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1. Introduction

We all know that Calculus of Variations and Optimal Control Theory are two strongly
connected mathematical fields. In this direction, several researchers have investigated these
areas, achieving remarkable results (see Friedman [1], Hestenes [2], Kendall [3], Udrişte [4],
Petrat and Tumulka [5], Treanţă [6] and Deckert and Nickel [7]). The problems (in several
time variables) studied by the aforementioned researchers have been continued, in the last
period, in the study of multi-dimensional optimization problems. These studies have many
applications in different branches of mathematical sciences, web access problems, man-
agement science, portfolio selection, engineering design, query optimization in databases,
game theory, and so on. In this respect, we mention the papers conducted by Mititelu
and Treanţă [8], Treanţă [9–18], and Jayswal et al. [19]. For other connected but different
ideas on this topic, the reader can consult Arisawa and Ishii [20], Lai and Motta [21], Shi
et al. [22], An et al. [23], Zhao et al. [24], Hung et al. [25], Chen et al. [26], Antonsev and
Shmarev [27], Cekic et al. [28], Chen et al. [29], Diening et al. [30], and Zhikov [31].

This review article is structured as follows. Section 2 introduces the second-order PDE-
constrained optimal control problem under study (see Theorem 1). This result formulates
the necessary conditions of optimality for the considered PDE-constrained optimization
problem. Section 3 states the associated necessary optimality conditions for a new class of
isoperimetric constrained control problems governed by multiple and curvilinear integrals.
In Section 4, by using the pseudomonotonicity, hemicontinuity, and monotonicity of the
considered integral functionals, we present the well-posedness of some variational inequal-
ity problems determined by partial derivatives of a second-order. Section 5 formulates
some very important open problems to be investigated in the near future. Section 6 contains
the conclusions of the paper.
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2. Second-Order PDE-Constrained Control Problem

LetHζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
, ζ = 1, m be some functions of C3-class, called multi-

time controlled Lagrangians of second order, where t = (tα) = (t1, · · · , tm) ∈ Λt0,t1 ⊂ Rm
+, b =

(bi) =
(

b1, · · · , bn
)

: Λt0,t1 → Rn is a function of C4-class (the state variable) and u =

(uϑ) =
(

u1, · · · , uk
)

: Λt0,t1 → Rk is a piecewise continuous function (the control variable).

In addition, denote bα(t) :=
∂b
∂tα

(t), bαβ(t) :=
∂2b

∂tα∂tβ
(t), α, β ∈ {1, ..., m} and consider

Λt0,t1 = [t0, t1] (multi-time interval in Rm
+) as a hyper-parallelepiped determined by the

diagonally opposite points t0, t1 ∈ Rm
+. Moreover, we assume that the previous multi-time

controlled Lagrangians of second order determine a closed controlled Lagrange 1-form

Hζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
dtζ

(see summation over the repeated indices), which provides the following curvilinear
integral functional:

J(b(·), u(·)) =
∫

Υt0,t1

Hζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
dtζ , (1)

where Υt0,t1 is a smooth curve, included in Λt0,t1 , joining t0, t1 ∈ Rm
+.

Second-order PDE-constrained control problem. Find the pair (b∗, u∗) that minimizes
the aforementioned controlled path-independent curvilinear integral functional Equation (1), among
all the pair functions (b, u) satisfying

b(t0) = b0, b(t1) = b1, bγ(t0) = b̃γ0, bγ(t1) = b̃γ1

and the partial speed-acceleration constraints:

ga
ζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
= 0, a = 1, 2, · · · , r ≤ n, ζ = 1, 2, · · · , m.

In order to investigate the above controlled optimization problem in Equation (1),
associated with the aforementioned partial speed-acceleration constraints, we introduce
the Lagrange multiplier p = (pa(t)) and build new multi-time-controlled second-order
Lagrangians (see summation over the repeated indices):

H1ζ

(
b(t), bγ(t), bαβ(t), u(t), p(t), t

)
= Hζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
+pa(t)ga

ζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
, ζ = 1, m,

which change the initial controlled optimization problem (with second-order PDE con-
straints) into a partial speed-acceleration, unconstrained, controlled optimization problem:

min
(b(·), u(·), p(·))

∫
Υt0,t1

H1ζ

(
b(t), bγ(t), bαβ(t), u(t), p(t), t

)
dtζ (2)

b(tq) = bq, bγ(tq) = b̃γq, q = 0, 1,

if the Lagrange 1-formH1ζ

(
b(t), bγ(t), bαβ(t), u(t), p(t), t

)
dtζ is completely integrable.

In accordance with Lagrange theory, an extreme point of Equation (1) is found among
the extreme points of Equation (2).

To formulate the necessary optimality conditions associated with the aforementioned
control problem, we shall introduce the Saunders’s multi-index (Saunders [32], Treanţă [9–12]).

The following theorem represents the main result of this section (see Treanţă [12]). It
establishes the necessary conditions of optimality associated with the considered second-
order PDE-constrained control problem.
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Theorem 1 (Treanţă [12]). If (b∗(·), u∗(·), p∗(·)) solves Equation (2), then

(b∗(·), u∗(·), p∗(·))

solves the following Euler–Lagrange system of PDEs:

∂H1ζ

∂bi − Dγ
∂H1ζ

∂bi
γ

+
1

µ(α, β)
D2

αβ

∂H1ζ

∂bi
αβ

= 0, i = 1, n, ζ = 1, m

∂H1ζ

∂uϑ
− Dγ

∂H1ζ

∂uϑ
γ

+
1

µ(α, β)
D2

αβ

∂H1ζ

∂uϑ
αβ

= 0, ϑ = 1, k, ζ = 1, m

∂H1ζ

∂pa
− Dγ

∂H1ζ

∂pa,γ
+

1
µ(α, β)

D2
αβ

∂H1ζ

∂pa,αβ
= 0, a = 1, r, ζ = 1, m,

where pa,γ :=
∂pa

∂tγ
, pa,αβ :=

∂2 pa

∂tα∂tβ
, uϑ

αβ :=
∂2uϑ

∂tα∂tβ
, α, β, γ ∈ {1, 2, ..., m}.

Remark 1 (Treanţă [12]). The system of Euler–Lagrange PDEs given in Theorem 1 becomes

∂H1ζ

∂bi − Dγ
∂H1ζ

∂bi
γ

+
1

µ(α, β)
D2

αβ

∂H1ζ

∂bi
αβ

= 0, i = 1, n, ζ = 1, m

∂H1ζ

∂uϑ
− Dγ

∂H1ζ

∂uϑ
γ

+
1

µ(α, β)
D2

αβ

∂H1ζ

∂uϑ
αβ

= 0, ϑ = 1, k, ζ = 1, m

ga
ζ

(
b(t), bγ(t), bα,β(t), u(t), t

)
= 0, a = 1, 2, · · · , r ≤ n, ζ = 1, 2, · · · , m.

Remark 2 (Treanţă [12]). (i) The most general Lagrange 1-form that can be used in the previous
problem is of the form:

H2ζ

(
b(t), bγ(t), bαβ(t), u(t), p(t), t

)
= Hζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
+pλ

aζ(t)ga
λ

(
b(t), bγ(t), bαβ(t), u(t), t

)
.

(ii) The closeness conditions DθHζ = DζHθ associated with the Lagrange 1-form
Hζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
dtζ are actually PDE constraints for the considered problem. The

optimization problem of the controlled curvilinear integral cost functional J(b(·), u(·)), conditioned
by DθHζ = DζHθ , can be studied by using the following Lagrange 1-form:

H3ζ

(
b(t), bγ(t), bαβ(t), u(t), p(t), t

)
= Hζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
+pθλ

ζ (t)(DθHλ − DλHθ).

Illustrative example. Minimize the following objective functional:

J(b(·), u(·)) =
∫

Υ0,1

(
b2(t) + u2(t)

)
dt1 +

(
b2(t) + u2(t)

)
dt2

subject to bt1(t) + bt2(t) = 0, b(0, 0) = 0, b(1, 1) = 0, where Υ0,1 is a curve of C1-class in
[0, 1]2, joining (0, 0) and (1, 1).

Solution. The path-independence of the functional J(b(·), u(·)) gives:

b
( ∂b

∂t2 −
∂b
∂t1

)
= u

( ∂u
∂t1 −

∂u
∂t2

)
.
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Moreover, for the Lagrange 1-form (Remark 2), we obtain:

Θ11 = b2(t) + u2(t) + ω1(t)(bt1(t) + bt2(t)),

Θ12 = b2(t) + u2(t) + +ω2(t)(bt1(t) + bt2(t))

and the extreme points are formulated as below:

2s− ∂ω1

∂t1 −
∂ω1

∂t2 = 0, 2s− ∂ω2

∂t1 −
∂ω2

∂t2 = 0,

2u = 0,

bt1(t) + bt2(t) = 0.

It follows that (b∗, u∗) = (0, 0) is the optimal point of the considered optimization

problem, and satisfies
∂φ

∂t1 +
∂φ

∂t2 = 0, where φ := ω1 −ω2.

3. Isoperimetric Constrained Controlled Optimization Problem

In this section, we use similar notations as in the previous section. We consider
a C3-class function H

(
b(t), bγ(t), bαβ(t), u(t), t

)
, called multi-time-controlled, second-order

Lagrangian, where t = (tα) = (t1, · · · , tm) ∈ Λt0,t1 ⊂ Rm
+, b = (bi) =

(
b1, · · · , bn

)
:

Λt0,t1 → Rn is a function of the C4-class (the state variable), and u = (uϑ) =
(

u1, · · · , uk
)

:

Λt0,t1 → Rk is a piecewise continuous function (the control variable). In addition, denote

bα(t) :=
∂b
∂tα

(t), bαβ(t) :=
∂2b

∂tα∂tβ
(t), α, β ∈ {1, ..., m}, and consider Λt0,t1 = [t0, t1] as a

hyper-parallelepiped generated by the diagonally opposite points t0, t1 ∈ Rm
+.

Isoperimetric constrained control problem. Find the pair (b∗, u∗) that minimizes the
following multiple integral functional:

J(b(·), u(·)) =
∫

Λt0,t1

H
(
b(t), bγ(t), bαβ(t), u(t), t

)
dt1 · · · dtm (3)

among all the pair functions (b, u) satisfying

b(t0) = b0, b(t1) = b1, bγ(t0) = b̃γ0, bγ(t1) = b̃γ1,

or
b(t)|∂Λt0,t1

= given, bγ(t)|∂Λt0,t1
= given

and the isoperimetric constraints (that is, constant level sets of some functionals) formulated
as follows.

Isoperimetric Constraints Defined by Controlled Curvilinear Integral Functionals

Consider the isoperimetric constraints:∫
Υt0,t1

ga
ζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
dtζ = la, a = 1, 2, · · · , r ≤ n,

where Υt0,t1 is a smooth curve, included in Λt0,t1 , joining the points t0, t1 ∈ Rm
+, and

ga
ζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
dtζ , a = 1, 2, · · · , r

are completely integrable differential 1-forms, namely, Dγgζ = Dζ gγ, γ, ζ ∈ {1, · · · , m}, γ 6=

ζ, with Dγ :=
∂

∂tγ
, γ ∈ {1, · · · , m}.
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In order to investigate the above controlled optimization problem in Equation (3),
associated with the aforementioned isoperimetric constraints, we introduce the curve
Υt0,t ⊂ Υt0,t1 and the auxiliary variables:

ya(t) =
∫

Υt0,t
ga

ζ

(
b(τ), bγ(τ), bαβ(τ), u(τ), τ

)
dτζ , a = 1, 2, · · · , r,

which satisfy ya(t0) = 0, ya(t1) = la. Consequently, the functions ya fulfill the next
first-order PDEs:

∂ya

∂tζ
(t) = ga

ζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
, ya(t1) = la.

Considering the Lagrange multiplier p =
(

pζ
a(t)

)
and by denoting y = (ya(t)), we

introduce a new multi-time-controlled Lagrangian of second order:

H1
(
b(t), bγ(t), bαβ(t), u(t), y(t), yζ(t), p(t), t

)
= H

(
b(t), bγ(t), bαβ(t), u(t), t

)
+pζ

a(t)
(

ga
ζ

(
b(t), bγ(t), bαβ(t), u(t), t

)
− ∂ya

∂tζ
(t)
)

that changes the initial control problem into an unconstrained control problem

min
b(·), u(·), y(·), p(·)

∫
Λt0,t1

H1
(
b(t), bγ(t), bαβ(t), u(t), y(t), yζ(t), p(t), t

)
dt1 · · · dtm (4)

b(tq) = bq, bγ(tq) = b̃γq, q = 0, 1

y(t0) = 0, y(t1) = l.

In accordance with Lagrange theory, an extreme point of Equation (3) is found among
the extreme points of Equation (4).

The following theorem (see Treanţă and Ahmad [13]) establishes the necessary condi-
tions of optimality associated with the considered isoperimetric constrained control problem.

Theorem 2 (Treanţă and Ahmad [13]). If (b∗(·), u∗(·), y∗(·), p∗(·)) solves Equation (4), then

(b∗(·), u∗(·), y∗(·), p∗(·))

solves the following Euler–Lagrange system of PDEs:

∂H1

∂bi − Dγ
∂H1

∂bi
γ

+
1

µ(α, β)
D2

αβ

∂H1

∂bi
αβ

= 0, i = 1, n

∂H1

∂uϑ
− Dγ

∂H1

∂uϑ
γ

+
1

µ(α, β)
D2

αβ

∂H1

∂uϑ
αβ

= 0, ϑ = 1, k

∂H1

∂ya − Dζ
∂H1

∂ya
ζ

+
1

µ(α, β)
D2

αβ

∂H1

∂ya
αβ

= 0, a = 1, r

∂H1

∂pζ
a
− Dγ

∂H1

∂pζ
a,γ

+
1

µ(α, β)
D2

αβ

∂H1

∂pζ
a,αβ

= 0,

where pζ
a,γ :=

∂pζ
a

∂tγ
, pζ

a,αβ :=
∂2 pζ

a

∂tα∂tβ
, uϑ

αβ :=
∂2uϑ

∂tα∂tβ
, ya

αβ :=
∂2ya

∂tα∂tβ
, α, β, γ, ζ ∈ {1, 2, ..., m}.
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Remark 3 (Treanţă and Ahmad [13]). The system of Euler–Lagrange PDEs given in
Theorem 2 becomes

∂H1

∂bi − Dγ
∂H1

∂bi
γ

+
1

µ(α, β)
D2

αβ

∂H1

∂bi
αβ

= 0, i = 1, n

∂H1

∂uϑ
− Dγ

∂H1

∂uϑ
γ

+
1

µ(α, β)
D2

αβ

∂H1

∂uϑ
αβ

= 0, ϑ = 1, k

∂pζ
a

∂tζ
= 0, a = 1, r, ζ ∈ {1, 2, · · · , m}

∂ya

∂tζ
(t) = ga

ζ

(
b(t), bγ(t), bα,β(t), u(t), t

)
.

In consequence, the Lagrange matrix multiplier p has null total divergence. Moreover, it is
well determined only if the optimal solution is not an extreme for at least one of the functionals∫

Υt0,t1

ga
ζ

(
b(t), bγ(t), bα,β(t), u(t), t

)
dtζ , a = 1, r.

4. Well-Posedness of Some Variational Inequalities Involving Second-Order
Partial Derivatives

In the following, in accordance with Treanţă [14–16], we consider: Λs1,s2 as a compact
set in Rm; Λs1,s2 3 s = (sζ), ζ = 1, m as a multi-variate evolution parameter; Λs1,s2 ⊃ Υ
as a piecewise differentiable curve that links the points s1 = (s1

1, . . . , sm
1 ), s2 = (s1

2, . . . , sm
2 )

in Λs1,s2 ; B as the space of C4-class state functions b : Λs1,s2 → Rn; and bκ :=
∂b
∂sκ

, bαβ :=

∂2b
∂sα∂sβ

denote the partial speed and partial acceleration, respectively. In addition, let U be the

space of C1-class control functions u : Λs1,s2 → Rk and assume that B×U is a (nonempty)
convex and closed subset of B ×U, equipped with

〈(b, u), (q, z)〉 =
∫

Υ
[b(s) · q(s) + u(s) · z(s)]dsζ

=
∫

Υ
[

n

∑
i=1

bi(s)qi(s) +
k

∑
j=1

uj(s)zj(s)]dsζ

=
∫

Υ
[

n

∑
i=1

bi(s)qi(s) +
k

∑
j=1

uj(s)zj(s)]ds1 + · · ·+ [
n

∑
i=1

bi(s)qi(s) +
k

∑
j=1

uj(s)zj(s)]dsm,

∀(b, u), (q, z) ∈ B ×U

and the norm induced by it.
Let J2(Rm,Rn) be the jet bundle of the second order of Rm and Rn. Assume that the

Lagrangians wζ : J2(Rm,Rn)×Rk → R, ζ = 1, m provide a closed controlled Lagrange
1-form

wζ(s, b(s), bκ(s), bαβ(s), u(s))dsζ ,

which gives the following integral functional:

W : B ×U→ R, W(b, u) =
∫

Υ
wζ

(
s, b(s), bκ(s), bαβ(s), u(s)

)
dsζ

=
∫

Υ
w1
(
s, b(s), bκ(s), bαβ(s), u(s)

)
ds1 + · · ·+ wm

(
s, b(s), bκ(s), bαβ(s), u(s)

)
dsm.

In order to state the problem under study, we introduce the Saunders’s multi-index
(Saunders [32]).
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Now, we introduce the variational problem: find (b, u) ∈ B×U such that∫
Υ

[
∂wζ

∂b
(Ψb,u(s))(q(s)− b(s)) +

∂wζ

∂bκ
(Ψb,u(s))Dκ(q(s)− b(s))

]
dsζ (5)

+
∫

Υ

[
1

x(α, β)

∂wζ

∂bαβ
(Ψb,u(s))D2

αβ(q(s)− b(s))

]
dsζ

+
∫

Υ

[
∂wζ

∂u
(Ψb,u(s))(z(s)− u(s))

]
dsζ ≥ 0, ∀(q, z) ∈ B×U,

where Dκ :=
∂

∂sκ
is the total derivative operator, D2

αβ := Dα(Dβ), and (Ψb,u(s)) :=

(s, b(s), bκ(s), bαβ(s), u(s)).
Let Ω be the feasible solution set of (5):

Ω =
{
(b, u) ∈ B×U :

∫
Υ
[(q(s)− b(s))

∂wζ

∂b
(Ψb,u(s))

+ Dκ(q(s)− b(s))
∂wζ

∂bκ
(Ψb,u(s))

+
1

x(α, β)
D2

αβ(q(s)− b(s))
∂wζ

∂bαβ
(Ψb,u(s))

+ (z(s)− u(s))
∂wζ

∂u
(Ψb,u(s))]dsζ ≥ 0,

∀(q, z) ∈ B×U
}

.

Assumption 1. The next working hypothesis is assumed:

dG := Dκ

[
∂wζ

∂bκ
(b− q)

]
dsζ (6)

as a total exact differential, with G(s1) = G(s2).

According to Equation (6) and considering the notion of monotonicity associated
with variational inequalities, we formulate (see Treanţă et al. [14]) the monotonicity and
pseudomonotonicity for W.

Definition 1. The functional W is monotone on B×U if∫
Υ

[
(b(s)− q(s))

(
∂wζ

∂b
(Ψb,u(s))−

∂wζ

∂b
(Ψq,z(s))

)
+ (u(s)− z(s))

(
∂wζ

∂u
(Ψb,u(s))−

∂wζ

∂u
(Ψq,z(s))

)
+ Dκ(b(s)− q(s))

(
∂wζ

∂bκ
(Ψb,u(s))−

∂wζ

∂bκ
(Ψq,z(s))

)
+

1
x(α, β)

D2
αβ(b(s)− q(s))

(
∂wζ

∂bαβ
(Ψb,u(s))−

∂wζ

∂bαβ
(Ψq,z(s))

)]
dsζ ≥ 0,

∀(b, u), (q, z) ∈ B×U

is satisfied.
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Definition 2. The functional W is pseudomonotone on B×U if∫
Υ
[(b(s)− q(s))

∂wζ

∂b
(Ψq,z(s)) + (u(s)− z(s))

∂wζ

∂u
(Ψq,z(s))

+Dκ(b(s)− q(s))
∂wζ

∂bκ
(Ψq,z(s))

+
1

x(α, β)
D2

αβ(b(s)− q(s))
∂wζ

∂bαβ
(Ψq,z(s))]dsζ ≥ 0

⇒
∫

Υ
[(b(s)− q(s))

∂wζ

∂b
(Ψb,u(s)) + (u(s)− z(s))

∂wζ

∂u
(Ψb,u(s))

+Dκ(b(s)− q(s))
∂wζ

∂bκ
(Ψb,u(s))

+
1

x(α, β)
D2

αβ(b(s)− q(s))
∂wζ

∂bαβ
(Ψb,u(s))]dsζ ≥ 0,

∀(b, u), (q, z) ∈ B×U

is valid.

By using Usman and Khan [33], we introduce the following definition.

Definition 3. W is hemicontinuous on B×U if

λ→
〈
((b(s), u(s))− (q(s), z(s)),

(
δζW
δbλ

,
δζW
δuλ

)〉
, 0 ≤ λ ≤ 1

is continuous at 0+, for ∀(b, u), (q, z) ∈ B×U, where

δζW
δbλ

:=
∂wζ

∂b
(Ψbλ ,uλ

(s))− Dκ
∂wζ

∂bκ
(Ψbλ ,uλ

(s)) +
1

x(α, β)
D2

αβ

∂wζ

∂bαβ
(Ψbλ ,uλ

(s)) ∈ B,

δζW
δuλ

:=
∂wζ

∂u
(Ψbλ ,uλ

(s)) ∈ U,

bλ := λb + (1− λ)q, uλ := λu + (1− λ)z.

Lemma 1 (Treanţă et al. [14]). Let the functional W be hemicontinuous and pseudomonotone on
B×U. A point (b, u) ∈ B×U solves Equation (5) if and only if (b, u) ∈ B×U solves:∫

Υ
[(q(s)− b(s))

∂wζ

∂b
(Ψq,z(s)) + (z(s)− u(s))

∂wζ

∂u
(Ψq,z(s))

+Dκ(q(s)− b(s))
∂wζ

∂bκ
(Ψq,z(s))

+
1

x(α, β)
D2

αβ(q(s)− b(s))
∂wζ

∂bαβ
(Ψq,z(s))]dsζ ≥ 0, ∀(q, z) ∈ B×U.

Furthermore, according to Treanţă et al. [14], we present two well-posedness results
associated with the considered variational inequality problem involving second-order
PDEs.
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Definition 4. The sequence {(bn, un)} ∈ B × U is called an approximating sequence of
Equation (5) if there exists a sequence of positive real numbers σn → 0 as n→ ∞, such that:∫

Υ
[(q(s)− bn(s))

∂wζ

∂b
(Ψbn ,un(s)) + (z(s)− un(s))

∂wζ

∂u
(Ψbn ,un(s))

+Dκ(q(s)− bn(s))
∂wζ

∂bκ
(Ψbn ,un(s))

+
1

x(α, β)
D2

αβ(q(s)− bn(s))
∂wζ

∂bαβ
(Ψbn ,un(s))]dsζ + σn ≥ 0, ∀(q, z) ∈ B×U.

Definition 5. The problem Equation (5) is called well-posed if:

(i) The problem in Equation (5) has one solution (b0, u0);
(ii) Each approximating sequence of Equation (5) converges to (b0, u0).

The approximating solution set of Equation (5) is given as follows:

Ωσ =
{
(b, u) ∈ B×U :

∫
Υ
[(q(s)− b(s))

∂wζ

∂b
(Ψb,u(s)) + (z(s)− u(s))

∂wζ

∂u
(Ψb,u(s))

+ Dκ(q(s)− b(s))
∂wζ

∂bκ
(Ψb,u(s))

+
1

x(α, β)
D2

αβ(q(s)− b(s))
∂wζ

∂bαβ
(Ψb,u(s))]dsζ + σ ≥ 0, ∀(q, z) ∈ B×U

}
.

Remark 4. We have: Ω = Ωσ, when σ = 0 and Ω ⊆ Ωσ, ∀σ > 0.
Furthermore, for a set P, the diameter of P is defined as follows

diam P = sup
φ,η∈P

‖φ− η‖.

Theorem 3 (Treanţă et al. [14]). Let the functional W be hemicontinuous and monotone on B×U.
The problem Equation (5) is well-posed if and only if:

Ωσ 6= ∅, ∀σ > 0 and diam Ωσ → 0 as σ→ 0.

Theorem 4 (Treanţă et al. [14]). Let the functional W be hemicontinuous and monotone on B×U.
Then, Equation (5) is well-posed if and only if it has one solution.

5. Open Problem

As in the previous sections, we start with T as a compact set in Rm and T 3 ζ =
(ζβ), β = 1, m, as a multi-variable. Let T ⊃ C : ζ = ζ(ς), ς ∈ [p, q] be a (piecewise) differen-
tiable curve joining the following two fixed points ζ1 = (ζ1

1, . . . , ζm
1 ), ζ2 = (ζ1

2, . . . , ζm
2 ) in

T . In addition, we consider Λ as the space of (piecewise) smooth state functions σ : T → Rn

and Ω as the space of control functions η : T → Rk, which are considered to be piecewise
continuous. Moreover, on the product space Λ×Ω, we consider the scalar product:

〈(σ, η), (π, x)〉 =
∫
C
[σ(ζ) · π(ζ) + η(ζ) · x(ζ)

]
dζβ

=
∫
C

[ n

∑
i=1

σi(ζ)πi(ζ) +
k

∑
j=1

η j(ζ)xj(ζ)
]
dζ1

+ · · ·+
[ n

∑
i=1

σi(ζ)πi(ζ) +
k

∑
j=1

η j(ζ)xj(ζ)
]
dζm, (∀)(σ, η), (π, x) ∈ Λ×Ω

together with the norm induced by it.
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In the following, we introduce the vector functional defined by curvilinear integrals:

Ψ : Λ×Ω→ Rp, Ψ(σ, η) =
∫
C

ψβ(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ))dζβ

=

(∫
C

ψ1
β(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ))dζβ, · · · ,

∫
C

ψ
p
β(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ))dζβ

)
,

where we used the vector-valued C2-class functions ψβ = (ψl
β) : T ×Rn ×Rnm ×Rnm2 ×

Rk → Rp, β = 1, m, l = 1, p. In addition, Dα, α ∈ {1, . . . , m} represents the operator of
total derivative, and the aforementioned 1-form densities

ψβ =
(

ψ1
β, . . . , ψ

p
β

)
: T ×Rn ×Rnm ×Rnm2 ×Rk → Rp, β = 1, m,

are closed (Dαψl
β = Dβψl

α, β, α = 1, m, β 6= α, l = 1, p). Throughout the paper, the
following rules for equalities and inequalities are applied:

a = b⇔ al = bl , a ≤ b⇔ al ≤ bl , a < b⇔ al < bl , a � b⇔ a ≤ b, a 6= b, l = 1, p,

for all p-tuples, a =
(

a1, · · · , ap
)

, b =
(

b1, · · · , bp
)

in Rp.
Next, we formulate the partial differential equation/inequation constrained optimiza-

tion problem:

(CP) min
(σ,η)

{
Ψ(σ, η) =

∫
C

ψβ(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ))dζβ

}
subject to (σ, η) ∈ S ,

where
Ψ(σ, η) =

∫
C

ψβ(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ))dζβ

=

(∫
C

ψ1
β(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ))dζβ, · · · ,

∫
C

ψ
p
β(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ))dζβ

)
=
(

Ψ1(σ, η), ..., Ψp(σ, η)
)

and

S =
{
(σ, η) ∈ Λ×Ω | Z(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ)) = 0, Y(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ)) ≤ 0,

σ|ζ=ζ1,ζ2 = given, σα|ζ=ζ1,ζ2 = given
}

.

Above, we considered Z = (Zι) : T ×Rn ×Rnm ×Rnm2 ×Rk → Rt, ι = 1, t, Y =

(Yr) : T ×Rn ×Rnm ×Rnm2 ×Rk → Rq, r = 1, q as C2-class functions.

Definition 6. A point (σ0, η0) ∈ S is called an efficient solution in (CP) if there exists no other
(σ, η) ∈ S such that Ψ(σ, η) � Ψ(σ0, η0), or, equivalently, Ψl(σ, η)−Ψl(σ0, η0) ≤ 0, (∀)l =
1, p, with strict inequality for at least one l.

Definition 7. A point (σ0, η0) ∈ S is called a proper efficient solution in (CP) if (σ0, η0) ∈ S is
an efficient solution in (CP) and there exists a positive real number M, such that, for all l = 1, p,
we have

Ψl(σ0, η0)−Ψl(σ, η) ≤ M
(

Ψs(σ, η)−Ψs(σ0, η0)
)

,

for some s ∈ {1, · · · , p} such that

Ψs(σ, η) > Ψs(σ0, η0),
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whenever (σ, η) ∈ S and
Ψl(σ, η) < Ψl(σ0, η0).

Definition 8. A point (σ0, η0) ∈ S is called a weak efficient solution in (CP) if there exists
no other (σ, η) ∈ S such that Ψ(σ, η) < Ψ(σ0, η0), or, equivalently, Ψl(σ, η)− Ψl(σ0, η0) <
0, (∀)l = 1, p.

According to Treanţă [17,18], for σ ∈ Λ and η ∈ Ω, we consider the vector functional

K : Λ×Ω→ Rp, K(σ, η) =
∫
C

κβ(ζ, σ(ζ), σα(ζ), σab(ζ), η(ζ))dζβ

and define the concepts of invexity and pseudoinvexity associated with K.

For examples of invex and/or pseudoinvex curvilinear integral functionals, the reader
can consult Treanţă [17].

Definition 9 (Treanţă [18]). We say that X×Q ⊂ Λ×Ω is invex with respect to ϑ and υ if

(σ0, η0) + λ
(

ϑ
(

ζ, σ, η, σ0, η0
)

, υ
(

ζ, σ, η, σ0, η0
))
∈ X×Q,

for all (σ, η), (σ0, η0) ∈ X×Q and λ ∈ [0, 1].
Now, we introduce the following (weak) vector controlled variational inequalities:
I. Find (σ0, η0) ∈ S such that there exists no (σ, η) ∈ S satisfying

(VI)
( ∫

C

[
∂ψ1

β

∂σ

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
ϑ +

∂ψ1
β

∂η

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
υ

]
dζβ

+
∫
C

[
∂ψ1

β

∂σα

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
Dαϑ

]
dζβ

+
1

x(a, b)

∫
C

[
∂ψ1

β

∂σab

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
D2

abϑ

]
dζβ, · · · ,

∫
C

[
∂ψ

p
β

∂σ

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
ϑ +

∂ψ
p
β

∂η

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
υ

]
dζβ

+
∫
C

[
∂ψ

p
β

∂σα

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
Dαϑ

]
dζβ

+
1

x(a, b)

∫
C

[
∂ψ

p
β

∂σab

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
D2

abϑ

]
dζβ
)
≤ 0;

II. Find (σ0, η0) ∈ S such that there exists no (σ, η) ∈ S satisfying

(WVI)
( ∫

C

[
∂ψ1

β

∂σ

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
ϑ +

∂ψ1
β

∂η

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
υ

]
dζβ

+
∫
C

[
∂ψ1

β

∂σα

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
Dαϑ

]
dζβ

+
1

x(a, b)

∫
C

[
∂ψ1

β

∂σab

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
D2

abϑ

]
dζβ, · · · ,

∫
C

[
∂ψ

p
β

∂σ

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
ϑ +

∂ψ
p
β

∂η

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
υ

]
dζβ
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+
∫
C

[
∂ψ

p
β

∂σα

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
Dαϑ

]
dζβ

+
1

x(a, b)

∫
C

[
∂ψ

p
β

∂σab

(
ζ, σ0(ζ), σ0

α(ζ), σ0
ab(ζ), η0(ζ)

)
D2

abϑ

]
dζβ
)
< 0.

Note. In the above formulation,
1

x(a, b)
represents the Saunders’s multi-index.

Open Problem. Taking into account the notion of an invex set with respect to some given
functions, the Fréchet differentiability and invexity/pseudoinvexity of the considered curvilinear
integral functionals (which are path-independent) state some relations between the solutions of
the (weak) vector-controlled variational inequalities and (proper, weak) efficient solutions of the
associated optimization problem.

6. Conclusions

This paper presented the nonlinear dynamics generated by some classes of constrained
controlled optimization problems involving second-order partial derivatives. More pre-
cisely, we have stated the necessary optimality conditions for the considered variational
control problems given by integral functionals. In addition, the well-posedness and the
associated variational inequalities have been considered in this review paper.
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