottom blowing arrangement
with a separation angle of 135◦ has the shortest MT. However, the range of gas flow rate
is 5.7–7.2 NL·min−1. The bottom-blowing arrangement with a separation angle of 180◦

has the shortest MT. In Figure 4b, at a fixed porous plug radial position of 0.6R, when
the separation angle is 90◦, the MT decreases with the increase in gas flow rate; when the
separation angles are 135◦ and 180◦, respectively, the MT first decreases and then increases
with the increase in gas flow rate. When the separation angle is 135◦ and the gas flow rate is
5.7 NL·min−1, the shortest MT is 47 s. In Figure 4c, at a fixed porous plug radial position of
0.7R, the MT first decreases and then increases with the increase in gas flow rate at different
separation angles. When the separation angle is 135◦ and the gas flow rate is 5.7 NL·min−1,
the shortest MT is 48 s. To sum up, the separation angle of 135◦ is taken as the optimal
scheme.

Figure 4. Effect of gas flow rate on MT at various radial location: (a) 0.43R; (b) 0.6R; (c) 0.7R.
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4.1.3. Effects of Different Factors on MT and SEA

To improve the mixing efficiency of LF refining, a larger gas flow rate is needed.
However, the SEA increases with the increase in gas flow rate, which leads to a large
amount of molten steel contacting the air and causing serious secondary oxidation of
molten steel. Therefore, the research on SEA should not be ignored. The effects of different
factors on MT and SEA are shown in Figure 5. In Figure 5a, at a fixed liquid depth of 760.5
mm and a slag thickness of 32.5 mm, the MT first decreases and then increases with the
increase in gas flow rate and the MT reaches its minimum when the gas flow rate is 5.7
NL·min−1. Compared with the condition without slag, the MT increases. The analysis
reason is that when the bubble rises to the top of the liquid, part of the stirring energy used
to break up the slag layer is consumed, which leads to the weakening of the stirring energy
of molten steel and an increase in MT [3]. The SEA increases linearly with the increase in
gas flow rate, and the effect of gas flow rate on SEA is shown in Figure 6a–e.

Figure 5. Effect of various factors on MT and SEA at: (a) gas flow rate; (b) liquid depth; (c) slag
thickness.

Figure 6. Effect of various factors on SEA at: (a–e) gas flow rate; (f–j) liquid depth; (k–o) slag
thickness (Top view).

In Figure 5b, at a fixed gas flow rate of 4.3 NL·min−1 and a slag thickness of 32.5 mm,
the MT increases with the increase in liquid depth. The analysis reason is that when the
gas flow rate is constant, the mass of molten steel increases with the increase in the depth
of molten steel, which leads to a decrease in the stirring energy per unit mass of molten
steel and an increase in MT [4]. The SEA increases with the increase in liquid depth. The
analysis reason is that, combined with the plume model [35], when the gas flow rate is
high enough to form a slag eye, the length of the horizontal flow direction in the exposed
area of the oil layer increases with the increase in liquid depth. Namely, the SEA increases.
Additionally, the effect of liquid depth on SEA is shown in Figure 6f–j.
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In Figure 5c, at a fixed gas flow rate of 4.3 NL·min−1 and liquid depth of 760.5 mm,
the MT increases linearly with the increase in slag thickness and the SEA decreases linearly
with the increase in slag thickness. With the increase in slag thickness, more energy is
needed to blow open the slag layer. Therefore, with the increase in slag thickness, the SEA
decreases at the same gas flow rate [13]. The effect of slag thickness on SEA is shown in
Figure 6k–o. Moreover, the ladle is tapered, so the liquid surface area at the top varies with
the liquid depth and the slag thickness.

4.2. Experimental Results of Argon Bottom Blowing Based on RSM
4.2.1. Establishment of Prediction Models

To obtain the optimal prediction models of MT and SEA, the linear model, interactive
model and complete quadratic model were established by using the experimental data in
Table 7. The model summary is listed in Table 8.

Table 8. Model summary.

Source

MT/s SEA/mm2

Standard
Deviation R2 Adjusted R2 Standard

Deviation R2 Adjusted R2

Linear model 3.87 0.7229 0.6709 6741.42 0.9232 0.9088
Interaction model 4.22 0.7314 0.6075 6631.20 0.9396 0.9118

Complete quadratic model 1.87 0.9595 0.9230 5189.62 0.9716 0.9460

In Table 8, for the prediction model of MT, it can be seen that the complete quadratic
model has the best performance by comparing the standard deviation (SD), the goodness
of fit (R2) and adjusted goodness of fit (adjusted R2) of the linear model, interactive model
and complete quadratic model. Additionally, the SD, R2 and adjusted R2 of the complete
quadratic model are 1.87 s, 0.9595 and 0.9230, respectively. This result indicates that the
experimental design is reliable and the model fitting is good and acceptable. Therefore, the
complete quadratic model is selected to establish the prediction model of MT, as shown in
Equation (6). Similarly, for the prediction model of SEA, the complete quadratic model has
the best performance and the SD, R2 and adjusted R2 of the complete quadratic model are
5189.62 mm2, 0.9716 and 0.9460, respectively. The fitting formula is shown in Equation (7).

For the prediction model of MT is as follows:

MT = 238− 26.5A− 0.337B + 0.01C + 1.866A2 + 0.000228B2

−0.0013C2 + 0.00501AB + 0.0962AC + 0.00036BC
(6)

For the prediction model of SEA is as follows:

SEA = 57, 319 + 14, 039A− 188B + 794C− 2289A2 + 0.122B2

+2.2C2 + 41.4AB− 336AC− 1.93BC
(7)

where A is the gas flow rate; B is the liquid depth; C is the slag thickness.

4.2.2. Analysis of Variance and Model Evaluation

In order to evaluate the credibility of models, analysis of variance (ANOVA) was
conducted on the complete quadratic models, as shown in Table 9. The F-value is the ratio
of mean squares between groups to mean squares within the group. The p-value is the
probability that the F-statistic can take a value larger than the computed test-statistic value.
When the p-value is less than 0.01, the item of the model is highly significant; when the
p-value is less than 0.05, the item of the model is significant; when the p-value is greater
than 0.05, the item of the model is not significant [36]. In Table 9, a p-value < 0.01 is found
in the prediction models of MT and SEA, which indicates that the prediction models have
high good fitting and statistical significance and that the predicted values well fit with
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the experimental values. Lack of fit (LOF) is also used to evaluate the reliability of the
prediction model [37]. The p-values of the LOF of the prediction models are 0.6582 and
0.2854, respectively, which indicates that the prediction models have no significant relative
pure error and that the experimental values can be described by the prediction models.

Table 9. ANOVA results for the complete quadratic model of MT and SEA.

Source Degree of
Freedom

Model of MT Model of SEA

Sum of
Squares

Mean
Square F-Value p-Value Sum of

Squares
Mean

Square F-Value p-Value

Model 9 828.78 92.09 26.29 8.30 × 10−6 ** 9.20 × 109 1.02 × 109 37.95 1.46 × 10−6 **
A 1 331.38 331.38 94.62 2.05 × 10−6 ** 5.98 × 109 5.98 × 109 222.11 3.72 × 10−8 **
B 1 72.66 72.66 20.75 1.05 × 10−3 ** 5.01 × 108 5.01 × 108 18.61 1.53 × 10−3 **
C 1 220.40 220.40 62.93 1.27 × 10−5 ** 2.26 × 109 2.26 × 109 83.84 3.54 × 10−6 **
A2 1 190.62 192.86 55.07 2.26 × 10−5 ** 3.01 × 108 2.90 × 108 10.77 8.27 × 10−3 **
B2 1 6.31 6.15 1.75 0.21 1.69 × 106 1.76 × 106 0.07 0.80
C2 1 0.04 0.04 0.01 0.91 1.20 × 105 1.20 × 105 0.00 0.95

A * B 1 1.12 1.12 0.32 0.58 7.71 × 107 7.71 × 107 2.86 0.12
A * C 1 6.12 6.12 1.75 0.22 7.48 × 107 7.48 × 107 2.78 0.13
B * C 1 0.13 0.13 0.04 0.85 3.60 × 106 3.60 × 106 0.13 0.72

Residual 10 35.02 3.50 2.69 × 108 2.69 × 107

Lack of fit 5 14.19 2.84 0.68 0.66 1.70 × 108 3.40 × 107 1.71 0.29
Pure error 5 20.83 4.17 9.94 × 107 1.99 × 107

Total 19 863.80 9.47 × 109

Note: (*) p < 0.05, (**) p < 0.01.

The F-value and p-value can be used to judge the significance of different factors on
the MT and SEA. Table 9 shows the F-values and the p-values of different factors. From the
results of the ANOVA, it is found that the influences of A, B and C on the MT are highly
significant. In the results of the interaction terms, the influences of AB, AC and BC are not
significant. In the results of the compound terms, the influence of A2 is highly significant,
whereas the influences of B2 and C2 are not significant. It can be seen from the F-value and
p-value of ANOVA that the influences of the factors on the MT are shown in order from
strong to weak as follows: gas flow rate, slag thickness and liquid depth. For the prediction
model of the SEA, the influences of A, B and C on the MT are highly significant. In the
results of the interaction terms, the influences of AB, AC and BC are not significant. In
the results of the compound terms, the influence of A2 is highly significant, whereas the
influences of B2 and C2 are not significant. It can be seen from the F-value and p-value of
ANOVA that the influences of the factors on the SEA are shown in order from strong to
weak as follows: gas flow rate, slag thickness and liquid depth.

Figure 7 shows the normal probability distributions of the residuals of MT and SEA. In
Figure 7, the residual scatters of the models are roughly distributed on a straight line, which
indicates that the errors are normally distributed and the models fit well [38]. Figure 8
shows the comparison between actual and predicted values of MT and SEA. In Figure 8,
the scatters of the actual values and the predicted values are basically distributed on a
straight line, which indicates that the prediction models have a high degree of fit. To sum
up, the prediction models of MT and SEA based on RSM are reliable.

Figure 7. Normal probability distributions of residuals for (a) MT and (b) SEA.
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Figure 8. Comparison between actual and predicted values for (a) MT and (b) SEA.

4.2.3. Visual Analysis of Response Surface

1. Interactive effects of different factors on MT

Under different factors, the RSM was used to carry out quadratic multiple regression
analysis on the MT, and the 3D response surface diagrams of MT were obtained at different
factor levels, as shown in Figure 9. The interaction effects of gas flow rate, liquid depth
and slag thickness on the MT can be observed more intuitively by using the 3D response
surface diagram. The larger slope of the response surface is a factor, the more significant
the factor effects on the MT [34].

Figure 9. The 3D response surface diagram of MT under the interaction of (a) gas flow rate and liquid
depth, (b) gas flow rate and slag depth, (c) liquid depth and slag depth.

Figure 9a shows the interaction effect of gas flow rate and liquid depth on the MT at a
slag thickness of 32.5 mm. The MT first decreases and then increases with the increase in
gas flow rate. With the increase in liquid depth, the MT also increases. Compared with the
response surface in the direction of liquid depth, the slope of the response surface in the
direction of gas flow rate is larger and the contour density in the direction of gas flow rate
is higher than that in the direction of liquid depth, which indicates that the effect of gas
flow rate on MT is larger than that in the direction of liquid depth. Moreover, this result is
confirmed by the smaller p-value of gas flow rate than that of liquid depth in Table 9.

Figure 9b shows the interaction effect of gas flow rate and slag thickness on the MT at
a liquid depth of 760.5 mm. Similarly to the effect of liquid depth on MT, the MT increases
with the increase in slag thickness. It can be seen that the gas flow rate has a more significant
influence on the MT than the slag thickness by comparing the slope and the contour density
of the response surface.

Figure 9c shows the interaction effect of liquid depth and slag thickness on the MT at
a gas flow rate of 4.3 NL·min−1. It can be seen that the slag thickness has a more significant
influence on the MT than the liquid depth by comparing the slope and the contour density
of the response surface. To sum up, the different impacts of factors on MT are shown in
order from strong to weak as follows: gas flow rate, slag thickness and liquid depth, which
is consistent with the results of ANOVA in Table 9.

2. Interactive effects of different factors on SEA
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Figure 10 shows the 3D response surface diagrams of SEA under different factor levels.
Figure 10a shows the interaction effect of gas flow rate and liquid depth on the SEA at a
slag thickness of 32.5 mm. The SEA increases with the increase in gas flow rate and liquid
depth. Meanwhile, the gas flow rate has a more significant influence on the SEA than the
liquid depth by comparing the slope and the contour density of the response surface.

Figure 10b shows the interaction effect of gas flow rate and slag thickness on the
SEA at a liquid depth of 760.5 mm. The SEA decreases with the increase in slag thickness.
Moreover, the slag thickness has a greater influence on the SEA under the condition of high
gas flow rate than \under the condition of low gas flow rate by comparing the slope and
the contour density of the response surface.

Figure 10c shows the interaction effect of liquid depth and slag thickness on the SEA at
a gas flow rate of 4.3 NL·min−1. It can be seen that the slag thickness has a more significant
influence on the SEA than the liquid depth by comparing the slope and the contour density
of the response surface. To sum up, the different impacts of factors on SEA are shown in
order from strong to weak as follows: gas flow rate, slag thickness and liquid depth, which
is consistent with the results of ANOVA in Table 9.

Figure 10. The 3D response surface diagram of SEA under the interaction of (a) gas flow rate and
liquid depth, (b) gas flow rate and slag depth, (c) liquid depth and slag depth.

4.2.4. Multiobjective Optimization and Experimental Verification

To achieve the production goal of high-efficiency refining and high cleanliness molten
steel in industrial production, the argon bottom blowing of LF should meet the requirements
of short MT and small SEA. Therefore, the optimization goals were set to the minimum
responses to obtain the minimum MT and SEA, and the importance of the two optimization
goals was set to 1 using Minitab software. The design variable optimization objectives of
gas flow rate and slag thickness were set as “range constraint”, and the liquid depth was
set as “retention value”. The optimization constraints are shown in Table 10.

Table 10. Optimization constraints.

Parameter Goal Range Importance

Gas flow rate (NL·min−1) Range constraint 1.95–6.6 -
Liquid depth/mm Retention value 760.5, 814, 850 -
Slag thickness/mm Range constraint 21.6–43.4 -

MT/s Range constraint 65–92 1
SEA/mm2 Range constraint 25,140.8–110,356 1

The final optimal parameters are as follows: (1) Gas flow rate of 3.8 NL·min−1, liquid
depth of 760.5 mm, slag thickness of 35.5 mm and under the optimized conditions, the MT
and the SEA calculated by prediction models are 76 s and 59,070 mm2, respectively. (2) Gas
flow rate of 3.4 NL·min−1, liquid depth of 814 mm, slag thickness of 30 mm and under the
optimized conditions, the MT and the SEA calculated by prediction models are 78 s and
65,770 mm2, respectively. (3) Gas flow rate of 3.2 NL·min−1, liquid depth of 850 mm, slag
thickness of 26.2 mm and under the optimized conditions, the MT and the SEA calculated by
prediction models are 80 s and 71,516 mm2, respectively. Meanwhile, the model verification
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experiment was carried out under the optimal parameters as shown in Table 11. In Table 11,
it can be seen that the MT and the SEA of different conditions are 75 s and 57,830 mm2, 79 s
and 62,996 mm2, 82 s and 73,938 mm2, respectively. Moreover, compared with the predicted
values, the errors of MT and the SEA of different conditions from the experimental values
are 1.3% and 2.1%, 1.3% and 4.2%, 2.5% and 3.4%, respectively. The results show that
the prediction models of MT and SEA established in this study are reliable, which further
verifies that the multiobjective collaborative optimization of argon bottom blowing of
LF using RSM is feasible. Meanwhile, the modeling method and workflow in this study
can also be applied in the research of argon bottom blowing of LF based on numerical
simulation to reduce the simulation times and improve the simulation efficiency.

Table 11. Predicted and experimental values under optimal conditions.

Number Gas Flow Rate
(NL·min−1)

Liquid
Depth/mm

Slag Thick-
ness/mm

MT/s
(Predicted Value)

MT/s
(Experimental Value) Error/%

1st 2nd 3rd AVG

1 3.8 760.5 35.5 76 77 74 75 75 1.3
2 3.4 814 30 78 76 83 79 79 1.3
3 3.2 850 26.2 80 86 76 85 82 2.5

Number
Gas Flow Rate

(NL·min−1)
Liquid

Depth/mm
Slag Thick-

ness/mm
SEA/mm2

(Predicted Value)

SEA/mm2

(Experimental Value) Error/%

1st 2nd 3rd 4th 5th AVG

1 3.8 760.5 35.5 59,070 63,146 55,115 56,581 56,366 57,940 57,830 2.1
2 3.4 814 30 65,770 64,544 65,648 62,149 63,415 59,226 62,996 4.2
3 3.2 850 26.2 71,516 73,491 80,491 71,421 69,444 74,846 73,939 3.4

Note: 1st, 2nd, 3rd, 4th, 5th and AVG represent the first experimental value, the second experimental value, the
third experimental value, the fourth experimental value, the fifth experimental value and the average experimental
value, respectively.

5. Conclusions

In this study, the effects of gas flow rate, molten steel depth and slag thickness on MT
and the SEA were studied by single factor analysis. Meanwhile, the prediction models
of MT and the SEA were established based on RSM and multiobjective collaborative
optimization and the following conclusions can be drawn:

(1) The hydraulic experiment shows that when the identical porous plug radial position
is 0.6R and the separation angle is 135◦, the mixing efficiency is the best and this
arrangement of porous plugs can avoid serious scour to the lining of the ladle. With
the increase in the gas flow rate, the MT first decreases and then increases and the
SEA increases. With the increase in the liquid depth, the MT and the SEA increase.
With the increase in slag thickness, the MT increases and the SEA decreases;

(2) The p-values of response surface models designed based on the CCD principle of
MT and SEA are all less than 0.01, and the values of Adj-R2 are 0.923 and 0.946,
respectively, which indicate that these models fit well and have statistical significance.
Meanwhile, it can be seen from the F-value and p-value of ANOVA that the different
impacts of factors on MT are shown in order from strong to weak as follows: gas flow
rate, slag thickness, liquid depth; the different impacts of factors on SEA are shown in
order from strong to weak as follows: gas flow rate, slag thickness, liquid depth;

(3) The optimal gas flow rate, slag thickness and the corresponding MT and SEA were
obtained under the three liquid depths when the MT and SEA were set as a minimum.
Meanwhile, the model verification experiment was carried out under the optimal
parameters. The results show that the experimental values are in good agreement
with the predicted values, which further verifies that the multiobjective collaborative
optimization of argon bottom blowing in LF using RSM is feasible.
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