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Abstract: In this study, a deep learning-based attack detection model is proposed to address the
problem of system disturbances in energy systems caused by natural events like storms and tornadoes
or human-made events such as cyber-attacks. The proposed model is trained using the long time
recorded data through accurate phasor measurement units (PMUs). The data is then sent to various
machine learning methods based on the effective features extracted out using advanced principal com-
ponent analysis (PCA) model. The performance of the proposed model is examined and compared
with some other benchmarks using various indices such as confusion matrix. The results show that
incorporating PCA as the feature selection model could effectively decrease feature redundancy and
learning time while minimizing data information loss. Furthermore, the proposed model investigates
the potential of deep learning-based and Decision Tree (DT) classifiers to detect cyber-attacks for
improving the security and efficiency of modern intelligent energy grids. By utilizing the big data
recorded by PMUs and identifying relevant properties or characteristics using PCA, the proposed
deep model can effectively detect attacks or disturbances in the system, allowing operators to take
appropriate action and prevent any further damage.

Keywords: cyber-attack detection; deep machine learning; decision tree; principle component
analysis; smart power grid; data processing

MSC: 94-10

1. Introduction
1.1. Necessity of the Research

Critical infrastructures rely on complex systems that incorporate both cyber and
physical components in their daily operations. The backbone of these facilities is the
Industrial Control System (ICS), which plays a crucial role in monitoring and controlling
critical infrastructures such as smart power grids, oil and gas, aerospace, and transportation.
Accordingly, the safety and security of ICSs are essential for national security [1,2].

The Internet of Things (IoT) integration in ICS has created opportunities for cybercrim-
inals to exploit system vulnerabilities and launch cyber-attacks. The Stuxnet attackin 2010,
which targeted ICSs, raised awareness of cyber-security vulnerabilities in these systems.
Stuxnet aimed to disrupt the system’s operation without affecting Information Technology
(IT) systems [3]. In 2015, the Black-Energy cyber-attack targeted Ukraine’s power grids,
resulting in a massive power outage that affected thousands of people [2,4]. While some
attacks may cause information leakage, others can damage the physical system or misrep-
resent the system state for monitoring engineers. These examples high light the growing
cyber-threat to operational technology, which supports much of the enabling computer
technologies that critical infrastructure ICSs rely on [2].

Technically, power distribution systems and waste-water treatment plants are among
the areas where Cyber-physical systems (CPS) is being used. Nevertheless, CPS security
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problems differ from conventional cyber-security problems in that they include integrity,
confidentiality, and availability. In addition to transmitting, distributing, monitoring, and
controlling electricity, a smart grid (SG) would greatly enhance energy effectiveness and
reliability. Such systems may fail and result in temporary damage to infrastructures [5].
Power grids are regarded as essential infrastructure nowadays by many societies, which
have developed security measures and policies related to them [6]. Phasor measurement
units (PMUs) are adopted in modern electrical systems to improve reliability as they become
more complex in their structure and design. Utilizing the gathered information for quick
decision making is one of the advantages. There is still the possibility that hacker exploits
vulnerabilities to result in branch overloaded tripping, which will lead to cascading failures
and, therefore, leads to considerable damage to SG systems [7]. As the operators monitor
and manage the energy grid, they must consider possible attacks on the grid. To accomplish
this, much energy and grid expertise is required. However, deep machine learning (DML)
methods are used because of their capability to recognize patterns and learn, as well as
being quickly able to identify potential security boundaries [8].

1.2. Literature Review

Network systems, usually referred to as essential infrastructure systems, have been
usually applied to link the systems for monitoring and collecting equipment operations
in real-time. The supervisory control and data acquisition (SCADA) system is highly
vulnerable to cyber-attacks, and such attacks need to be handled with extreme caution [9].
Sensor’s fingerprints and noise processing are used in [10] for detecting hidden cyber-
attacks in CPS, and the data set from the actual-world water treatment plants is employed
to validate the approach, and the outcomes indicated an accuracy of 98%. In [11], a semantic
instruction detection system on the basis of the network was examined for detecting attacks
on water plant processes by analyzing network traffic. These findings highlight the need
for CPS investigation. Cyber and physical systems are part of the SG. Intrusion detection
problems are solved using DML, as seen in recent research [12–14]. The intrusion detection
method on the basis of DML is examined in [12]. The data set employed was a SWAT-
produced datum from various attacks of 10 various kinds. A quick one-class classification
scheme that overcomes the problem of vast sensitivity to out-of-range data is employed
in [13], and an actual data set is used to test the suggested algorithm. The data sets
employed in this study have also been utilized in numerous other types of research. The
authors in [14] examined the method with accuracy rates of around 90% for JRipper +
Adaboost and 75% for random forest compared to the whole multiclass data set. The
privacy preservation intrusion diagnosing method on the basis of the correlation coefficient
and expectation maximization (EM) clustering techniques is presented in [15] to select
significant sections of data and recognize intrusive occurrences. There was an 88.9% recall
rate in the model compared to the multiclass data sets with 75% of features. Authors in [16]
have improved the detection process by dropping the defense target from rejecting attacks
to preventing outages to decreasing the necessary number of secured PMUs. In [17], the
authors investigated the effect of cyber-attack on the PMU state estimation process using
the Cartesian equations and in the case of zero injection buses. In [18], it is tried to develop
an allocation method for fault observability using PMU data considering zero injection
buses. In [19], the authors have introduced a fault detecting and classifying, and placement
approach based on advanced machine learning in radial distribution systems.

1.3. Contributions

A model based on machine learning is presented in this study for detecting system
behaviors by analyzing historical data and related log data. Although unsupervised
learning is beneficial for detecting zero-day attacks since it requires no training in attack
scenarios, it is also vulnerable to false positives [20]. Furthermore, supervised learning
can clearly improve the detection’s confidence. The experiments are then performed using
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the supervised machine learning approach. The main contributions in this paper are
summarized as follows:

(1) A new classification model based on the Decision Tree (DT) and auto-encoder tech-
nique has been proposed as a binary classifier to detect attacks with the aim of
increasing the detection accuracy and decreasing the false positive index.

(2) A Principal Component Analysis (PCA) applied to the raw data of PMUs as an
effective feature selection model reduces feature redundancy and learning time while
minimizing the loss of data information. This approach has been shown to be effective
in various evaluations as it significantly improves the performance of models.

(3) A new process for handling abnormal data, such as non-numbers and infinity values
in data sets, is proposed. This approach could significantly enhance accuracy in
comparison to the conventional processes of processing abnormal data.

Following are the remaining sections of the study. A detailed explanation of the
methodology is provided in Section 2. The results of the classification are discussed in
Section 3. The conclusion appears in Section 4.

2. Model Structure

Scenarios where disturbances and attacks happen in the electric grid, as well as the
meaning of features in the data set, are presented in this part. The suggested model and
data processing are detailed here.

2.1. Introduction to Power System Framework Configuration

The suggested data set consisting of measurements associated with normal, fault,
and cyber-attack behavior, and so on [21–23]. The electrical network block diagram is
shown in Figure 1. Relay, control panel, snort, and PMU/synchronous are primarily used
for recording measurement data. Following are some of the most significant components.
Power generators are shown by P1 and P2, and the intelligent electronic device (IED) is relay
R1, which could switch breaker1 (BR1) on or off. Transmission lines (TLs) are represented
by L1 and L2. The phasor data concentrator is shown by PDC that stores and displays
Synchron-phasor data as well as records historical data. The IED incorporates a distance
protection mechanism that can trip the breaker if it detects faults. Due to the absence of
internal verification approaches for detecting changes, the breaker will be tripped regardless
of whether the fault is valid or not. BR1-4 can be tripped by manually sending relevant
commands to IEDs. In the event that lines or other components are to be maintained, the
manual override will be necessary.

The experiment applied a data set that contained 128 features recorded using PMUs
from 1 to 4 and relay snort alarms and logs as in Ref. [24]. A PMU measures electric waves
on a power network using a common time source. A total of 29 features could be measured
by every PMU [24]. The data set also contains twelve columns of log data from the control
panel and one column of an actual tag. There are three main categories of scenarios in the
multiclass classification data set: No Events, Events, Intrusion, and Natural Events such as
storms and tornadoes [25].

(a) SLG fault: A fault occurs whenever the current, voltage frequency of the system
changes abnormally, and many faults in electrical systems occur in line-to-ground and
line-to-line (LL). The simulated SLG faults are represented as short circuits at diverse
points along the TL in the data set.

(b) Line maintenance: This type of attack is caused when one or more relays have been
deactivated on a particular line to maintain.

(c) Data injection: More research is being conducted into false data injection state estima-
tion in electrical networks. False data injection attacks are one of the main forms of
network attacks, which could affect the power system estimation method. Attackers
alter phase angles in order to create false sensor signals. The objective of such attacks
is to blind the operators and to avoid raising an alarm, which could lead to economic
or physical damage to the electrical systems. Attackers synchronize the phasor mea-
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surement with the fault’s SLG and next send a relay trip command on the affected
lines. A data set modeled the conditions by varying variables, such as current, voltage,
and sequence components, which caused faults on various levels of the TLs.

(d) Remote tripping command injection attack: This occurs when a computer on the
communications network uses unexpected relay trip commands to relay at the end of
a TL. For achieving attacks, command injection has been applied versus single relays
or double relays.

(e) Relay adjusting variation attack: The relay is configured with a distance protection
layout. Attackers change the setting, so the relay responds badly to authentic faults.
In the data sets, faults were caused via deactivating the relay functions at diverse
parts of TLs with relays deactivated and faults.
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2.2. Methodology

Despite the fact that the machine learning approach is capable of detecting distur-
bances and cyber-attacks on electric grids, it can have these drawbacks. Currently, refer-
ences just discuss how to diagnose attacks in the electrical grids and seldom examine the
data relationship. In contrast, when working with multi-classification problems, many
algorithms convert them into multi-two-class situations. Nonetheless, the AdaBoost algo-
rithm is able to handle multi-classification situations directly. It utilizes weak classifiers
well for cascading and is capable of using various classification algorithms as weak clas-
sifiers. In terms of the error rate of misclassification, the AdaBoost algorithm is highly
competitive [26]. With an increase in data amount, the fitting ability is affected both by
generalization problems and by the increasing difficulty of computing. Machine learning
requires a large amount of calculating to find the best solution. Additionally, the accuracy
rates on the model presented in [14,15] are about 90% compared to the multiclass data sets,
which provides considerable space for development. As a consequence of these findings,
this paper constructs a model that can perform superior feature engineering and next can
split the data by the diverse PMUs to minimize computation overhead. It should be noted
that the PMU allocation in the smart grid is performed in the planning stage and might be
implemented according to different purposes. While the high cost might be a limitation,
the high number of PMUs is always preferred to cover all areas of the smart grid. It is
worth noting that PMU allocation is out of the scope of this work but can be found in other
research works widely. In addition, the AdaBoost algorithm for detecting the 37-class fault
and cyber-attack case studies in the electric grids is adopted in this paper.

About the feature selection process, it should be noted that this experiment applied
a data set that contains 128 features recorded using PMUs 1 to 4 and relay snort alarms
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and logs (relay and PMU have been combined). Please also note that each PMU can record
29 different features. In this regard, and in order to obtain enriched and integrated in-
formative data, feature construction engineering is performed, and 16 novel features are
constructed via an analysis of the features and possible links of the raw data in the electrical
network. Technically, it is possible to construct novel features using the PCA as the feature
selection model that could help to more effectively utilize possible types of data instances
which could be used in machine learning models for better application.

2.3. Feature Selection Based on PCA

The presence of redundant or irrelevant features could impede the performance of
a machine learning classifier, causing slow convergence or complete failure. To address
this issue, this paper employs a PCA, also known as the Karhunen–Loeve transform or
the eigenvector regression filter [27]. A PCA reduces dimensionality by eliminating the
weakest principal components, resulting in a lower-dimensional projection of the raw
feature data that preserves maximal data variance. This reduction is achieved through an
orthogonal, linear projection operation. It is worth noting that the PCA operation does not
result in any loss of generality.

Y = XC (1)

The projected data matrix Y ∈ RS×P contains P principal components of X, where P is
less than or equal to N. The key step involves determining the projection matrix C ∈ RN×P,
which can be accomplished by finding the eigenvectors of X’s covariance matrix or by
solving a singular value decomposition (SVD) problem for X [28].

X = UDVT (2)

The orthogonal matrices U ∈ RS×S and V ∈ RN×N represent the column and row
spaces of X, respectively, while D is a diagonal matrix that contains the singular values
λn, for n = 0, . . . , N − 1. The singular values are arranged non-increasingly along the
diagonal of D. It has been demonstrated [28] that the projection matrix C can be derived
from the first P columns of V, with P being the desired number of principal components.

V = [v1, . . . , vN ] (3)

and
C = [c1, . . . , cP] (4)

In which vn ∈ RN×1 defines the nth right singular vector of X, and vn equals cn (c n = vn).
The singular values in D from (2) indicate the standard deviations of X along the

principal directions in the space spanned by the columns of C. The value of λ2
n represents

the variance in X’s projection along the nth principal component direction. Variance is often
used as a measure of the amount of information contributed by a component to the data
representation. To evaluate this, the cumulative explained variance ratio of the principal
components is typically examined and expressed as a fraction.

Rcev =
∑P

n=1 λ2
n

∑N
n=1 λ2

n
(5)

2.4. Diagnosing Attack Behavior Model Structure

A model architecture diagram is shown in Figure 2 to detect faults and cyber-attack in
electrical grids [24]. According to Figure 2, the model architecture usually consists of four
stages: property making, data dividing, weight voting, and layout training as follows:
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Stage.1. Property making. By creating novel features manually from the original data
set, it is able to improve the dimension of the data. A novel piece of data is generated by
integrating the novel features with several original ones. The upper limit of the model is
determined by the features and data, and the algorithm can just approximate the upper
limit as closely as feasible. In order to achieve maximum accuracy and improve robustness,
feature construction engineering is essential. It is important for feature construction using
the original data to obtain more flexible features, and therefore increase data sensitivity
and increase the ability to analyze it in the case of sending it to models for classification
and training. The target of helpful features is to be simple to understand and maintain.
The results of the analysis have led to the construction of 16 novel features. There is also a
tendency in machine learning problems to include a large number of features for training
instances, and it results in excessive computational overhead and overfitting, leading
to poor efficiency. The curse of dimensionality has usually been used to describe this
problem. Feature selection and feature extraction have been widely applied to mitigating
the problems caused by high dimensionality in learning problems [29]. (In this paper, PCA
is used as the feature selection model).

Stage.2. Datum dividing and training. The test and training sets are divided through
9:1 through the data splitting module. There is too much noise in the classifier if too many
features are used [30]; therefore, every original data has been split into four parts according
to features from various PMUs. While doing this, a section of the main characteristics is
picked and sent to the AdaBoost layout to train alongside the novel features as well. This
step is necessary for reducing the effect of errors resulting from bad PMU measurements.
In case the feature dimension increases, the classifier’s performance decreases. As a result
of this step, several of the original features are combined with novel ones in order to reduce
the dimension. The original features are sorted using feature importance, and afterward, a
variety of proportions of the features are selected, explained in more detail in Part 3. In
addition, several classifier models are developed for personalizing the features following
splitting. Various classifiers are set up to make every section of the data display the greatest
impact on the classifier, i.e., the training model. Using five classifiers and later obtaining
five tags following transferring the information to the layout reduces the effect of the alone
classifier generalization error.

Stage.3. Weights for voting. It is the responsibility of the module to assign diverse
weights to the tags derived from diverse classifiers and vote on the last classification tag
of the data. According to the accuracy ratio of every classifier in the training set, the ratio
of various weights has been thus determined. Various tags are generated by the test set
following they have passed through the trained classifier, and the weights are determined
for the last voting session based on the tags of the relevant classifier. By updating the
weights in real-time, the entire system can become more robust and generalizable.
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2.5. In-Depth Explanation of the Attack-Diagnosing Layout
2.5.1. Properties Making

During property making, 16 novel features have been extracted from every PMU
measurement feature and incorporated into the original data set for preparing for the
next step. Raw data is mainly used for extracting novel features based on corresponding
computations.

2.5.2. Data Processing

It is important to process the data prior to sending it to the machine learning model.
The normalization of the data is an important part of data processing. The benefit of this
method is that it speeds up and improves the accuracy of iterations for finding the best
solution for gradient descent. Among the most common techniques of data normalization
are z-score standardization and min-max standardization. Basically, min-max standard-
ization works by changing the original data linearly toward an outcome between [0, 1]
shown below:

Xscale =
x − xmin

xmax − xmin
(6)

In addition, Z-score standardization has been known as standard deviation standard-
ization, and it has been mostly applied for characterizing deviations from the average.
The data analyzed through this technique assure the standard usual distribution, which
is that the standard deviation and average are equal to one and zero, respectively. The
data processed using the process can satisfy the standard normal distribution, meaning the
mean equals 0 and the standard deviation Equation (6). Following is the transformation
function, the mean amount of the instant data is shown by µ, and the standard deviation is
represented by σ. This study adopts this normalization process.

Xscale =
x − µ

σ
(7)

A data set may contain the not a number (NAN) and infinity (INF) amount, but it has
been usually substituted through the mean amount or zero. For the data set applied here,
the novel replacement process is proposed to avoid underflows in the final replacement
value and the data being overly discrete. log_mean value is used for replacing NAN and
INF values present in the data. It can be calculated as follows:

log_mean =
∑ log|ki|
Num(ki)

·
(

1 − 2
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Here, the number of digits in a column is shown by Num(ki) and the indicator function
is represented by
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(9)

Comparative experiments are conducted on various treatment approaches in this
study. Section 3 shows the outcomes that show that the suggested process succeeds.

2.5.3. Establish Classifier Layouts

Following a series of tests using various machine learning classifiers, a DT classifier
was selected due to its superior performance. The sigmoid layer’s fusion activation function
is defined by the equation provided below.

F1 =
n

∑
k=1

yklog(tk)ws + (1 − yk)log(1 − tk)wl (10)



Mathematics 2022, 10, 2574 8 of 15

In which F1 defines the sigmoid layer’s fusion activation function, yk shows the kth pattern’s
tag, tk defines the kth pattern’s prediction, and wl and ws define the stable pattern and
unstable pattern, respectively [31].

A for loop was used to test the Autoencoders (AEs) with varying numbers of layers,
neurons, batch sizes, loss and activation functions, optimizers, epochs, and dropout layers
in order to improve accuracy and the f-measure. Both Stacked Autoencoder (SAE) and
Deep Neural Network (DNN) models utilize the Binary Cross-Entropy (BCE) cost function
and the Rectified Linear Unit (ReLU) activation function to achieve optimal performance,
as represented by the performance metrics.

ReLU(x) = max(0, x) (11)

In which x defines the observation.

2.5.4. Proposed Machine Learning

An advanced deep learning approach is presented to make a powerful detector for the
system. The proposed approach involves building a deep base model to learn representative
features. To ensure diversity in the base model, multiple deep autoencoders were created,
including an SAE, a Denoising Autoencoder (DAE), and linear decoder methods. Each of
these models was trained using unique datasets generated through the Bootstrap method.
To this end, the characteristics were first selected. Secondly, deep base models were
developed to adaptively learn hidden characteristics from the exploited indexes obtained.
To ensure diversity in the base patterns, deep autoencoders were constructed using SAE,
DAE, and linear decoder methods.

3. Experiment and Evaluation

In machine learning, classifications and regressions are the primary learning tasks. It
is obvious that the classification problem is addressed in this study. The next experiments
are designed to test whether the model structure described in this study is capable of
distinguishing fault and disturbance in electrical systems. A comparison is made between
the model and various conventional models, such as convolution neural network (CNN),
gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), decision tree
(DT), support vector machine (SVM), and k-nearest neighbor (KNN).

Additionally, the accuracy achieved through transferring information has been com-
pared after the property making is compared.

3.1. Data Set

A multiclass classification data set for ICS cyber-attacks is used in the present study.
There are several terms applied in machine learning that require an explanation. The true
positive (TP) is the positive sample that the layout predicts to be positive, the false positive
(FP) is the negative sample that the layout predicts to be positive, and the false negative (FN)
is the positive sample that the model predicts to be negative, the true negative (TN) is the
negative sample that the model predicts to be negative. The suggested layout is evaluated
using accuracy, precision, recall, and F1 score. An F1 score is basically the harmonic value
of precision and recall, which are calculated according to the following equations:

accuracy = (TP + TN)/(TP + FP + FN + TN) (12)

precision = TP/(TP + FP) (13)

recall = TP/(TP + FN) (14)

F1 score =
2TP

2TP + FN + FP
=

2·precision·recall
precision + recall

(15)
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3.2. Experiment Outcome
3.2.1. Machine Learning Model

In this experiment, KNN, SVM, GBDT, XGBoost, CNN, and others were applied as
conventional models [24,25,32–35].

Actually, the main purpose of this research is to show the high and successful role of
the deep learning models in reinforcing the smart grid against various cyber-attacks. In
this regard, the proposed model would detect and stop cyber-hacking at the installation
location rather than focusing on the cyber-attack type. Therefore, the localization procedure
would be attained through the diverse detection models located in the smart grid, but the
cyber-attack type detection requires more data that can be made later based on the recorded
abnormal data.

3.2.2. Outcomes

In order to determine the need for various models (fault analysis), we performed
some comparative experiments according to various PMU kinds. In one group, properties
of localization/segmentation are sent to the related DML model in order to train, and
in the other one, whole features are sent to various machine learning models. Moreover,
it is shown in Table 1 that data can be effectively split according to the PMU resources.
Splitting the data can enhance the accuracy of classification models as well as reduce data
dimensions and enhance training speed and minimize computing sources.

Table 1. Transfer diverse characteristics to the layout for comparison.

Technique
Characteristics

Entire Split

Accuracy 0.9344 0.9387

Several corresponding experiments are conducted on various ways of replacing abnor-
mal values in data. Table 2 shows the outcomes. The replacement method is shown in the
left column, and the suggested approach is represented by log_mean. Zero shows a process
to replace NAN and INF with zero values, and mean shows a process to replace with the
mean value. The proposed model is utilized as a trial model, and the accuracy is adopted
as the assessment metrics, that is, the Log-mean column in Table 2.

Table 2. Diverse methods to procedure INF and NAN.

Method Zero Mean Log-Mean

Accuracy 0.9361 0.9342 0.9387

Applying the log_mean technique for replacing the unusual amount in the data is
intuitively the best approach. According to the outcome, the suggested process in order to
process abnormal values has proven successful.

Table 3 shows the suggested method with PCA in compare of other selection method.
As can be seen the accuracy rate of the suggested method with PCA is better than other
methods.

Table 3. Accuracy rate of various feature selection method.

Method PCA PSO Algorithm K-Means Clustering SVM

Accuracy 0.9387 0.8741 0.9134 0.902

Comparison experiments are also conducted to verify feature selection. First, the
significance of the original features is determined, and afterward, they are arranged based
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on significance. A variety of mixtures of features has been selected for training, and Table 4
shows these outcomes.

Table 4. Assessment of characteristics chosen.

Characteristics Only New Characteristics 25% Main Characteristics
and New Characteristics

50% Main Characteristics
and New Characteristics

Mean accuracy 0.7492 0.9349 0.9334

Characteristics 75% Main Characteristics
and New Characteristics 100% Main Characteristics and New Characteristics

Mean accuracy 0.933 0.9353

The approach was verified practically through a comparative test. The test extracts
the test group and training group from 15 multiclass data sets in a 9:1 ratio at random,
and afterward, these data sets have been combined into 1 training group. The training
group has been transferred to the layout to train and learn. Table 5 presents the outcomes
of 15 test sets transferred to the model for practically simulating the efficiency of the model
applications. It is apparent that the model’s accuracy has decreased. It is because data
interaction would occur by increasing the number of data resulting in changing the model,
and whenever whole data has been combined, there would unavoidably be abnormal
points and noises. Due to the fact that such noises and anomalies have not been separated
in training, the model’s indexes alter, and the robustness decreases.

Table 5. Layout accuracy on 15 trails sets in the actual simulation.

Data set Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8

Data number 0.8894 0.8699 0.9097 0.8830 0.9092 0.9096 0.9066 0.9193

Data set Data 9 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Entire

Data number 0.9083 0.9229 0.9241 0.9007 0.9016 0.8966 0.9130 0.9043

Firstly, the efficacy of the features created from the feature construction engineering in
the model is determined by sorting the significance of features. Model interpretability can
be determined by determining the significance of features. Weights, gain, cover, and so on
are general indicators of feature significance [25].

The test trains 15 sets of multiclass classification data sets and tests respectively and
uses accuracy as an assessment metric [24]. The accuracy of the trail data sent to the layout
before and after optimization based on the main 128 properties is shown in Figures 3–5.
The classification accuracy of the trail group on various layouts with default variables is
shown in Figure 3, and the accuracy of the trail group on the layout applying optimized
variables is represented in Figure 4. For a more intuitive visualization of the variation in
accuracy after layouts are optimized, Figures 3 and 4 are combined, and the mean of the
accuracy values for whole sets are adopted, i.e., Figure 5. Figures 3–5 shows that the SVM
layout with default variables has an accuracy of approximately 0.30, but after optimization,
it grows to 0.85, which represents a near 200% advancement. Other models have improved
significantly in accuracy after optimization as well. The best accuracy of the proposed
model is 0.925. The test set had better performance on the model suggested in this study in
comparison to the conventional DML and CNN, as shown in Figures 3–5.
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A true decision is obtained when the detection layout produces the correct result.
Conversely, a false decision indicates a false response from the cyber-attack detection
layout and can lead to decreased reliability. Therefore, it is important to develop an
anomaly detection layout with low false rates. Four criteria, namely Correct Reject Rate
(CR), Miss Rate (MR), False Alarm Rate (FR), and Hit Rate (HR), can be used to assess
the effectiveness of the layout. To better understand these criteria, a confusion matrix is
provided in Table 6.

Table 6. Confusion matrix of proposed scheme.

Actual Value

Detection Scheme Response

Positives Negatives

Positives True Positive False Positive

Negatives False Negative True Negative

In order to evaluate the performance of the suggested detection mechanism for de-
tecting cyber-attacks and anomalies in smart grids, the cyber-attack models are applied.
The evaluation outcomes were recorded and are presented in Tables 7 and 8. From the
tables, it can be observed that the proposed detection mechanism is highly effective in
detecting cyber-attacks, with a detection accuracy rate of over 97%. This indicates that
the suggested detection method is capable of accurately detecting FDI attacks and can be
considered an efficient solution to the problem. The evaluation results demonstrate the
effectiveness of the suggested detection mechanism for detecting cyber-attacks in smart
grids, and highlight the potential of deep machine learning methods with PCA and DT for
addressing challenges in the field of cyber security.

Table 7. The proposed detection scheme.

Label Number of
Testing Data

Identified to
Be Compromised

Identified to
Be Normal

Detection
Accuracy (%)

Compromised 1759 1651 108 93.87

Normal 1394 81 1313 94.17
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Table 8. Confusion matrix of the proposed detection scheme.

Actual Value

Detection Scheme Response

Positives Negatives

Positives 93.87% 5.83%

Negatives 6.13% 94.17%

4. Conclusions

This study proposes a new deep model and feature selection approach for identifying
faults and cyber-attacks in electrical systems using various smart grid information and data
analysis. Different DML assessment indexes with PCA and DT were used to evaluate the
suggested model and conventional DML methods. The results showed that the information
analyzing process improves the model’s accuracy and the proposed layout detects various
types of behavior in smart grids efficiently. Machine learning with PCA and DT can be used
in the power grid to assist operators in making decisions, such as detecting abnormality
in data gathering and estimating the system status if data readings from any PMU are
unusual. According to the results, the proposed method can accurately and efficiently detect
cyber-attacks in smart grids. Furthermore, the study concluded that the proposed model
demonstrates good performance in detecting destructive attacks with different intensities.
The outcomes of two different metrics, namely the detection rate and the confusion matrix,
support the precision and reliability of the proposed anomaly detection approach.
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